

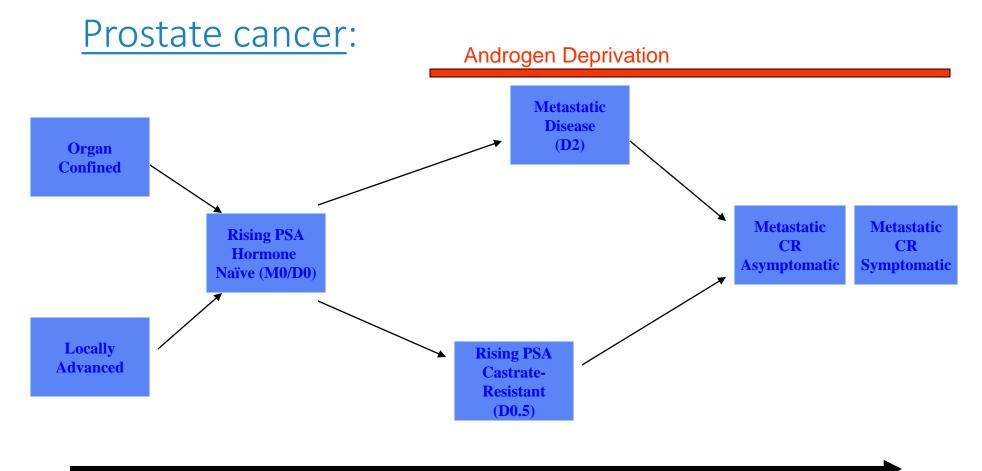
Immunotherapy for the Treatment of Genitourinary Cancers

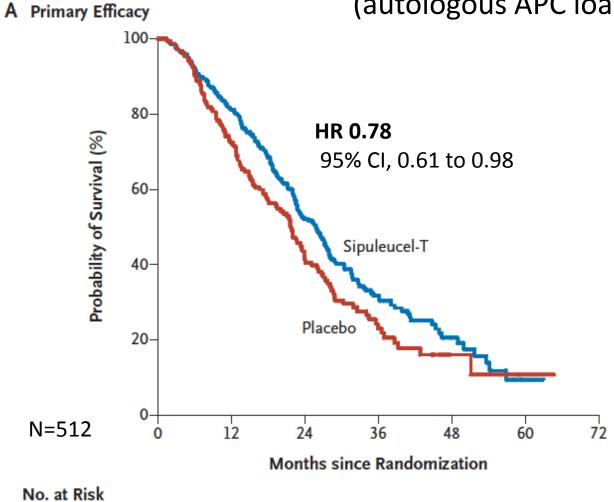
Leonard J. Appleman, MD, PhD Associate Professor of Medicine University of Pittsburgh

Disclosures

- No relevant financial relationships to disclose
- I may be discussing non-FDA approved indications during my presentation.

Learning Objectives:


- Describe the rationale for common approaches to cancer immunotherapy, with respect to prostate, bladder and renal cancer
- Familiarize the learner with clinical data on the efficacy of approved therapies
- Recognize patient selection criteria for approved therapies
- Select appropriate sequencing of approved therapies

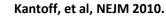


ADVANCES IN IMMUNOTHERAPY™

Vaccines in Prostate Cancer

Sipuleucel-T

(autologous APC loaded with PAP-GM-CSF fusion protein



Sipuleucel-T Placebo

341 171 274 123 129 55

19

14

Sipuleucel-T:

Approval indications: **APRIL 2010**Patients with asymptomatic to minimally symptomatic

castration-resistant metastatic prostate cancer

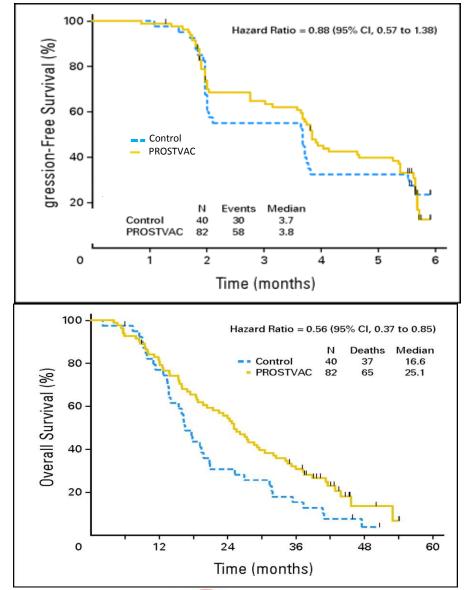
Dosing: Collection and infusion every 2 weeks x 3

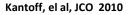
Common adverse reactions:

Chills, fatigue, fever, back pain, nausea, joint aches, headache

Warnings:

Infusion reactions, not tested for transmissible infectious diseases, syncope/hypotension, myocardial infarction, thromboembolic events

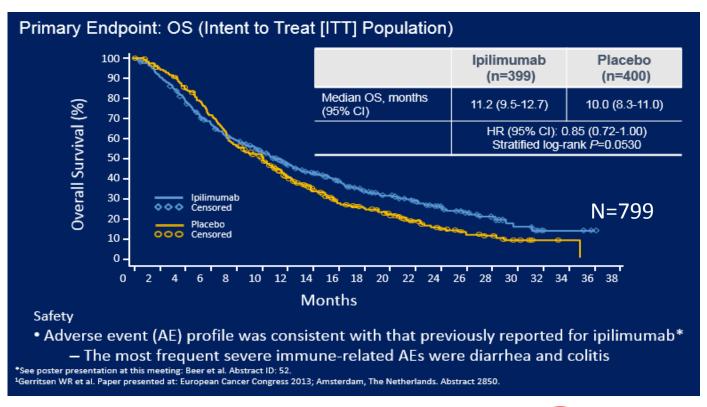

Vaccines in Prostate Cancer


Prostvac

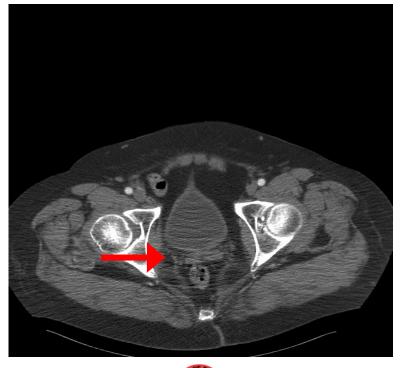
Poxvirus expressing PSA/B7-1/ICAM-1/LFA-3 Plus GM-CSF

NCT01322490: Phase III study: N=1200 pts.

Prostvac+GM-CSF
Prostvac+placebo
Placebo
Chemo-naïve, pox-experienced min-Sx CRPC



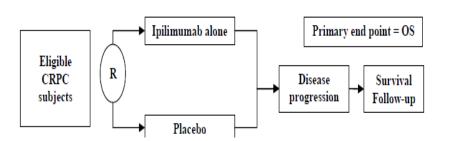
Phase 3 Study of Ipilimumab in Post-Docetaxel mCRPC (CA184-043)1

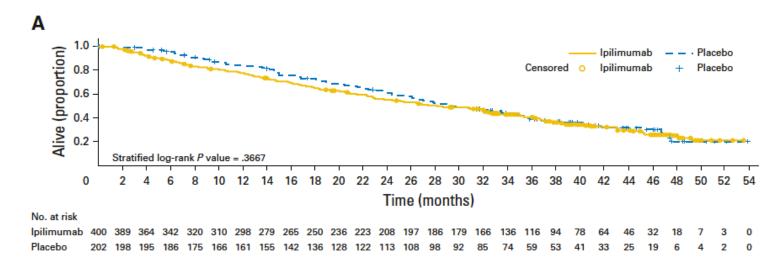


Resolution of Prostate Mass

Screening

14 months





Patients:

- Asymptomatic/minimally symptomatic, chemotherapy-naïve castration resistant prostate carcinoma (CRPC)
- No visceral metastases

mOS 28.7 vs. 29.7 mos (HR 1.11; 0.88 – 1.39)

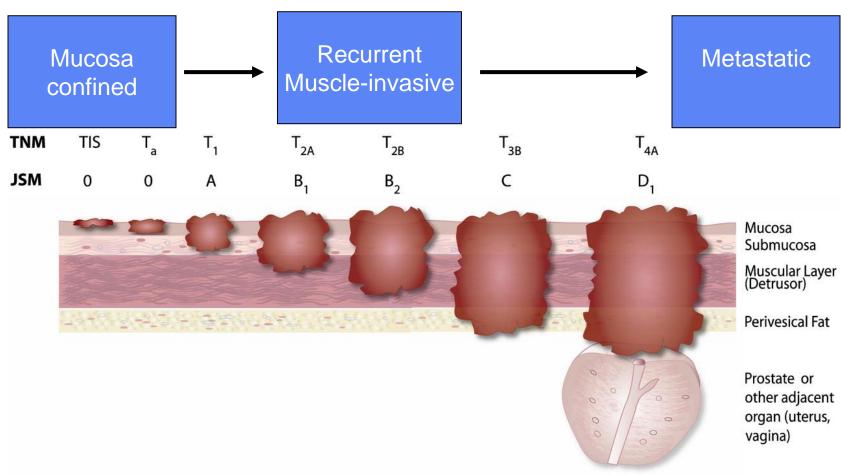
Beer et al JCO 2016 (HR, 0.67; 95.87% CI, 0.55 to 0.81)

PD-1/PD-L1 blockade in mCRPC

- Phase I trials with nivolumab
 - No evidence of single-agent activity in mCRPC
- Phase I trials with pembrolizumab
 - Small percentage response rate in patients with advanced mCRCP (3/10 Graff, Beer et al Oncotargets May 2016)
 - Pembrolizumab now approved (May 2017) for MSI-high and mismatch repair deficient tumors – hence data exists to support this in the small percentage of prostate cancer that are MSI^{high}
- Multiple combinations are underway with ipilimumab or PD-pathway inhibitors with vaccines (including sipuleucel-T), chemotherapy, androgen deprivation, and radiation therapy

<u>Lessons learned</u>: Prostate cancer immunotherapy trials

- Prostate not an "inflamed" solid tumor like melanoma, lung, bladder
- Not significantly hyper-mutated
- For vaccines ↑ doses of vaccine ≠ augmentation of immunity
- Limited efficacy of checkpoint inhibitors, anti-CTLA-4, anti-PD1 as single agents



Bladder

Cancer:

www.cancersymptoms.xyz

Bladder Cancer:

TREATMENT OF METASTATIC BLADDER CANCER

Gemcitabine+cisplatin chemotherapy

MVAC: methotrexate vinblastine adriamycin cisplatin

No 2nd line treatment approved in the USA paclitaxel, docetaxel, pemetrexed, eribulin have shown modest activity

ADVANCES IN CANCER BLADDER CANCER 2013 UPDATE

The new bladder landscape: new drug approvals

- Durvalumab anti-PDL1
- Atezolizumab anti-PDL1
- Avelumab anti-PDL1
- Nivolumab anti-PD1
- Pembrolizumab anti-PD1

Atezolizumab:

Atezolizumab – IMvigor 210 Study

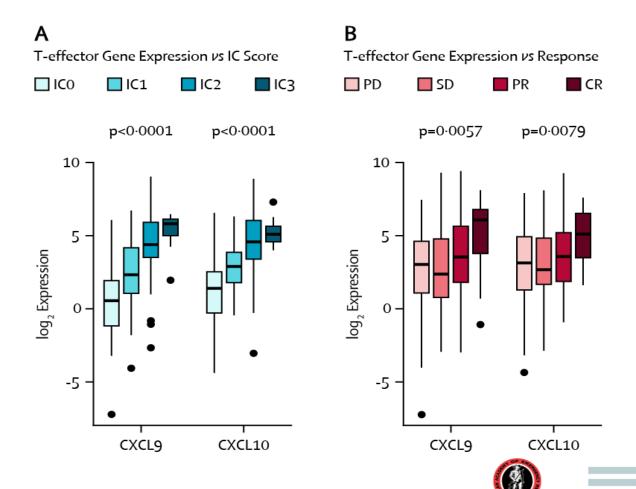
- PD-L1 mAb
- Open-label, multilabel, two cohort Phase II Study
 - Cohort 1: cisplatin-ineligible (N=119)
 - Cohort 2: progression after platinum-containing chemo (N=310)
 - Assessed PD-L1 expression on tumor infiltrating immune cells

	PD-L1 Expression	<u>ORR</u>
ORR all patients 15%	≥ 5%	26%
	1 – 5%	10%
Median OS 7.9 months	< 1%	8%

Atezolizumab:

Atezolizumab – IMvigor 210 Study

- May 2016: Accelerated approval for patients with locally advanced or metastatic urothelial carcinoma with disease progression following platinum-based chemotherapy (or whose disease has worsened within 12 months of receiving platinum-based neoadjuvant or adjuvant chemotherapy).
- Expanded approval as a first-line treatment in cisplatinineligible patients (IMvigor 210 Cohort 1).
 - ORR 23.5% (CR in 6.7%, PR in 16.8%)
- Approved regardless of PD-L1 status



High levels of immune response genes are associated with both PD-L1 staining and treatment response

Atezolizumab:

IMvigor 211 trial

- Open-label, multicenter, randomized Phase III study (atezolizumab vs. physician's choice (docetaxel, paclitaxel or vinflunine)
- 931 patients
- Primary endpoint: Overall survival
- Primary endpoint not met (press release)
- ORR 14.8%, 26% in patients with high PD-L1 expression
- mPFS 2.7 months
- OS 15.9 months

Nivolumab – Checkmate 275 Study

- Phase II Study in locally advanced/metastatic disease following platinum chemotherapy (N=270)
 - Stratified by PD-L1 expression ≥ 5% or < 5%

ORR all patients 19.6%	PD-L1 Expression	<u>ORR</u>	
	≥ 5%	28.4%	
Median OS 8.7 months	< 5%	15.8%	

100

Overall survival (%)

Number at risk (number censored)

Number at risk

number censored)

Nivolumab 78 (0)

80 -

60 -50 -

Checkmate 032 Study

5 (27)

16 (17)

Nivolumab	
(n=78)	

PD-L1 <1%

PD-L1 ≥1%

(n=42)(n=25)

11

Confirmed 19 (24.4%, objective response 15.3-35.4)

(26.2%,6 (24.0%, 13.9-

9.4 - 45.1

8 (32%)

3 (12%)

42.0)

Best overall response

disease

Complete response	5 (6%)	1 (2%)	4 (16%)
Partial response	14 (18%)	10 (24%)	2 (8%)
Stable disease	22 (28%)	11 (26%)	8 (32%)
Progressive	20 (200/)	10 //20/\	0 (220/)

Unable to 7 (9%) 2 (5%) establish

Antitumour activity

30 (38%)

Kaplan-Meier curves of overall survival (A) and progression-free survival (B); circles are censored patients.

Time from start of treatment (months)

18 (43%)

Sharma, et al., Lancet Onc, 17: 1590-1598, 2016

Nivolumab

• February 2017: FDA approval for patients with locally advanced or metastatic urothelial carcinoma with disease progression following platinum-based chemotherapy (or whose disease has worsened within 12 months of receiving platinum-based neoadjuvant or adjuvant chemotherapy).

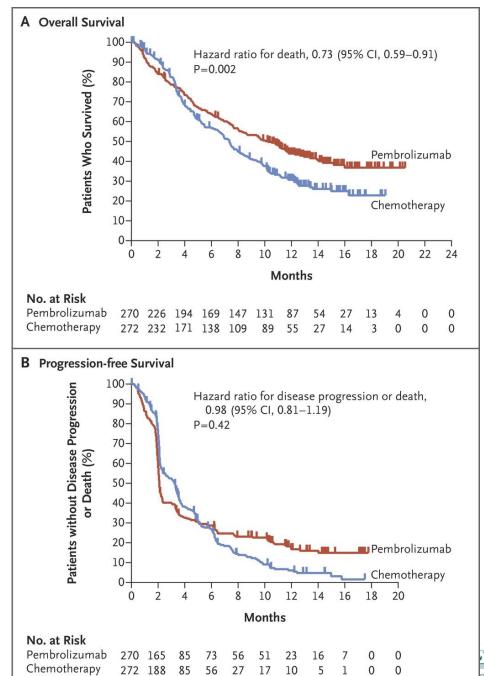
Approved regardless of PD-L1 status

Avelumab/Durvalumab

- Locally advanced or metastatic bladder cancer whose disease has progressed during or after platinum-containing chemotherapy or within 12 months of neoadjuvant or adjuvant chemotherapy.
- Approval based on single-arm, open-label JAVELIN trial in which ORR was 13.3% among 226 patients. Median duration of response not reached (1.4+ to 17.4+ months)
- **VENTANA PD-L1 (SP263) Assay** (Ventana Medical Systems, Inc.) as a complementary diagnostic for the assessment of the PD-L1 protein in formalin-fixed, paraffin-embedded urothelial carcinoma tissue.

Pembrolizumab

- Accelerated approval for the first-line indication was based on data from **KEYNOTE-052**, a single-arm, open-label trial in 370 patients with locally advanced or metastatic urothelial carcinoma who were deemed not eligible for cisplatin-containing chemotherapy. Patients received pembrolizumab 200 mg every 3 weeks. With a median follow-up time of 7.8 months, the **ORR was 28.6% (95% CI 24, 34)** and the median response duration was not reached (range 1.4+, 17.8+ months).
- Based on Trial KEYNOTE-045, a multicenter, randomized, active-controlled trial in patients with locally advanced or metastatic urothelial carcinoma with disease progression on or after platinum-containing chemotherapy.
 Control: investigator choice docetaxel, paclitaxel or vinflunine.

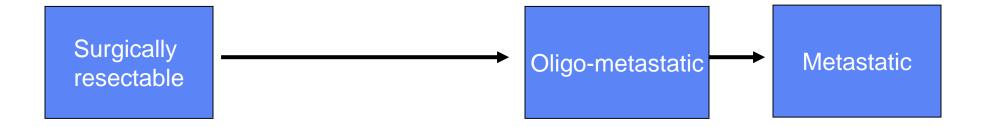

KEYNOTE-045

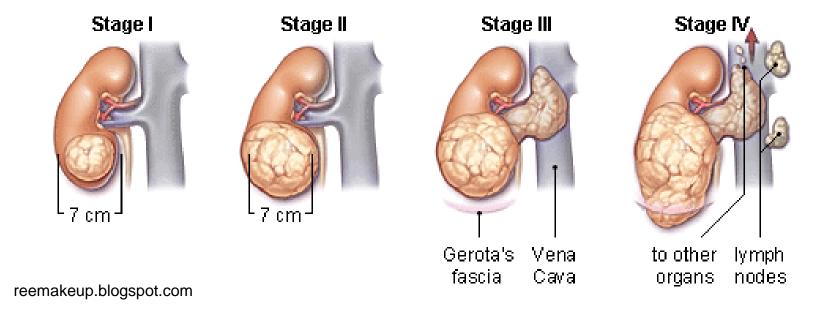
OS: Median 10.3 months versus 7.4 months

PFS: Not significantly different

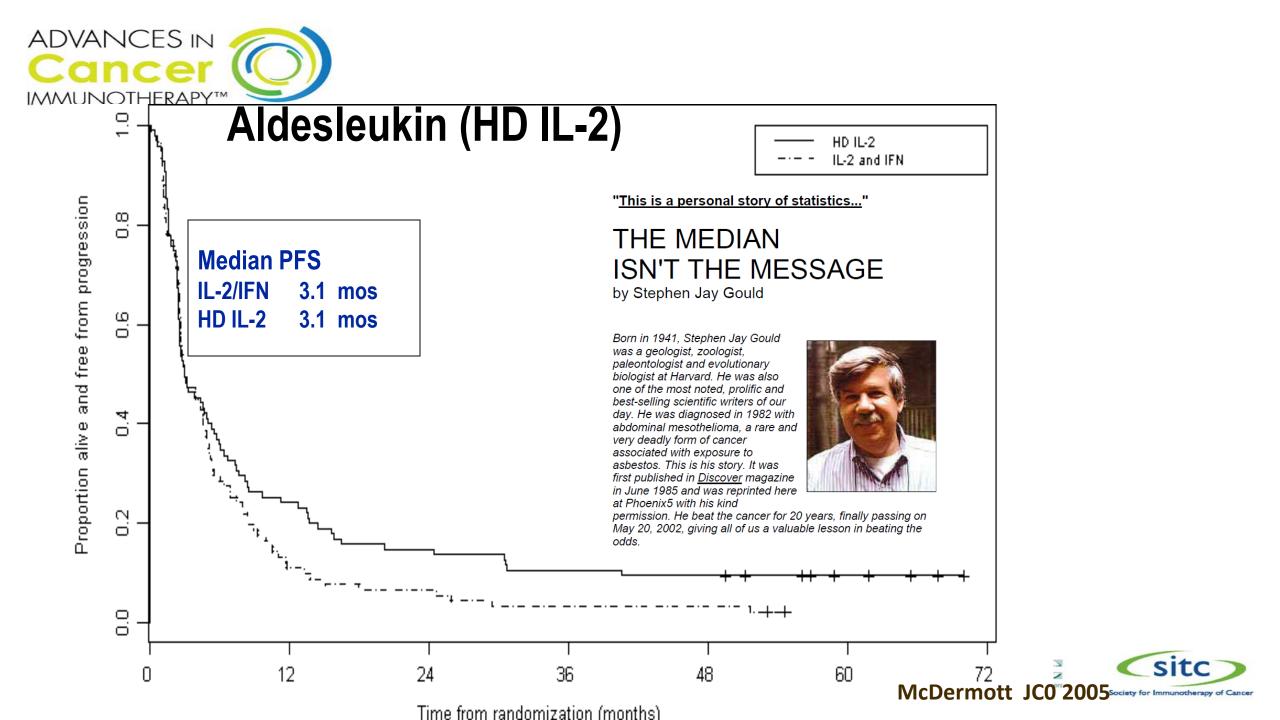
AE: Fewer TRAE of any grade in the pembrolizumab group (60.9% versus 90.2%)

Bellmunt, et al., NEJM, 376: 1015-1026, 2017


ESMO 2017 Update: HR 0.70



Kidney Cancer



Renal Cell Carcinoma: Approved Agents 2017

VEGFR TKI

VEGFR/MET TKI

mTOR inhibitor

Immune therapy

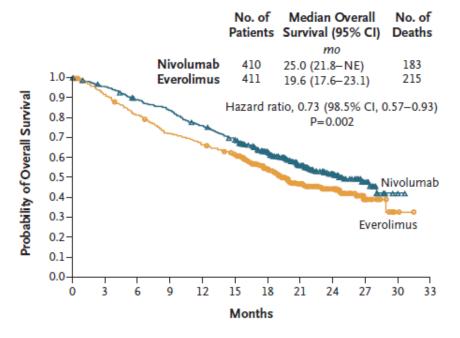
Neutralizing anti-VEGF mAb

Nivolumab

 Phase III CheckMate 025 trial – 821 patients with previously treated mRCC (1-2 VEGF TKI): Nivolumab (anti-PD-1) 3 mg/kg q 2 wk versus everolimus 10 mg per day

Median OS: 25m vs 19.6m

• ORR: 25% vs 5%

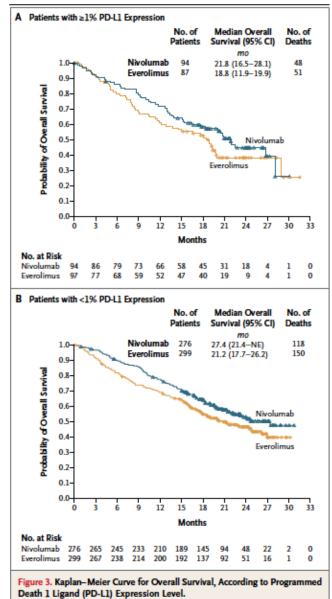

Median PFS: 4.6m vs 4.4m

Median duration: 23m vs 13.7m

Grade 3/4 AE: 19% vs 37%

Most common AE with nivolumab was fatigue (2%)

Approved by FDA in 2015



PD-L1 Expression is prognostic for poor survival in RCC but did not predict for response to nivolumab

MOTZER NEJM 2016

Nivolumab:

Approval indications:

Patients with metastatic renal cell cancer who have received prior anti-angiogenic therapy

Dosing: 240 mg IV every 2 weeks

Common adverse reactions:

Asthenia, cough, nausea, rash, dyspnea, diarrhea, constipation, decreased appetite, back pain, arthralgia

Warnings:

Immune-mediated pneumonitis, colitis, hepatitis, endocrinopathies, nephritis, rash, encephalitis, others

Other PD-1/PD-L1 Inhibitors:

- Phase III Nivolumab + Ipilimumab vs. Sunitinib
 Previously untreated mRCC (CheckMate 214)
- Phase III Atezolizumab (anti-PD-L1) + Bevacizumab vs.
 Sunitinib

Previously untreated mRCC

- Phase II Nivolumab pre-surgical resection for mRCC (ADAPTeR)
- Phase I Nivolumab + Sunitinib or Pazopanib or Ipilimumab
 Previously untreated mRCC (CheckMate 016)
- Different combinations with chemotherapy, IFN α , etc
- Multiple combinations with pembolizumab

CheckMate 214: Efficacy and Safety of Nivolumab Plus Ipilimumab vs Sunitinib for Treatment-Naïve Advanced or Metastatic Renal Cell Carcinoma, Including IMDC Risk and PD-L1 Expression Subgroups

Bernard Escudier, ¹ Nizar M. Tannir, ² David F. McDermott, ³ Osvaldo Arén Frontera, ⁴ Bohuslav Melichar, ⁵ Elizabeth R. Plimack, ⁶ Philippe Barthelemy, ⁷ Saby George, ⁸ Victoria Neiman, ⁹ Camillo Porta, ¹⁰ Toni K. Choueiri, ¹¹ Thomas Powles, ¹² Frede Donskov, ¹³ Pamela Salman, ¹⁴ Christian K. Kollmannsberger, ¹⁵ Brian Rini, ¹⁶ Sabeen Mekan, ¹⁷ M. Brent McHenry, ¹⁷ Hans J. Hammers, ¹⁸ Robert J. Motzer¹⁹

¹Gustave Roussy, Villejuif, France; ²University of Texas, MD Anderson Cancer Center Hospital, Houston, TX, USA; ³Beth Israel Deaconess Medical Center, Dana-Farber/Harvard Cancer Center, Boston, MA, USA; ⁴Centro Internacional de Estudios Clinicos, Santiago, Chile; ⁵Palacky University, and University Hospital Olomouc, Olomouc, Czech Republic; ⁵Fox Chase Cancer Center, Philadelphia, PA, USA; ⁴Hôpitaux University, and University Hospital Olomouc, Czech Republic; ⁵Fox Chase Cancer Center, Philadelphia, PA, USA; ⁴Hôpitaux University, and Tei Aviv Hospital, France; ⁵Roswell Park Cancer Institute, Buffalo, NY, USA; ⁴Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel, and Tei Aviv University, Tel Aviv, Israel; ¹0¹RCCS San Matteo University Hospital Foundation, Pavia, Italy; ¹¹Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA, USA; ¹²Barts Cancer Institute, Cancer Research UK Experimental Cancer Medicine Centre, Queen Mary University of London, Royal Free NHS Trust, London, UK; ¹³Aarhus University Hospital, Aarhus, Denmark; ¹⁴Fundación Arturo López Pérez, Santiago, Chile; ¹⁵British Columbia Cancer Agency, Vancouver, BC, Canada; ¹⁶Cleveland Clinic Taussig Cancer Institute, Cleveland, OH, USA; ¹³Memorial Sloan Kettering Cancer Center, New York, NY, USA

CheckMate 214: Study design

3 co-primary endpoints (Int and poor risk)

OS

PFS

ORR

N=1000

Patients

 Treatment-naïve advanced or metastatic clear-cell RCC

- · Measurable disease
- · KPS ≥70%
- Tumor tissue available for PD-L1 testing

Randomize 1:1

Stratified by

- IMDC prognostic score (0 vs 1–2 vs 3–6)
- Region (US vs Canada/Europe vs Rest of World)

Treatment

Arm A

3 mg/kg nivolumab IV + 1 mg/kg ipilimumab IV Q3W for four doses, then 3 mg/kg nivolumab IV Q2W

Arm B

50 mg sunitinib orally once daily for 4 weeks (6-week cycles) Treatment until progression or unacceptable toxicity

IMDC, International Metastatic RCC Database Consortium, KPS, Karnofsky performance status, Q2W, every 2 weeks, Q3W, every 3 weeks

Table 3. Multivariable Analysis and Final Model

Peremeter	Peremeter Estimate ± SE		95% CI	P
Clinical				
KPS < 80%	0.92 ± 0.14	2.51	1.92 to 3.29	< .0001
Time from diagnosis to treatment < 1 year	0.35 ± 0.13	1.42	1.09 to 1.84	.0098
Laboratory				
Hemoglobin < LLN	0.54 ± 0.14	1.72	1.31 to 2.26	.00001
Calcium > ULN	0.59 ± 0.17	1.81	1.29 to 2.53	.0006
Neutrophil count > ULN	0.88 ± 0.17	2.42	1.72 to 3.39	< .0001
Pletelet count > ULN	0.40 ± 0.16	1.49	1.09 to 2.03	.0121

NOTE. Total number of patients = 584.

Abbreviations: SE, standard error; KPS, Kernofsky performance status; LLN, lower limit of normal; ULN, upper limit of normal.

Co-primary endpoint: ORR

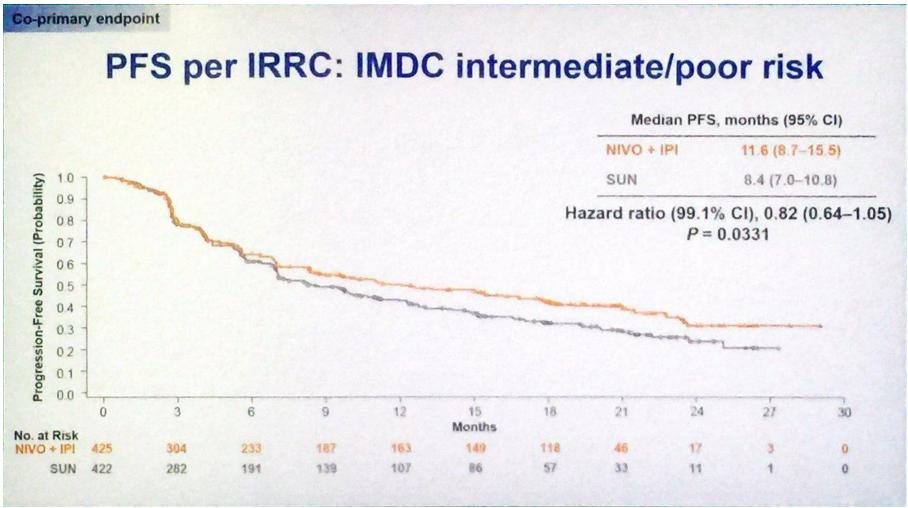
63

ORR AND DOR: IMDC INTERMEDIATE/POOR RISK

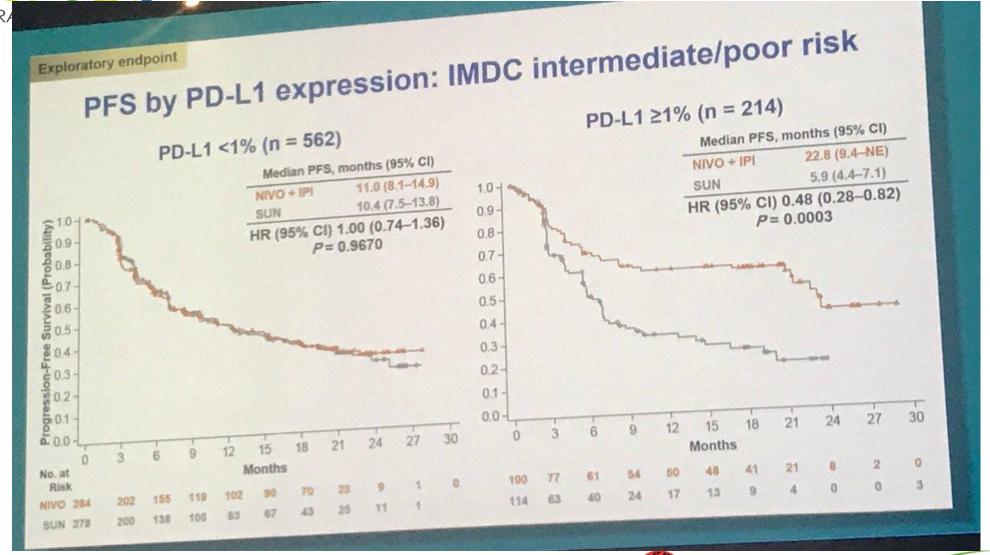
ration of response, Patients with ongoing response, %	1000 CONTROL OF THE PARTY OF TH	
NR (21.8-NE) 72	NR (21.8-NE)	NIVO + IPI

A STATE OF THE REAL PROPERTY.	N = 847		
Outcome	NIVO + IPI N = 425	SUN N = 422	
Confirmed ORR, ^a % (95% CI)	42 (37–47)	27 (22–31)	
	P < 0.0001		
Confirmed BOR, ² %			
Complete response	96	10	
Partial response	32	25	
Stable disease	31	45	
Progressive disease	20	17	
Unable to determine/not reported	8	12	

18.2 (14.8-NE)



Overall population: 12 months vs 12 months HR 0.98



ADVANCES IN Cancer

IMMUNOTHERA

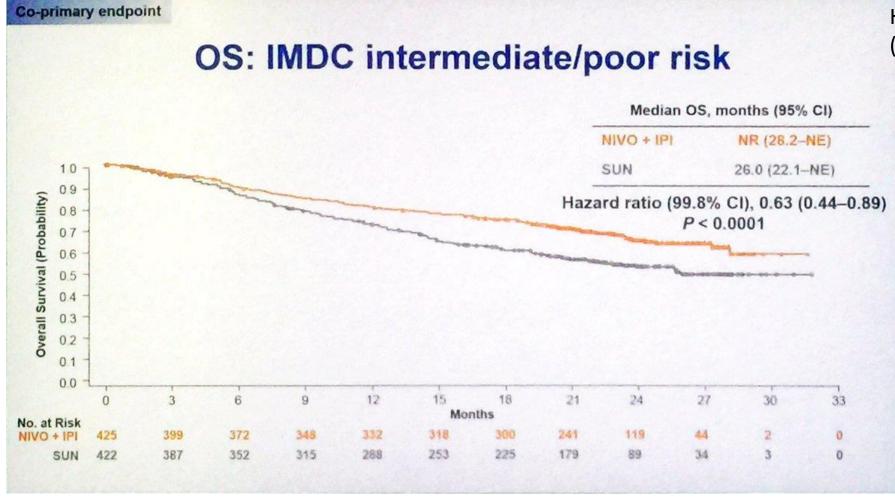
Neeraj Agarwal and 2 others follow

Swati Tyagi @swatityagi · Aug 16

#Opdivo+#Yeryoy fails to achieve stats signif PFS in CHECKMATE-214 for adv/mets RCC. Mature OS data key for 1L entry

Bristol-Myers Squibb Announces Topline Results fr...

Co-Primary Endpoint of Objective Response Rate was met for the combination of Opdivo and Yervoy Co-Primary Endpoint of Progression-Free Survival Favore...


investors.bms.com

HR for all patients 0.68 (p<0.003) (median OS NR vs 33 mo)

Checkma	ate-214 results repor	ted at Esmo	
	Intermediate/poor- risk (~75% of pts)	Good risk (~25% of pts)	All patients (ITT)
PFS	11.6 vs 8.4 <u>mos</u> . HR=0.82; p=0.0331.	15.9 vs 25.1 <u>mos</u> . HR=2.18, p<0.0001 in favour of <u>Sutent</u> .	12.4 vs 12.3 <u>mos</u> , HR=0.98, p=0.8499.
<u>PD-L1</u> negative	PFS=11.0 vs 10.4 mos. HR=1.00, p=0.9670.	PFS not disclosed, but HR likely to be >1.0. (ORR estimated to ~33% vs 56%.)*	PFS not disclosed. (ORR 36% vs 35%, p=0.8799.)
PD-L1 positive	22.0 vs 5.9 <u>mos</u> . HR=0.48, p= 0.0003.	PFS not disclosed.	PFS not disclosed. (ORR=53% vs 22%, p<0.0001.)
os	NR vs 26.0 <u>mos</u> . HR 0.63, p<0.0001.	Not disclosed. Likely to favour Sutent.	NR vs 32.9 <u>mos</u> . HR=0.68 p=0.0003.
All compa	arisons Opdivo/Yervov	vs Sutent. NR: not reached.*by EPVan	tage.

Resources

McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

CrossMark

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 DOI 10.1186/s40425-016-0180-7

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma

Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins 163

Look for:

SITC Consensus Statement on Immunotherapy for the treatment of Bladder Carcinoma COMING SOON (2017)!!!!!!!

