

THE LEADING CANCER IMMUNOTHERAPY AND TUMOR IMMUNOLOGY CONFERENCE

The Society For Immunotherapy of Cancer's 36th Annual Meeting & Pre-Conference Programs #SITC21

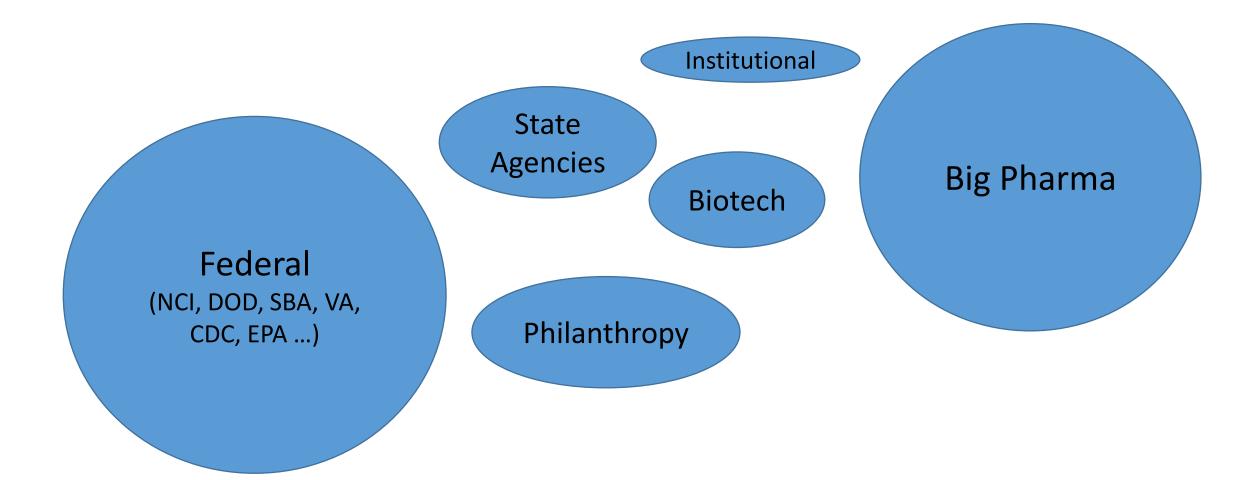
NOV. 10–14 Join us in person or virtually

Grant Opportunities: What Grant Type Shall I Apply For?

Pawel Kalinski, MD, PhD

Roswell Park Comprehensive Cancer Center, Buffalo, NY

Society for Immunotherapy of Cancer


There are no disclosures relevant to the presentation

Pawel Kalinski, MD, PhD Roswell Park Comprehensive Cancer Center, Buffalo, NY

Funding of Cancer Immuno-Oncology Research

Main Sources of Cancer Research Funds*

- NCI: ~ 6B (2019); the largest pool of cancer research dollars in the US
- CDMRP (DOD): 312M (2017) breast: 120M; prostate: 90M; ovarian: 20M; lung: 12M; kidney: 10M; other: 60M
- **Other federal:** SBA (SBIR/STTR), CDC, VA, EPA, DOE, NASA, NSF, Commerce and USDA.
- **State:** Texas, California, NYS, many other states
- HHMI: ~ 220M (2016; ~1/3 of \$655 spent on medical research is cancer relevant)
- ACS: 152M (2016):
- **AACR: 38M** (2016)
- **Other NGO/Philanthropy** (S. Komen, V Foundation,....)
- Pharma and Biotech: Billions.. ~40% of Pharma R&D is cancer related and ~ 80% of cancer R&D is currently dedicated to I-O efforts

* In the US; estimates based on the web sites of the relevant organizations

Which Grants to Apply for: Factors to Consider

- Character and topic and of the project
 - Basic science Translational Clinical
 - Disease type(s)
- Project duration and budget needed
 - Total amount, and annual needs over time
 - Limits on indirect costs
- Clinical trial included?
- Animal experiments included?
- Eligibility (citizenship/visa status; training/faculty status, clinical privileges)
- Implications for promotion and tenure decisions
- Ability to include (and motivate) co/multi-PIs and co-Is

NIH/NCI Grants: Considerations (A)

- Largest overall budget and variable funding mechanisms/grant types:
 - Individual research grants (R01, R21,...) and team science program grants (P01, SPORE,..)
 - Training and career development grants (T32, F32, F31, F30, K01, K99/R00)
 - Contracts/platform development (U01, U24)
- Highly conductive to team science and clinical research: Program Project grants (P01, SPORE, U01, U24) and multi-PI R01s
- Specific FOA/RFA/PA/PAS/RFPs and open (unsolicited) grant proposals
- Large size and renewable character of many types of NIH grants
- Rigorous review process focused on scientific peer review and impact score
 - Focused review panels/study sections (areas of biology, basic, translational, clinical)
 - Stable review panels with known participants facilitate revision process

NIH/NCI Grants: Considerations (B)

- Funding stability and significant potential for funding multiplication
 - Possible grant renewals and upgrades (such as R21 to R01)
 - Available supplemental funds for multiple mechanisms
 - Matching funds from some states
 - Importance for CCSG funding of NIH cancer centers
- Highly desirable from institutional standpoint (rigor, prestige, stability)
- Awarded to host institutions, but relatively easy to transfer when PI moves
- *High leverage* for the PI & impact on promotions and tenure
- No citizenship restrictions (with exception of training grants)
- Highly competitive

CDMRP/DOD Grants: Considerations

- Defined disease area-specific budgets
- Significant role of programmatic review (initial and final): No pay line
- Scientific review process combines peer review <u>and</u> patient advocate review
- Ad-hoc review panels (anonymous to applicants)
- Some grants favor scientific partnerships and mentoring relations
- Some grants have restrictions on clinical trials and animal research
- Strict timelines and significant reporting responsibilities

Foundations/Philanthropy: Considerations

- *Multiple* opportunities, tailored to different cancers and types of research
- Focus on the applicant (and often mentor) rather than research proposal
- Focus on career-boosting potential of the project or research stability of uniquely qualified researchers (such as HHMI)
- Strong letters of support are key
- Often require institutional selection/nomination
- Some foundations may fund only local research (city, region)
- Potential limitations to career stage of applicants and # previous awards
- Often limits on animal and clinical research

Pharma and Biotech Funding: Considerations

- Dominant source of funding of I-O clinical trials which test
 - Combinations of approved drugs
 - Experimental and approved drugs
 - New indications for approved drugs
- Significant source of funding for trial-related correlative studies associated
- Source of funding of laboratory studies involving approved and experimental drugs (identification of new mechanisms, prioritization of disease targets and potential combinations for prospective trials)
- Can *enhance chances for federal funding* (to identify underlying mechanisms and additional applications)
- Science is important, but *programmatic fit* and *deliverables* are key
- Strict reporting expectations

NIH/NCI Grants: R01 vs R21

- R01: Main Individual Research Grant
 - Investigator-initiated or solicited (by RFA)
 - Single and multi-PI (MPI) applications allowed
 - 5 YEARS: renewable
 - Typically \$250K-500 p.a.
 - Evaluated for predicted **Impact**, based on:
 - **Significance** (important problem?)
 - Innovation (conceptual and technical)
 - **PI(s)** (*relevant* training and productivity)
 - **APPROACH** (rigor? defined deliverables?)
 - Environment
- *Key roles of prelim data & feasibility*

- R21: Exploratory/Developmental Grant
 - Key role of RFA; existing "parent" RFA
 - Typically single PI
 - 2 YEARS; Cannot be renewed
 - Up to \$200K per year or \$275k total)
 - Evaluated for predicted Impact, based on:
 - **Significance** (important problem?)
 - INNOVATION (high risk high reward)
 - **PI(s)** (*overall* training)
 - Approach (rigor? *can lead to R01?)*
 - Environment
- Lesser roles of prelim. data & feasibility

NIH/NCI Team Science Grants: P01s vs SPOREs

P01: Focus on Common Biology/Mechanism

- 3-5 Research Projects and 3-5 Cores
- Typical budget 1-2M per year
- Each Core needs to support at least 3 projects
- All Projects need to show *scientific synergy* (more than a sum of all components)
- Projects are led by Individual Project leaders
- Key roles of Novelty & Scientific Integration (common theme/mechanism)
- Can be renewed

SPORE: Focus on Disease-Type/Pathway

- 3-5 Research Projects and 3-5 Cores
- Typical budget 1.4-1.5M per year
- Each Core needs to support at least 3 projects
- All projects need to be translational
- Projects can be in different research areas
- Projects *co-led by Clinical and Lab Leaders*
- Focus on *clinical relevance/impact, past record & feasibility,* rather than novelty
- Are expected to be renewed
- Training & developmental (CDAs & DRPs)

Take Home Message

- NIH/NCI funding dominates but keep in mind all available alternatives
- Tap the Big (& Growing) Barrel: Growing interest of pharma in investigator-driven I-O research
- Plan ahead (one source of funding will help you with other sources)
- Consider your needs and the needs of the funding organizations: Make sure they match
- Be mindful of potential restrictions:
 - Eligibility (training & faculty status, citizenship/visa, affiliation, geography)
 - Budget & duration limits
 - Restrictions on spending (trials, animal research)
 - Frequency and character of reporting
- "Fail early, fail often, fail forward" and enjoy the ride!

