Immunology and Immunotherapy 101 for the non-immunologist

SITC Advances in Immunotherapy Seattle, WA 2016

Laura QM Chow

Associate Professor University of Washington
Associate Professor, Fred Hutchison Cancer Research Center

Disclosures

- Advisory Board:
 - Bristol-Myers Squibb, Merck & Co., Inc., Novartis
 Pharmaceuticals, Pfizer, Sanofi Genzyme, Seattle Genetics
- Consulting fees:
 - Amgen, Astellas
- Contracted research:
 - Medimmune/AstraZeneca, Bristol-Myers Squibb, Genentech, GlaxoSmithKline, ImClone Systems, Inc., Merck & Co. Inc., Novartis Pharmaceuticals, Pfizer, VentiRx Pharmaceuticals

I will NOT be discussing non-FDA approved treatments during my presentation.

Terminology

 Immunology – study of host defense systems

- Immunity ability of the host to protect itself against foreign organisms
- <u>Immune system</u> tissues, cells, molecules mounting an *immune response*

Types of immunity

- Innate aka natural immunity general protection - external barriers such as skin, always present and ready
- <u>Passive immunity</u> 'borrowed" immunity short lasting such as antibodies in breast milk
- Adaptive immunity aka active immunity activated by pathogens - develops through lifetime via exposure to pathogens or vaccination – involves lymphocytes

Innate and adaptive immunity

	Innate	Acquired
	First line of defense, generalized	Customized and highly specific
	Barriers – skin, tears, phagocytes, macrophages, NK cells, mast cells, complement	Antigen presenting cells, T cells, B cells, antibodies and immunity
Onset rate	Early, immediate response	Late, slow, weeks
Responses	Non-specific, antigen independent	Very specific, antigen dependent
Memory	No	Yes

http://biology-forums.com/index.php?action=gallery;sa=view;id=1488

Immune cells are derived from stem cells in the bone marrow

Granulocytes

Short-lived cells that possess granules containing degradative enzymes and anti-microbial substances

Neutrophils, eosinophils and basophils are sometimes referred to as polymorphonuclear leukoyctes (PMNs)

Phagocytes

Neutrophils, macrophages and dendritic cells

Reside in tissues

Main role is not clearance of pathogen but rather immune cell activation; patrolling population in lymphoid tissues as well as non-lymphoid tissues

Dendritic cells and macrophages are two types of professional antigen presenting cells (APCs)

Phagocytosis

Lymphocytes

B cells

 Produce antibodies (Ab) that bind proteins

T cells

 Change antigens to peptides

Natural Killer (NK) cells

- Kill tumor and virus-infected cells
- Kill antibody-coated cells
- Play dominant role in mediating ADCC in vivo

Adaptive (recognize very

(recognize very specific antigens)

Innate

(recognize general features)

T – lymphocytes

-involved in *cell mediated immunity*

Mature and migrate to lymphoid organs to await contact with antigens

Two Types: CD4 and CD8

B lymphocytes

involved in <u>humoral immunity</u>

 Respond to antigen stimulation to produce antibodies - antibodies produce immunity

Major roles of the immune system

Fight and protect against:

<u>Pathogens</u> – organisms that cause disease – bacteria, viruses, fungi, and prions

<u>Cancer</u> - aberrant uncontrolled growth and spread of what was originally normal cells with gene mutations, oncogenes and abnormal growth signaling pathways

Immune system challenges

	PATHOGEN		CANCER		
•	Many varieties and types to infect us	•	Many or most of our cells in the body can become cancerous		
•	Usually antigens (identifiers) appear different but – some pathogens (eg viruses) invade normal cells and use them to propagate and grow and take over	•	Similar to normal cells and many of the same identifiers as normal cells or tissues		
•	Possibility of mutating or changing	•	Possibility of mutating or changing		
•	Potential in hiding from the immune system or responses to cause chronic infection	•	Potential in hiding from the immune system or responses to continue growth		

Infectious agents first activate innate immune cells resulting in an inflammatory response

Cytokines are proteins that immune cells use to communicate/regulate other immune cells, not all cytokines are inflammatory

Chemokines are a group of cytokines that attract other immune cells

Innate responses are initiated upon recognition of "danger signals" by pattern recognition receptors (PRRs)

"Danger signals"

- Pathogen-associated molecular patterns (PAMPs)
 - Bacteria proteins
 - viral DNA/RNA
- Damage-associated molecular patterns (DAMPs)
 - Products of dying cells

Types of PRRs

- Toll-like receptors (TLR)
- C-type lectin receptors
- NOD-like receptors (NLRs)
- RIG-I-like receptors

Receptors can be on the cell surface or intracellular (NLRs)

Antigen processing and presentation

Professional APCs present Ag to naïve T cells and induce activation

Immature DCs very efficient at Ag processing (in tissues)

Mature DCs very

→ efficient at Ag presentation

(in LNs)

T cell receptors (TCRs) recognize processed proteins presented by MHC

MHC = Major Histocompatibility Complex

The immune system needs to recognize self versus non-self

- CD8 T cells recognize antigen presented by MHC class I
- CD4 T cells recognize antigen presented by MHC class II

Figure 5.14 The Immune System, 3ed. (© Garland Science 2009)

http://course1.winona.edu/kbates/Immunology/Chapter5-09.htm

MHC Class I presents peptide antigens to CD8 T cells

Major Histocompatibility Complex (MHC) Class I

- Expressed by all nucleated cells
- Presents peptides derived from endogenous proteins
- MHC Class I proteins are also recognized by NK cells

MHC Class II presents antigens to CD4 T cells

Major Histocompatibility Complex (MHC) Class II

- Typically expressed by professional APCs
- Presents peptides derived from exogenous proteins

Lymphocyte activation

Cells that recognize specific Ag are very rare

Results in:

- Expansion
- Acquisition of effector functions

What happens to T cells and B cells after immune response?

Differentiate into long-lived memory lymphocytes

Lymphocyte activation

Antigen receptor binding and co-stimulation of T cell by dendritic cell

Mature dendritic cell

T cells

T cells

Activation of T and B cells requirees stimulation via:

- Antigen receptor (Signal 1)
- Costimulatory molecules (Signal 2)

B cells

Absence of co-stimulation leads to unresponsiveness

Peripheral tolerance

Generating lymphocytes that each have a unique specificity

Generation of vast pool of cells

 Immature cells (non-functional)

Elimination of cells that can recognize self Ags

 One barrier to inducing responses against tumor cells

Mechanism of central tolerance

 Circulating mature naïve cells

Effector mechanisms of adaptive immunity

CD8+ T cells (Cytotoxic T cells)

Produce proteins that lyse cells

CD4+ T cells (Helper T cells)

Different subtypes: Th1, Th2, Th17, Tregs

http://intranet.tdmu.edu.ua/data/kafedra/internal/in_mow/classes_stud/uk/med/lik/ptn

ADAPTIVE RESPONSE

(Source: the Human Immune Response System www.uta.edu/chagas/images/immunSys.jpg)

Effector mechanisms of adaptive immunity

B Cells

Ab function:

- Neutralize
- Block protein functions
- Promote engulfement
- Induce complementmediated cell lysis

Different classes (isotypes) of Ab

- IgM
- IgG
- IgE
- IgA

Antigen recognition by antibodies

Ab recognizes portions of proteins in native structures, not processed proteins (may not be continuous portion of protein)

Significance of immunological memory

- Typically expressed by professional APCs
- Presents peptides derived from exogenous proteins

Phases of adaptive immune responses.

Time after antigen exposure

W.B. Saunders Company items and derived items copyright © 2002 by W.B. Saunders Company.

Immune responses can be beneficial or harmful

Antigen	Effect of response to antigen		
Antigen	Normal response	Deficient response	
Infectious agent	Protective immunity	Recurrent infection	
Innocuous substance	Allergy	No response	
Grafted organ	Rejection	Acceptance	
Self organ	Autoimmunity	Self tolerance	
Tumor	Tumor immunity	Cancer	

Immune surveillance and immunoediting

Immune surveillance

 immune system cells – lymphocytes recognize and eliminate transformed cells

Immunoediting

 tumor cells change immunogenicity to produce immuneresistant variants

The Three 'E's of Immunoediting

The immune system controls tumor quantity as well as tumor quality

Dunn GP, et al. Nat Immuno. 2002;3:991-998. Schreiber R, et al. Science. 2011;331:1565-1570. Mittal D, et al. Curr Opin Immunol. 2014;27:16-25.

How does the immune system recognize cancers?

- <u>Tumor associated antigens</u> targets for tumor specific T cell response that rejects the tumor
 - Tumor specific mutated molecules
 - Molecules only in germline cells or differentiation antigens only in particular tissues
 - Abnormal overexpression of antigen with respect to normal cells
 - Abnormal protein modification
 - Oncoviral protein antigen in virus-associated tumor

Mellman et. al. Nature 480, 480-489. 22 December 2011

Dan Chen and Ira Mellman. Immunity. 39, July 23, 2013.

<u>Immunotherapy</u>

- Treatment of disease by inducing, enhancing or suppressing an immune response
- Harness and augment anti-tumor responses to treat cancer

- Passive immunotherapy
 - does not engage adaptive response, fast, transient
 - cytokines, antibodies, T cells
- Active immunotherapy
 - Engages adaptive immune response
 - Slow, delayed onset
 - Life-long immunologic memory
 - vaccines

Dan Chen and Ira Mellman. Immunity. 39, July 23, 2013.