

IMMUNOTHERAPYTM

Immunotherapy for the Treatment of Breast Cancer

Antoinette Tan, MD

Chief of Breast Medical Oncology

Levine Cancer Institute, Atrium Health

Society for Immunotherapy of Cancer

- Consulting Fees: Celgene, Genentech
- Contracted Research: Genentech, Merck
- I will be discussing non-FDA approved indications during my presentation.

© 2019–2020 Society for Immunotherapy of Cancer

Why Immunotherapy for Breast Cancer?

- Higher expression of PD-L1 in TNBC than in HR+ breast cancers
- -In one study up to 26% of primary TNBCs expressed PD-L1 on cancer cell surface
- The presence of TILs suggest an immune response to tumor-associated antigens, and a higher level of TILs is reported in TNBCs and may have prognostic significance
- TNBC is characterized by genomic instability and high rates of genetic mutations, which implicate production of more neoantigens and increased immunogenicity
- The tumor mutational load is higher in TNBC compared with other subtypes
 Mittendorf EA, et al. Cancer Immunol Res 2014;2:361-370
 Tung N, et al. NPJ Breast Cancer 2016;2:16002
 Loi S, et al. Ann Oncol 2014;25:1544-1550
 Adams S, et al. J Clin Oncol 2014;32:2959-2966
 Budczies J, et al. J Pathol Clin Res 2015;1:225-238
 Banerji S, et al. Nature 2012;486:405-409

Modest Response Rate with Checkpoint Inhibitor Monotherapy

Agent	Subtype	Ν	ORR	ORR (PD-L1+)*
Pembrolizumab				
•Single agent (Keynote-012)	TNBC	32	18.5%	18.5%
•Single agent (Keynote-028)	ER+	25	12.0%	12.0%
•Single agent (Keynote-086-A)	TNBC	170	4.7%	4.8%
•Single agent (Keynote-086-B)	TNBC	84	23.0%	23.0%
•Plus trastuzumab (PANACEA)	HER2+	58		15.0%
Atezolizumab				
•Single agent	TNBC	115	10.0%	13.0%
Avelumab				
•Single agent (Javelin)	All	168	4.8%	33.3%
	ER+/HER2-	72	2.8%	NR
	HER2+	38	3.8%	NR
	TNBC	58	8.6%	44.4%

Nanda et al, JCO 2016; Rugo et al, CCR 2018; Dirix et al, BCRT 2017; Loi et al, SABCS 2017; Emens et al, JAMA Onc 2018; Adams et al, Ann Onc 2018

*Studies used different antibodies and cutoffs for PD-L1 positivity

KEYNOTE-012: Long-Term Follow-Up

- Median PFS: 1.9 mo
- 12-month PFS: 15%
- 5 responders in original analysis (1 CR, 4 PR)
- 3 patients had long-lasting responses (> 6 mo)
 - Patient 1: D/C pembrolizumab 11 mo after achieving CR; remained in CR with no additional treatment
 - Patient 2: D/C pembrolizumab after 2 y; maintained response for 22.7 mo
 - Patient 3: D/C pembrolizumab after 2 y; developed PD after 7.7 mo and restarted treatment

- FDA approval of atezolizumab and nab-paclitaxel based on IMpassion130 for metastatic triple-negative breast cancer
- Areas of promising investigation for triple-negative breast cancer
 - Neoadjuvant chemotherapy and immunotherapy
 - Adjuvant immunotherapy in patients without a pathologic complete response (pCR) to neoadjuvant chemotherapy
- Using checkpoint inhibitors in other subtypes of breast cancer
- Other immunotherapy-based combinations in the metastatic setting

ADVANCES IN Concer III In Interaction IMpassion 130: Updated OS from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab + *nab*-paclitaxel in previously untreated locally advanced or metastatic triple-negative breast cancer

Peter Schmid,¹ Sylvia Adams,² Hope S. Rugo,³ Andreas Schneeweiss,⁴ Carlos H. Barrios,⁵ Hiroji Iwata,⁶ Véronique Diéras,⁷ Volkmar Henschel,⁸ Luciana Molinero,⁹ Stephen Y. Chui,⁹ Amreen Husain,⁸ Eric P. Winer,¹⁰ Sherene Loi,¹¹ Leisha A. Emens¹²

¹Barts Cancer Institute, Queen Mary University of London, London, UK; ²New York University Langone Medical Center, New York, NY; ³University of California San Francisco Comprehensive Cancer Center, San Francisco, CA; ⁴University Hospital and German Cancer Research Center Heidelberg, Heidelberg, Germany; ⁵Centro de Pesquisa Clínica, HSL, PUCRS, Porto Alegre, Brazil; ⁶Aichi Cancer Center Hospital, Nagoya, Japan; ⁷Department of Medical Oncology, Centre Eugène Marquis, Rennes, France; ⁸F. Hoffmann-La Roche Ltd, Basel, Switzerland; ⁹Genentech, Inc, South San Francisco, CA; ¹⁰Dana-Farber Cancer Institute, Boston, MA; ¹¹Peter MacCallum Cancer Centre, Melbourne, Australia; ¹²University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA

Csitc

Society for Immunotherapy of Cancer

Rationale of IMpassion130 Trial

- Atezolizumab selectively targets PD-L1 to prevent interaction with PD-1
- Chemotherapy may enhance tumor-antigen-release and antitumor responses to checkpoint inhibition

Image courtesy of the NIH.

IMpassion130 Study Design

Patients with metastatic or inoperable, locally advanced TNBC without prior therapy for advanced **TNBC**^a

Stratification factors:

- Prior (curative setting) taxane use (yes vs no)
- Liver metastases (yes vs no)
- PD-L1 IC status (positive [≥ 1%] vs negative [< 1%])^c

- Co-primary endpoints in ITT and PD-L1 IC+: PFS and OS^d
- Pre-specified hierarchical testing of OS in ITT and, if significant, in PD-L1 IC+ patients
- In both treatment arms, 41% of patients were PD-L1 IC+

^a Prior chemotherapy in the curative setting allowed if treatment-free interval ≥ 12 months. ^b 28-day cycle. ^c Centrally evaluated per VENTANA SP142 IHC assay. ^d Efficacy endpoints assessed by investigators per RECIST 1.1. NCT02425891.

Survival follow-up

- PFS benefit driven by PD-L1 IC+ patients, as a treatment effect was not observed in PD-L1 IC- patients¹
- Based on these data,² atezolizumab + *nab*-paclitaxel received accelerated approval by the FDA³ and is recommended for patients with PD-L1 IC+ mTNBC in the NCCN⁴ and AGO⁵ guidelines

Data cutoff: April 17, 2018. Median follow-up (ITT): 12.9 months.

^{1.} Emens SABCS 2018. 2. Schmid New Engl J Med. 2018. 3. Tecentriq (atezolizumab) [package insert]. South San Francisco, CA: Genentech USA, Inc; 2019.

^{4.} NCCN Clinical Practice Guidelines. Breast Cancer. V1.2019. 5. AGO Guidelines Breast Version 2019.1.

NE, not estimable. Clinical cutoff date: January 2, 2019. Median PFS (95% CI) is indicated on the plot. Median FU (ITT): 18.0 mo.

sitc

ACC

^a Not formally tested due to pre-specified hierarchical analysis plan.

Clinical cutoff date: January 2, 2019. Median PFS (95% CI) is indicated on the plot. Median FU (ITT): 18.0 months.

sitc

ACCC

Site Society for Immunotherapy of Cancer ADVANCES IN Concer IMMUNOTHERAPYTM Comparison of OS in PD-L1+ and PD-L1-Populations

- IMpassion130 is the first and only Phase III study to show the clinically meaningful benefit of first-line immunotherapy in mTNBC
- PD-L1 IC status predicts clinical benefit with atezolizumab + *nab*-paclitaxel
- Although not formally testable due to the pre-specified statistical analysis plan, a median OS improvement from 18 to 25 months was observed in the PD-L1+ population (HR, 0.71)
- Atezolizumab + nab-paclitaxel was well tolerated, with no cumulative toxicities and no new- or late-onset safety signals
- Atezolizumab + nab-paclitaxel sets a new benchmark as the first therapy to cross the 2-year landmark OS benefit in first-line therapy for PD-L1+ mTNBC
- Atezolizumab + nab-paclitaxel is approved by the FDA¹ and recommended for the treatment
 of patients with PD-L1 IC+ mTNBC in the NCCN² and AGO³ guidelines

1. Tecentriq (atezolizumab) [package insert]. South San Francisco, CA: Genentech USA, Inc; 2019. 2. NCCN Clinical Practice Guidelines. Breast Cancer. V1.2019. 3. AGO Guidelines Breast Version 2019.1.

IMPassion130: Summary and Implications

- FDA accelerated approval for atezolizumab and nab-paclitaxel in PD-L1+ metastatic TNBC on 3/8/19
 - Continued approval may be contingent upon verification of clinical benefit in confirmatory trials
- PD-L1+ (PD-L1 stained tumor-infiltrating immune cells [IC]) as "determined by an FDAapproved test"
 - Ventana PD-L1 (SP142) assay approved as a companion diagnostic for selecting TNBC patients
- If PD-L1 \geq 1%, consider atezolizumab and *nab*-paclitaxel if
 - No previous treatment in the metastatic setting i.e. first-line
 - Previous curative chemotherapy completed \geq 12 months
 - Counsel modest PFS benefit, undefined OS benefit

Phase III Clinical Trials with Impunction of the static with Not 858 Experimental: 1) nab-paclitaxel +

Study of Pembrolizumab plus Chemotherapy vs Placebo plus Chemotherapy for Previously Untreated Metastatic TNBC NCT02819518 KEYNOTE-355 Metastatic with Not 858 no prior recruiting systemic therapy for metastatic disease

Not recruiting

recruiting

Recruiting

Experimental: gemcitabine + carboplatin + atezolizumab OR capecitabine + atezolizumab Comparator: gemcitabine + carboplatin + placebo OR capecitabine + placebo

pembrolizumab

pembrolizumab

2) paclitaxel + placebo

placebo

placebo

atezolizumab

540

350

2) paclitaxel + pembrolizumab

3) gemcitabine + carboplatin +

Comparator: 1) nab-paclitaxel +

3) gemcitabine + carboplatin +

Comparator: paclitaxel + placebo

Experimental: paclitaxel +

Placebo and Paclitaxel in Participants with Previously Untreated Metastatic TNBC

A Study of Atezolizumab and Paclitaxel vs

A Study of the Efficacy and Safety of Atezolizumab plus Chemotherapy for Patients with Early Relapsing Recurrent TNBC

NCT03371017 IMpassion132

NCT03125902

IMpassion131

disease Metastatic; disease progression within 12 months from last treatment of curative intent

Metastatic with

no prior

systemic

therapy for metastatic

Neoadjuvant Setting

Background

- Patients with TNBC who achieve pathological complete response (pCR) after neoadjuvant chemotherapy have sustained clinical benefit^{1,2}
- Taxane- and anthracycline-based neoadjuvant regimens produce pCR rates of ~40%³; addition of platinum increases pCR rates to ~50-55%⁴⁻⁷
- Meta-analysis of individual patient data showed a strong association of pCR after neoadjuvant chemotherapy with improved long-term EFS (HR 0.24) and OS (HR 0.16) benefit⁸
- Neoadjuvant pembrolizumab + chemotherapy showed manageable safety and antitumor activity in early TNBC^{9,10}

^{1.} Cortazar P et al. Lancet 2014;384:164-72. 2. Huang M et al. Poster. ESMO Breast Cancer; May 2-4, 2019; Berlin, Germany. 3. Loibl S et al. Ann Oncol 2019;30:1279-88. 4. von Minckwitz G et al. Lancet Oncol 2014;15:747-56. 5. Sikov WM et al. J Clin Oncol 2015;33:13-21. 6. Petrelli F et al. Breast Cancer Res Treat 2014;14:223-32. 7. Loibl S et al. Lancet Oncol 2018;19:497-509. 8. Spring LM et al. Cancer Research 2019;79:Abstract GS2-03. 9. Schmid P et al. J Clin Oncol 2017;35(15S):Abstract 556. 10. Nanda R et al. J Clin Oncol 2017;35;(15S):Abstract 506.

San Antonio Breast Cancer Symposium[®], December 10-14, 2019

KEYNOTE-522 Study Design (NCT03036488)

Carboplatin schedule (Q1W vs Q3W)

Neoadjuvant phase: starts from the first neoadjuvant treatment and ends after definitive surgery (post treatment included)

Adjuvant phase: starts from the first adjuvant treatment and includes radiation therapy as indicated (post treatment included)

^aMust consist of at least 2 separate tumor cores from the primary tumor. ^bCarboplatin dose was AUC 5 Q3W or AUC 1.5 Q1W. ^cPaclitaxel dose was 80 mg/m² Q1W. ^dDoxorubicin dose was 60 mg/m² Q3W. ^eEpirubicin dose was 90 mg/m² Q3W. ^fCyclophosphamide dose was 600 mg/m² Q3W.

This presentation is the intellectual property of Peter Schmid. Contact him at p.schmid@qmul.ac.uk for permission to reprint and/or distribute.

Baseline Characteristics, ITT Population

	All Subjects, N = 602			
Characteristic, n (%)	Pembro + Chemo N = 401	Placebo + Chemo N = 201		
Age, median (range), yrs	49 (22-80)	48 (24-79)		
ECOG PS 1	73 (18.2)	28 (13.9)		
PD-L1–positive ^a	334 (83.3)	164 (81.6)		
Carboplatin schedule				
Q1W	167 (41.6)	83 (41.3)		
Q3W	234 (58.4)	118 (58.7)		
Tumor size				
T1/T2	296 (73.8)	148 (73.6)		
T3/T4	105 (26.2)	53 (26.4)		
Nodal involvement				
Positive	208 (51.9)	104 (51.7)		
Negative	193 (48.1)	97 (48.3)		

^aPD-L1 assessed at a central laboratory using the PD-L1 IHC 22C3 pharmDx assay and measured using the combined positive score (CPS; number of PD-L1-positive tumor cells, lymphocytes, and macrophages divided by total number of tumor cells x 100); PD-L1-positive = CPS ≥1. Data cutoff date: September 24, 2018.

This presentation is the intellectual property of Peter Schmid. Contact him at p.schmid@gmul.ac.uk for permission to reprint and/or distribute.

Definitive pCR Analysis

- Definitive pCR analysis to test primary hypothesis of pCR based on prespecified first 602 patients (pre-calculated P value boundary for significance of 0.003)
- Consistent benefit seen with pCR defined as ypT0 ypN0 and ypT0/Tis

Placebo + Chemo Pembro + Chemo

*Estimated treatment difference based on Miettinen & Nurminen method stratified by randomization stratification factors. Data cutoff date: September 24, 2018.

This presentation is the intellectual property of Peter Schmid. Contact him at p.schmid@gmul.ac.uk for permission to reprint and/or distribute.

First Pre-planned Interim Analysis for EFS

^aPre-specified P value boundary of 0.000051 not reached at this analysis (the first interim analysis of EFS). Hazard ratio (CI) analyzed based on a Cox regression model with treatment as a covariate stratified by the randomization stratification factors. Data cutoff April 24, 2019.

This presentation is the intellectual property of Peter Schmid. Contact him at p.schmid@gmul.ac.uk for permission to reprint and/or distribute.

KEYNOTE-522: Conclusions

- In patients with early-stage TNBC, neoadjuvant pembrolizumab + chemotherapy associated with a larger pCR benefit vs chemo alone
 - Particularly for patients with stage III or node-positive disease
 - Benefit seen in patients who received less than planned full chemotherapy
 - Similar benefit observed regardless of PD-L1 expression level
- Neoadjuvant pembrolizumab added to chemotherapy associated with higher rate of lower residual cancer burden
- Rate of immune-mediated adverse events in study consistent with that reported previously and no new safety signal observed
- Additional follow-up needed to confirm EFS benefit and long-term safety profile

San Antonio Breast Cancer Symposium[®], December 10-14, 2019

Design of the NeoTRIP trial

*HER-2	N = 2	80					
negative, ER and PgR negative early high-risk	_	Carboplatin (AUC2) + nab-paclitaxel (125 mg/m ²) weekly for 2 wks every 3; 8 cy	•	S		AC/EC/FEC for 4 cycles	F O L
(T1cN1; T2N1; T3N0) or locally advanced unilateral breast cancer	R	Carboplatin (AUC2) + nab-paclitaxel (125 mg/m ²) weekly for 2 wks every 3; 8 cy + Atezolizumab (1200 mg) day 1 every 3 wks for 8 cycles	•	S	•	AC/EC/FEC for 4 cycles	
*Estrogen re PD-L1 were	ecepto <u>centra</u>	r, progesterone receptor, HER2 and <u>Ily assessed</u> before randomization			Tun ł	nour & Blood banked for elative studies	sitc

cherate of Case

San Antonio Breast Cancer Symposium[®], December 10-14, 2019

NeoTrip ITT Analysis: pCR rate

	ITT population		
	With atezo (138)	No atezo (142)	
% pCR rate	43.5	40.8	
95% CI	35.1-52.2	32.7-49.4	
Difference: atezo vs no atezo (95% CI)	2.63 (14.0-8.8)		
*Odds ratio (95% CI)	1.11 (0.69-1.79)		
*p-value	0.66		

*Cochran-Mantel-Haenszel test, controlling for PD-L1 expression and disease stage and quantified by OR and rate difference

NeoTrip Conclusions

- The addition of atezolizumab to *nab*-paclitaxel and carboplatin did not significantly increase the rate of pCR in women with TNBC
- In multivariate analysis the presence of PD-L1 expression was the most significant factor influencing rate of pCR (OR 2.08)
- Treatment-related adverse events were similar with either regimen except for a significantly higher overall incidence of SAEs and liver transaminases abnormalities with atezolizumab.
- Continuous follow up for the primary endpoint of EFS and other efficacy end points is ongoing, and molecular studies are under way

© 2019-2020 Society for Immunotherapy of Concertion is the intellectual property of the authors. Contact them at secret

Toxicities with Adding Checkpoint Inhibitor to Neoadjuvant Chemotherapy in Breast Cancer

Any immune-mediated adverse events

AE	KN	522	NeoTRIP		
	Pembro	No Pembro	Atezo	No Atezo	
Thyroid abnormalities	21.7%	8.5%	8.0%	1.4%	
Skin reaction	5.5%	1.0%	0%	0%	
Adrenal insufficiency + Hypophysitis	4.5%	0.3%	0%	0%	
Pneumonitis	1.9%	1.5%	0%	0%	
Hepatitis	1.4%	0.5%	0.7%	0%	
Colitis	1.8%	1.0%	1.5%	0%	

Schmid P et al SABCS 2019; Gianni L et al SABCS 2019; Nanda R et al ASCO meeting 2017 Slide courtesy from Dr. Kevin Kalinsky

© 2019–2020 Society for Immunotherapy of Cancer

•Given that patients with residual disease after neoadjuvant chemotherapy for TNBC have a very poor prognosis, there are a number of clinical trials attempting to optimize therapy for this extremely high-risk population

 Immunotherapy may be a good opportunity for a subset of these patients

Residual Disease after Neoadjuvant Chemotherapy: Role of Checkpoint Inhibitor?

Surgery: Pathologic Complete Response

Adjuvant checkpoint inhibitor trials

SWOG S1418: Residual disease

Trial	N	Intervention
A-BRAVE	335	Avelumab x 1 year vs. observation
IMPASSION030	2300	Weekly paclitaxel, DDAC (or EC) +/- atezolizumab x 1 year

Primary Endpoint: IDFS Overall and PD-L1+

Adapted from Adams S et al JAMA Oncology 2019

Slide courtesy from Dr. Kevin Kalinsky

Cure

KATE2: STUDY DESIGN Efficacy endpoints in the ITT population

Stratification factors:

- Tumour PD-L1 IC status (IC0 [<1%] vs IC1/2/3 [≥1%])^a
- World region (Western Europe vs North America vs rest of world)
- Presence of liver metastases (yes or no)

Access slides at: <u>https://bit.ly/2NGiaqZ</u>

© 2019–2020 Society for Immunotherapy of Cancer

IC, tumour-infiltrating immune cell; IHC, immunohistochemistry; ITT, intention-totreat; LABC, locally advanced breast cancer; MBC, metastatic breast cancer; OS, overall survival; PD, progressive disease; PFS, progression-free survival; TIL, tumour-infiltrating lymphocyte.

Primary endpoint:

Investigator-assessed PFS

Secondary endpoints:

- OS
- Objective response rate
- Duration of response

Exploratory endpoints:

- PFS in patients with PD-L1+
 disease
- Exploratory biomarker subgroups (PD-L1, PIK3CA mutation status, HER2 expression, immune-related [TILs, CD8 IHC expression])

Post hoc endpoint:

- OS in PD-L1 subgroups
- Data cutoff for primary analysis: 11 December 2017
- Data cutoff for OS analysis: 11 December 2018

KATE2: Overall Survival in ITT Population

With 52 OS events reported, median OS was not reached in either arm
1-year OS was similar in both arms

Access slides at: https://bit.ly/2NGiagZ

CI, confidence interval; HR, hazard ratio; NE, not estimable; ITT, intentionto-treat; OS, overall survival.

11 December 2018 cutoff date © 2019–2020 Society for Immunotherapy of Cancer

KATE2: Overall Survival in PD-L1 IC+ and PD-L1 C- Subgroups

OS in PD-L1 IC+ Subgroup (IC 1/2/3)

• In the PD-L1 IC+ subgroup, the 1-year OS rate was numerically higher in the atezolizumab + T-DM1 arm than in the placebo + T-DM1 arm

Access slides at: https://bit.ly/2NGiagZ

© 201171 December 2018 routoff rdatef Cancer

(sitc)

ADVANCES IN

Cancer **IMMUNOTHERAPY**

Society for Immunotherapy of Cancer

NRG BR-004 Schema

Weekly Paclitaxel (WP): 80 mg/m2 IV Days 1, 8, 15, 22, 29, and 36 every 6 weeks for 4 cycles

Society for Immunotherapy of Cancer

Sitc PARP Inhibition May Enhance Immune Surveillance ADVANCES IN **Through Multiple Mechanisms** IMMUNOTHERAPY

"COLD" Tumor

Immunologically

Absence of or limited tumorinfiltrating lymphocytes

- Phase II trial in TNBC (TOPACIO) ٠
 - Niraparib and pembrolizumab ٠
 - Primary endpoint: ORR ٠
- 55 patients enrolled, 47 evaluable for efficacy
- 5 CRs, 5 PRs, 13 SD ٠
- In 15 evaluable patients with tumor BRCA mutations, • ORR included 7 patients (47%)
- In 27 evaluable patients with BRCA wild-type tumors, ٠ ORR included 3 patients (11%)

Type I IFN activation via STING

PARP Inhibition

Cell death-mediated inflammation

Increased neoantigen load

- Phase II trial in TNBC (MEDIOLA) ٠
 - Olaparib and durvalumab •
 - Primary endpoint: ORR
- 30 patients enrolled
- 19 responders, ORR 63.3%
- Median duration of response: 9.2 months

Presence of tumor-

infiltrating lymphocytes

Immunologically

Tumor

Case Studies

Case Study 1

A 46-year-old premenopausal female presents with a palpable mass in the right breast.

On mammogram, there is a 4 cm mass in the right breast and a 1.5 cm mass in the right axilla.

Ultrasonography-guided core needle biopsy of the breast mass reveals a poorly differentiated, estrogen receptor-negative, progesterone receptor-negative, *HER2*-negative invasive ductal cancer. Biopsy of the right axillary node is also positive.

She undergoes genetic testing and does not have germline BRCA 1/2 mutation.

She undergoes neoadjuvant doxorubicin and cyclophosphamide followed by paclitaxel and carboplatin followed by lumpectomy and sentinel lymph node biopsy. Nodes are clear but she has residual 2 cm of breast tumor.

She undergoes radiation therapy and 6 cycles of adjuvant capecitabine.

Case Study 1

Fifteen months after completing chemotherapy, she presents with abdominal pain.

CT scan CAP reveals numerous liver lesions.

Do you:

- A. Start gemcitabine and carboplatin
- B. Biopsy the liver lesion and then start gemcitabine and carboplatin
- C. Biopsy the liver lesion and then start nab-paclitaxel and atezolizumab
- D. Biopsy the liver lesion, send sample for PD-L1 testing, and if positive, start nabpaclitaxel and atezolizumab

A 31 year old female presents with de novo metastatic breast cancer. She presents with a palpable left breast mass measuring 4.5 cm and left axillary adenopathy. Both the breast mass and left axillary node undergo biopsy and consistent with a ER0%, PR0%, and HER2-negative (IHC0) breast cancer. Staging studies performed. A CT scan shows numerous pulmonary nodules. She is asymptomatic.

What would you do next?

- A. Start nab-paclitaxel and atezolizumab immediately
- B. Biopsy the lung nodule to confirm is TNBC and refer to genetic counselor for BRCA testing.
- C. Biopsy the lung nodule, send it for PD-L1 testing, and refer to genetic counselor for BRCA testing.

Case Study 2

You find out that her lung nodule is consistent with triple-negative breast cancer. It is PD-L1 positive immune cells. Her genetic test comes back as having a pathogenic mutation in BRCA1.

What would you do next?

- A. Start nab-paclitaxel and atezolizumab.
- B. Start PARP inhibitor.
- C. Start gemcitabine and carboplatin.
- D. Start PARP inhibitor and a checkpoint inhibitor.

