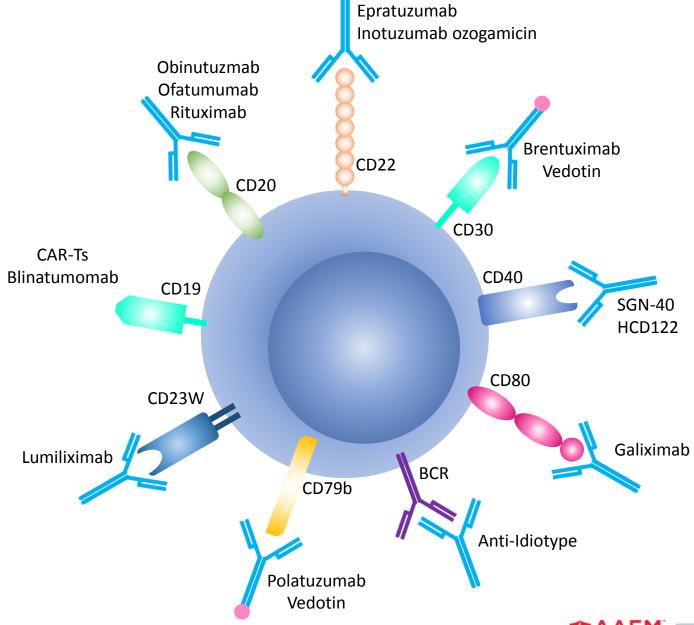


Immunotherapy for the Treatment of Hematologic Malignancies

Myrna Nahas, MD
Instructor of Medicine
Beth Israel Deaconess Medical Center

Disclosures

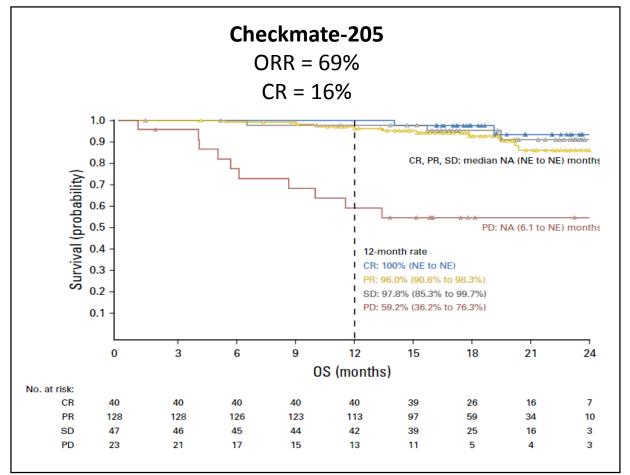
- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.

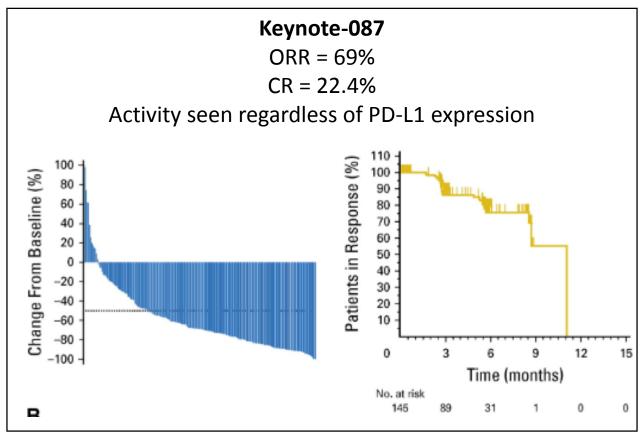


Checkpoint inhibitors

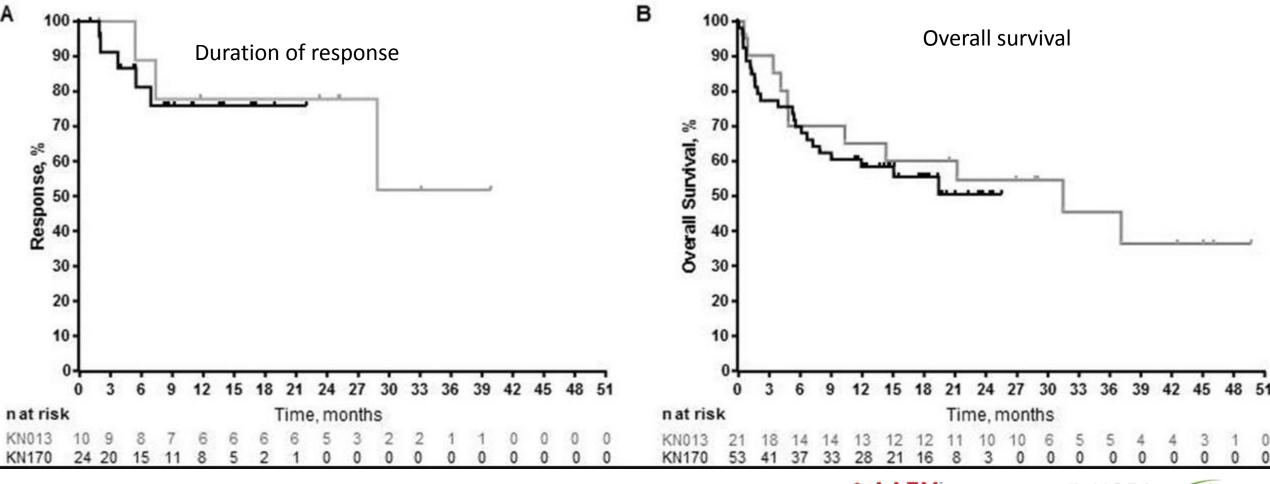
FDA-approved Checkpoint inhibitors: Lymphoma

Drug	Approved	Indication	Dose	
Nivolumab	2016	Classical Hodgkin lymphoma, relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies	240 mg q2w or 480 mg q4w	
Pembrolizumab	2017	Adult/pediatric refractory classical Hodgkin lymphoma or relapsed after 3 previous therapies	200 mg q3w adults 2 mg/kg (up to 200 mg) q3w (pediatric)	
Pembrolizumab	2018	Adult/pediatric refractory primary mediastinal large B-cell lymphoma or relapsed after 2 previous therapies	200 mg q3W adults 2 mg/kg (up to 200 mg) q3w (pediatric)	

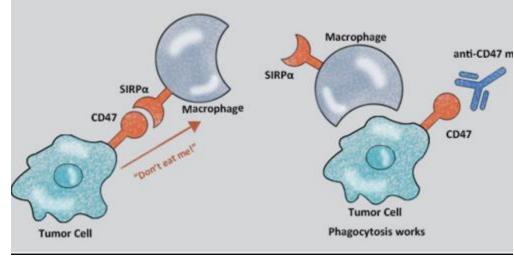


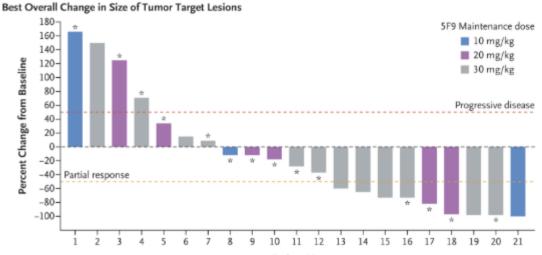


Checkpoint inhibitors: Hodgkin Lymphoma



Pembrolizumab in Primary Mediastinal Large B cell Lymphoma



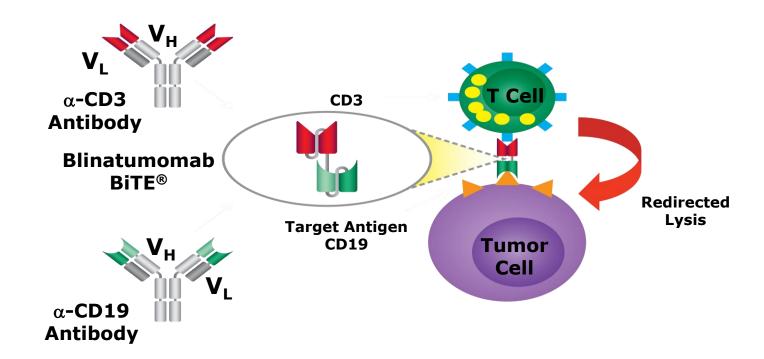


In development: Macrophage

checkpoint: CD47

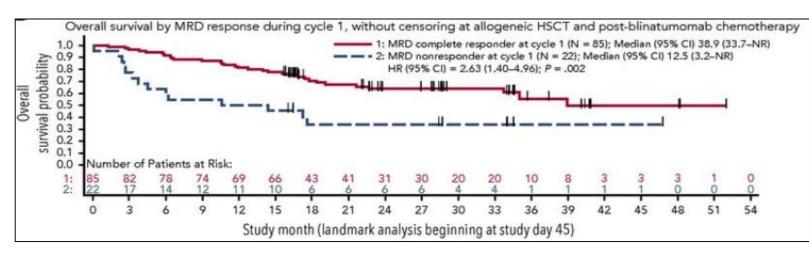
- Phase 1b: Hu5F9-G4 + rituximab in rituximab refractory disease
- DLBCL ORR = 40%, CR = 33%
- Follicular lymphoma ORR = 71%, CR = 43%

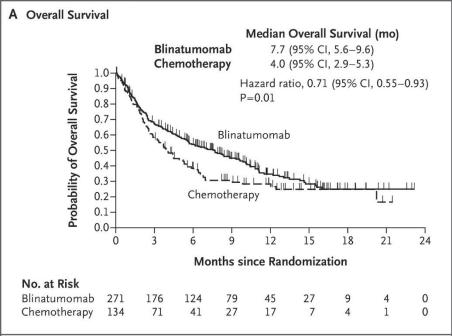
Bi-specific T-cell engagers (BiTEs)



BiTE (Blinatumomab) Therapy

- Facilitates T cell engagement with CD19+ tumor cells (Similar to CD19 CAR T)
- Approval:
- Adult/pediatric R/R B-cell precursor acute lymphoblastic leukemia
- Adult/pediatric B-cell precursor acute lymphoblastic leukemia in 1st or 2nd complete remission, MRD ≥ 0.1%



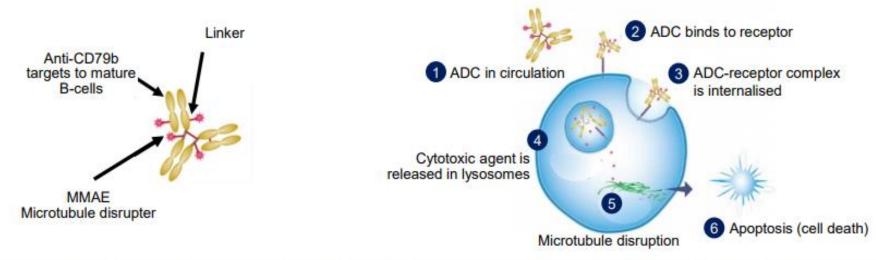


Blinatumomab: B-ALL

Antibody-drug conjugates (ADC)

FDA-Approved Antibody-Drug Conjugates

Drug	Target antigen	Year of approval	Indication
Brentuximab vedotin	CD30	2011	 Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies Anaplastic large cell lymphoma ≥ 1 previous therapies
		2018	cHL - first line with combination chemo
Inotuzumab ozogamicin	CD22	2017	Relapsed/refractory/MRD+ B-cell ALL
Polatuzumab vedotin (w/ bendamustine & rituximab)	CD79b	2019	DLBCL ≥ 2 previous therapies



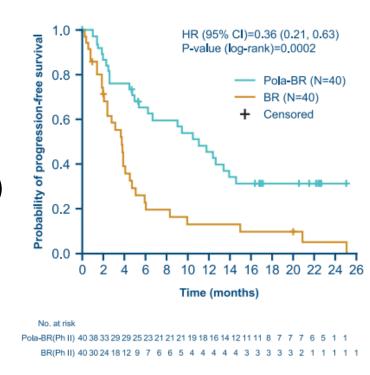
Polatuzumab vedotin: DLBCL

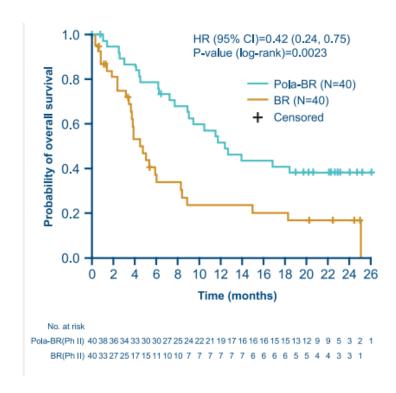
Polatuzumab vedotin has demonstrated efficacy in R/R DLBCL in combination with rituximab^{1,2} and rituximab-bendamustine³

Treatment	Best overall response		
Pola +/- rituximab	51-56%1,2		
Pola + rituximab + bendamustine	68% ³		

ADC, antibody-drug conjugate; MMAE, monomethyl auristatin E

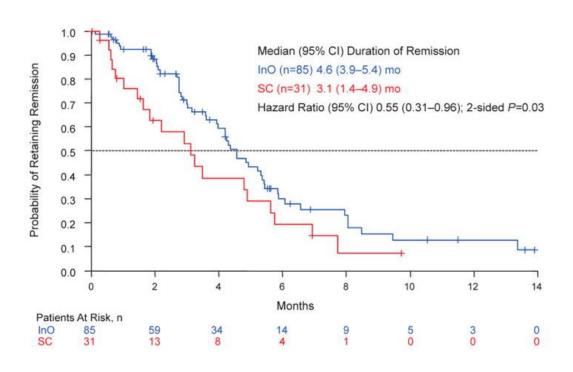
 Palanca-Wessels A, et al. Lancet Oncol 2015;16:704–15; 2. Morschhauser F, et al. Lancet Hematology 2019;6:e254–65; 3. Sehn H, et al. Blood 2018;132:1683

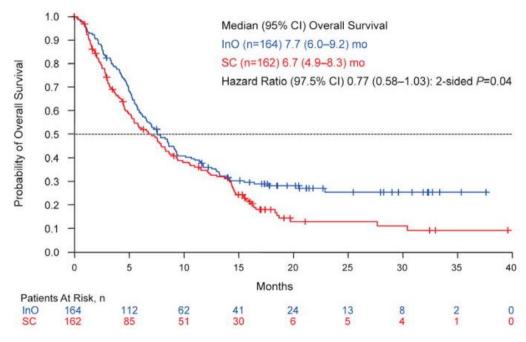




Polatuzumab vedotin: DLBCL

- Randomized phase 2 study
- Pola-BR vs. BR in R/R DLBCL
- Higher CR = 40% vs. 18% (p: 0.03)
- Median PFS = 7.6 m (HR=0.34, p<0.01)
- Median OS = 12.4 m (HR=0.42, p<0.01)
- Ongoing phase 3 (POLARIX)
- Frontline DLBCL- R-CHOP vs R-CHP+Pola

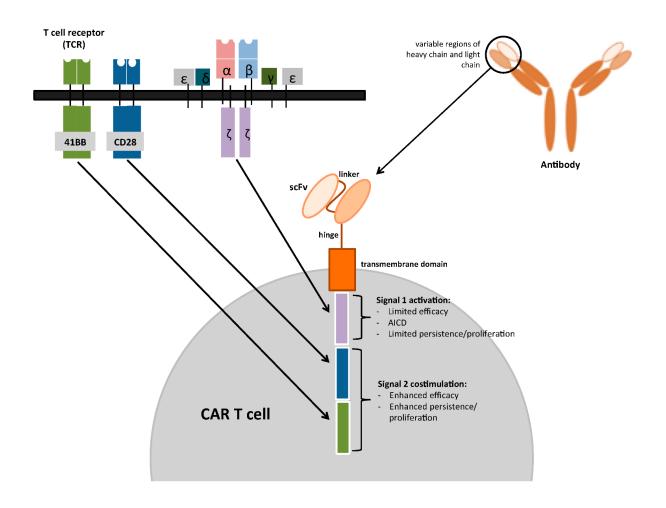




Inotuzumab ozogamicin for ALL

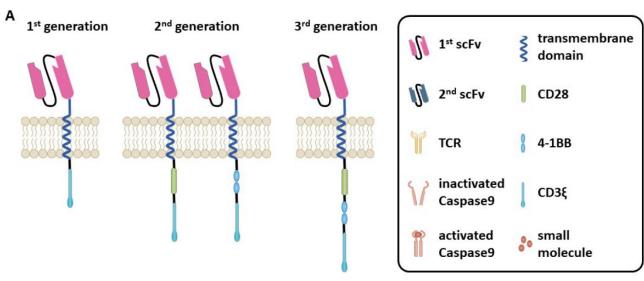
- Anti-CD22 antibody conjugated to calicheamicin
- Higher response, MRD-negativity, PFS, and OS than standard-of-care

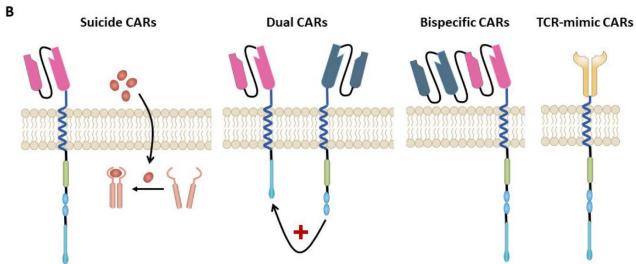
Chimeric Antigen Receptor Therapy (CAR T)



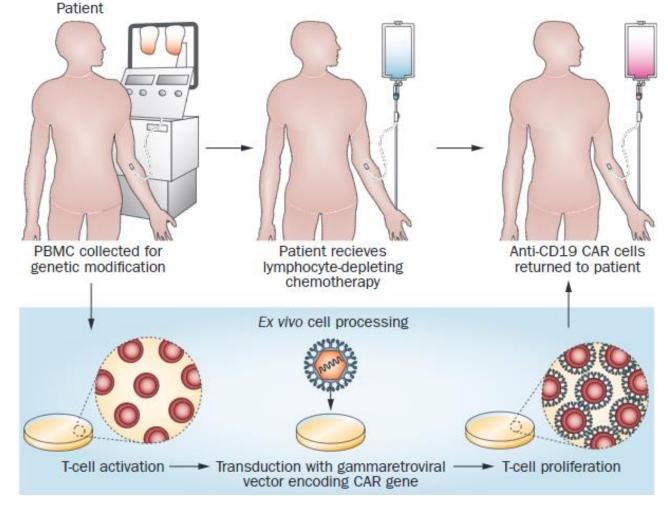
Chimeric antigen receptors

- Specific and potent: B specific, T - toxic
- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex





Evolution of CAR Constructs



CAR T manufacturing and administration

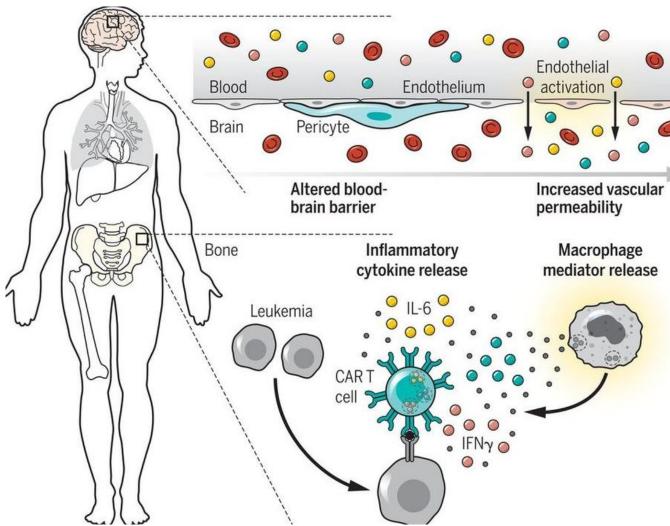
CAR T Side Effects

Cytokine Release Syndrome (CRS)

Neurotoxicity

B Cell aplasia

Macrophage Activation Syndrome (MAS)/HLH



IMMUNOTHERAPY"

CAR T Side Effects

Treatment

Steroids Anti-epileptics

Hemodynamic instability

Intracranial hemorrhage

Neurotoxicity

Cerebral edema

Delirium

Aphasia

Seizures

Tachycardia Hypotension Capillary leak syndrome Tocilizumab Steroids

Organ dysfunction

AST and ALT elevation Hyperbilirubinemia Respiratory failure

FDA-Approved CAR T cell therapies

DRUG	APPROVED	INDICATION	DOSE	
Axicabtagene ciloleucel	2017	Adults with r/r large B-cell lymphoma. Including diffuse large B-cell lymphoma, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma	2 x 10 ⁶ CAR-positive, viable T-cells per kg bodyweight (up to 2x10 ⁸)	
Tisagenlecleucel	2017	Patients ≤25 yr with refractory B-cell acute lymphoblastic leukemia or in 2+ relapse	0.2-0.5x10 ⁶ CAR-positive, viable T-cells per kg if under 50 kg 0.1-2.5x10 ⁸ CAR-positive, viable T-cells if over 50 kg	
Tisagenlecleucel	2018	Adults with r/r large B-cell lymphoma after 2+ therapies Including DLBCL, high-grade B-cell lymphoma, DLBCL arising from follicular lymphoma	0.6-6.0 x 10 ⁸ CAR-positive, viable T- cells	

Eligibility considerations for CAR

Disease

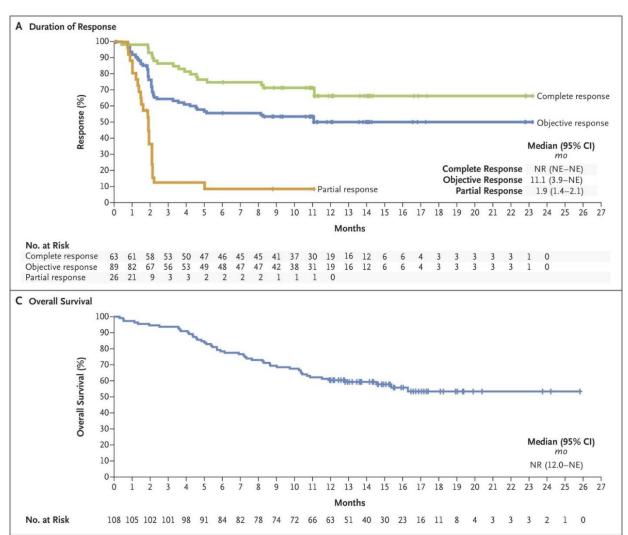
- Relative stability during CAR T manufacturing (~2-6 weeks)
- Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
- CNS control

Patient

- Adequate cell counts
- DVT, bleeding, infection, neuro disorders
- Functional status: at screen vs. day of CAR T infusion

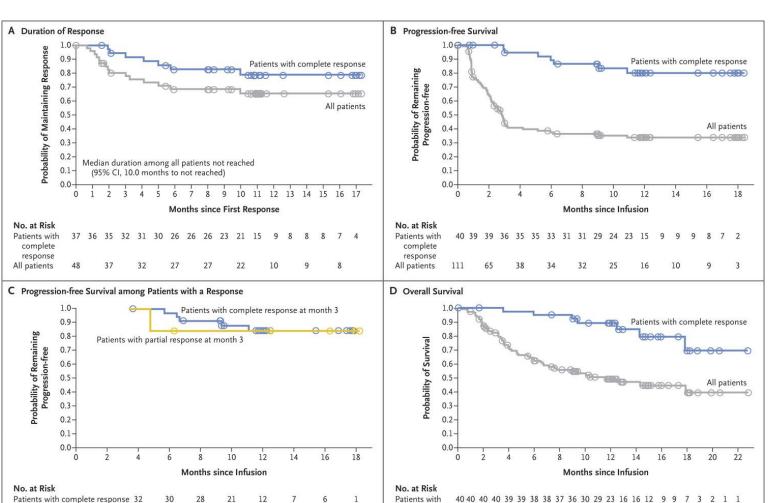
Other

Social support, reimbursement



CD19 CAR in DLBCL- ZUMA1 (Axi-cel)

- CD19/CD283
- ORR = 82%
- CR = 54%
- 1.5-yr estimated OS = 52%
- CRS grade ≥3 = 13%
- Neurotox grade ≥3 = 28%

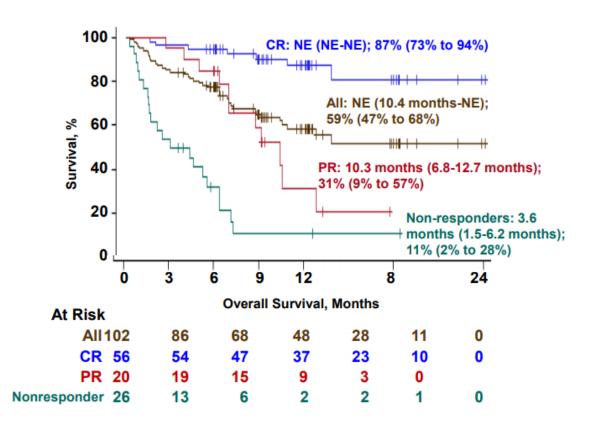


CD19 CAR in DLBCL - JULIET (Tisa-cel)

Patients with partial response

- CD19/4-1-BB
- ORR = 52%
- CR = 40%
- 1-yr estimated OS = 49%
- CRS grade ≥3 = 18%
- Neurotox grade ≥3 = 11%

complete



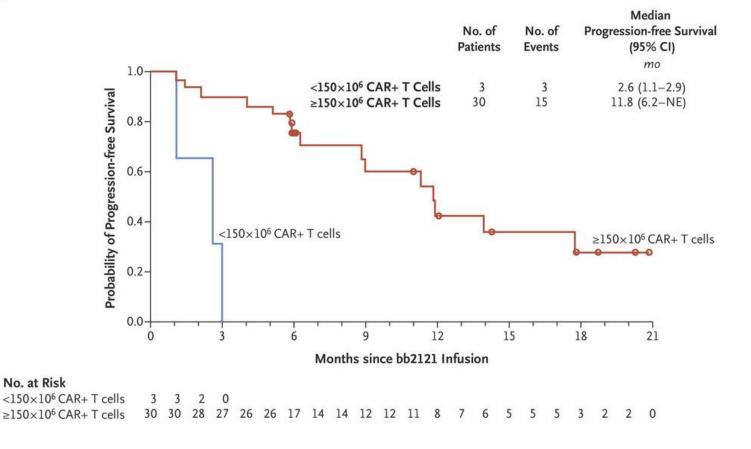
CD19 CAR in DLBCL - TRANSCEND (Liso-Cel)

- CD19/4-1-BB, CD4:CD8 = 1:1
- ORR = 75%
- CR = 55%
- 1-yr estimated OS = 59%
- CRS grade ≥3 = 1%
- Neurotox grade ≥3 = 13%



CD19 CAR in B-ALL: ELIANA (Tisa-cel)

- CD19/4-1-BB
- ORR = 81%
- CR = 60%, CRi = 21%
- CRS grade ≥3 = 47%
- Neurotox grade ≥3 = 13%



In Development: BCMA+ CAR T Therapy for Myeloma

- bb2121
 - B cell maturation antigen (BCMA)
 - Phase I CRB-401 study
 - Previously treated patients with relapsed/refractory multiple myeloma
 - ORR: 85%, CR: 45%

Conclusions

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns

Additional Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

and Madhav V. Dhodapkar^{44*}

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³

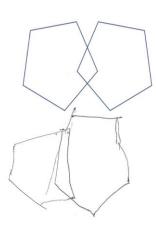
Case Studies

Case Study 1

 72 year-old active, healthy female (ECOG 0) with no significant PMH diagnosed with bulky ABC subtype, p53 deleted aggressive DLBCL

• TREATMENT SUMMARY:

- 6 cycles DA-EPOCH-R (Feb Jun 2016) → Complete Response (CR)
- Relapse 3 months later
- 3 cycles Rituximab, Gemcitabine, and Cisplatin >> Progressive Disease (PD)
- Enrolled on CAR T cell clinical trial

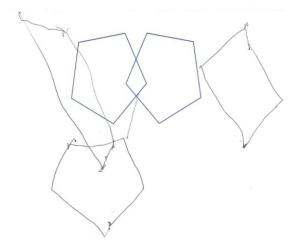


Timeline of CAR T Cell Therapy

T cell Apheresis 1 x 10⁸ CAR T cell Infusion

Pre-Treatment

December


Day 0

March (3 days)

Fludarabine/
Cyclophosphamide
lymphodepletion
chemotherapy

Day 4

- Fatigue
- Gr 1 CRS
- CRP mildly elevated
- Changes in MMSE

Timeline of CAR T Cell Therapy

Day 6

Day 10

- New headache with facial droop
- •Grade 3 CRS (hypotension requiring 2 pressors and fever 101F)
- Ongoing difficulty with MMSE

- Neurology Consult
 - Non-contrast head CT normal
 - •MRI brain
 - •LP unrevealing
 - •EEG: no seizure activity

- Steroids
- Anti-seizure

Complete resolution of symptoms

Neurotoxicity

- 133 patients (ALL, NHL, CLL) treated with CD-19 CAR T cell with 4-1BB costimulatory domain
- 53 of 133 (40%) with neurotoxicity
- 48 of these 53 (91%) also had CRS
- The 5 without CRS had only grade 1 neurotoxicity
- All patients with grade 3 or higher neurotoxicity had an antecedent fever
- Median 4.5 days (range 2-17 days) after CRS
- Median time from onset of neurotoxicity to highest grade 1 day (range 0-19)
- Median duration of reversible neurotoxicity was 5 days (range 1-70 days)

Neurotoxicity CTCAE grade		Grade 0ª	Grade 1-2ª	Grade 3-5ª	Total	Univariate ^b	Multivariable ^c
Overall, n (%)		80 (60)	25 (19)	28 (21)	133 (100)		
Age, n (%)	<40 years	11 (41)	10 (37)	6 (22)	27	0.094	
	40-60 years	42 (66)	8 (13)	14 (22)	64		
	>60 years	27 (64)	7 (17)	8 (19)	42		
Sex, n (%)	Male	59 (63)	17 (18)	17 (18)	93	0.4	
	Female	21 (53)	8 (20)	11 (28)	40		
Diagnosis, n (%)	ALL	22 (47)	11 (23)	14 (30)	47	0.084	
	CLL	16 (67)	2 (8)	6 (25)	24		
	NHL	42 (68)	12 (19)	8 (13)	62		
Race, n (%)	White	62 (56)	22 (20)	26 (24)	110	0.17^{d}	
	Not white	18 (78)	3 (13)	2 (9)	23		
Prior therapies	Median (range)	4 (1-11)	4 (1-10)	4 (1-11)	4 (1-11)	0.5	
Transplant history, n (%)	Auto	17 (68)	5 (20)	3 (12)	25	0.5	
	Allo	14 (50)	8 (29)	6 (21)	28		
Karnofsky score°, n (%)	60-70	7 (50)	3 (21)	4 (29)	14	0.5	
	80-90	65 (61)	18 (17)	23 (22)	106		
_	100	8 (62)	4 (31)	1 (8)	13		
Preexisting neurologic	Any	26 (45)	16 (28)	16 (28)	58	$0.0059^{\rm g}$	0.0023 ^g
comorbidities, n (%)	PN ^f	14 (47)	7 (23)	9 (30)	30	0.2	
	CNS involvement	6 (43)	5 (36)	3 (21)	14	0.2	
	Headache disorder	6 (43)	5 (36)	3 (21)	14	0.2	
	Other	5 (50)	2 (20)	3 (30)	10	0.7	
	ICH ^h	4 (67)	1 (17)	1 (17)	6	1	
	Seizures	2 (33)	2 (33)	2 (33)	6	0.3	
	Cog impairment ⁱ	1 (25)	2 (50)	1 (25)	4	0.1	
	MTX CNS toxicity ^j	1 (50)	1 (50)	0	2	0.4	
Marrow disease, %	Median (range)	0.6 (0-97)	0.4 (0-93)	25.8 (0-97)	1.3 (0-97)	0.072	0.0165
Total CD19+ cells in marrow, %	Median (range)	5.3 (0-99)	12.4 (0-93)	29.1 (0-97)	8.8 (0-99)	0.062	
CD8+ central memory enriched CAR-T cells ^k , n (%)	Selected	48 (67)	11 (15)	13 (18)	72 (54)	0.242	
Lymphodepletion regimen ^l , n (%)	Cy/Flu	58 (56)	23 (22)	23 (22)	104	0.11	0.0259
	Non-Cy/Flu	22 (76)	2 (7)	5 (17)	29		
CAR-T cell dose, n (%)	2×10^5 cells/kg	20 (57)	10 (29)	5 (14)	35	< 0.0001	0.0009
	$2 \times 10^6 \text{cells/kg}$	55 (64)	15 (17)	16 (19)	86		
	2×10^7 cells/kg	5 (42)	0	7 (58)	12		
Cytokine release syndrome, n (%)	None (G 0)	35 (88)	5 (13)	0	40	< 0.0001	n/a
	Mild (G 1-2)	44 (57)	19 (25)	14 (18)	77		
	Severe (G 3-5)	1 (6)	1 (6)	14 (88)	16		

Case Study 2

 30 year-old male with no PMH diagnosed with Stage IV Hodgkin lymphoma

- TREATMENT HISTORY:
 - 6 cycles of ABVD → CR
 - Relapsed → ASCT
 - Relapsed → Anti-PD-1 blockade

Patient Develops New Symptoms

- Headache
- Fatigue
- Dizziness with standing

What is the differential?

- A. ?
- B. ?
- C. ?
- D. 3

What is the differential?

- A. Progressive disease with CNS involvement
- B. Hypophysitis
- C. Adrenal insufficiency alone
- D. Dehydration

What are you next steps?

What are you next steps?

Vitals: Orthostatic hypotension

- Physical exam: Pale
 - ADMIT PATIENT

Work-Up Shows...

- Low TSH
- Low ACTH
- Low LH

- Brain MRI: a swollen pituitary gland is seen
- Now what should you do?

Management

STOP immunotherapy

- Endocrine consult:
 - High-dose glucocorticoids, levothyroxine, and sex hormone replacement

 Almost all patients experienced resolution of acute symptoms within a few days

I can rechallenge patient with anti-PD-1 therapy

- True
- False

I can rechallenge patient with anti-PD-1 therapy

True

False

