Emerging Biomarkers

Priti S. Hegde

Sr Director/Prin. Scientist Genentech

SITC Cancer Immunotherapy Winter School

Phoenix, AZ

Feb 18 2019

Inflamed vs non-inflamed tumors

Checkpoint inhibitors are **Standard of Care**

How to inflame these tumors?

What is the next line of therapy option?

What are the mechanisms of acquired escape?

Inflamed

Checkpoint inhibitor are Standard of Care

Patients who progress without a response to CPI Primary escape or innate escape

Patients who respond and then progress on CPI Acquired escape

Primary, Adaptive and Acquired Immune Escape

Biomarkers of acquired escape

Biomarkers of acquired resistance

Tumor PD-L1 and inflammation maintained

Acquired LOF mutation in JAK1

Anecdotal evidence for loss of B2M, JAK1, JAK2 mutations in Melanoma (N=4)

Biomarkers of acquired resistance

Sharma P et al, Cell 2017

Unclear if immunosuppressive factors eg Tregs, myeloid cells etc lead to acquired escape

Inflamed vs non-inflamed tumors

Inflamed

TILs
PD-L1 expression
CD8+ T cells
Pre-existing immunity

Checkpoint inhibitors are Standard of Care

Still unclear as to what next line of therapy should be for patients who progress upon an initial response to CPI

Second course of CPI may be effective in promoting a durable response Figure 5. Treatment Duration and Time to Response in Patients Who Completed 35 Cycles or 2 Years

of Pembrolizumaba

Figure 6. Treatment Duration and Time to Response in Patients Who Received a Second Course of Pembrolizumaba

~50% of the progressing patients achieved a PR at treatment re-initiation

Most clinical combinations with CPIs are in inflamed cancers

76%

79%

33%

113%

increase

increase

increase

GD2

CD20

EGFR

LAG-3

TLR7

IFNAR1

NY-ESO-1

3,394 IO agents in the current pipeline, a 67% increase in a year

Credit: Cancer Research Institute. T

417 targets and 3,394 agents in 2018 273 targets and 2,031 agents in 2017 Non-specified TAA Non-specified TAA PD-1 CD19 CD19 PD-1 PD-L1 PD-L1 HER2 HER2 IDO STAT3 CD40 CTLA-4 STAT3 NY-ESO-1 CTLA-4 **BCMA** CSF1R ADORA2A Neoantigen

CSF1R

CD20

WT1

CD47

MUC1

4-1BB

GD2

T-cell targeted immunomodulat

Other immunomodulator

CD3-targeted bispecific mab

Number of active IO agents

Cancer vaccine

Oncolytic virus

Cell therapy

100

150

200

614 more PD-1/L1 combination trials added to this space in a year

In 2017, 1,102 trials testing 165 targets

In 2018, **1,716** trials testing **240** targets

Credit: Cancer Research Institute. Tan

The top 38 targets in the current PD-1/L1 combination trial space

Credit: Cancer Research Institute. Tang et al, Nat Rev Drug Discover, Oct 19, 2018

Inflamed vs non-inflamed tumors

How can we generate an immune recognition signal in non-inflamed tumors?

CI Cycle propagation via CPIs

Most non-inflamed cancers do not achieve the TMB threshold

Two Potential Options:

Adaptive Immunity: Neo-antigen vaccine delivery (PCV), engineered T-cells

Will improving step 1 drive all steps of the CI cycle?

Synthetic Immunity: <u>T-cell engagers (TDBs, CAR-Ts etc)</u>
Will efficacy be sustained when synthetic immunity is engaged?

Adaptive vs Synthetic Immunity

Bachman and Oxenius, EMBO Reports, 2007

- Antigen specific T-cell expansion
- Ability to generate Tem cells
- Promote propagation of the CI cycle

2 Synthetic Immunity: Potential to drive Log Kill

- Promotes proliferation of tumor resident and nonspecific T-cells recruited to tumor
- Co-stimulation may be required to drive memory cells
- Promotes Log kill of Tumor Cells

Tumor mutanome vaccine and disease control in melanoma patients at high risk of relapse

Recurrence free survival

Emerging biomarkers in the era of personalized vaccines

Prediction algorithms to prioritize presented peptides

Ground truth is unknown (TCR sequencing to get to this question)

Neo-antigens against different HLA haplotypes

Tumor heterogeneity is truly unknown

Neo-antigen reactive TIL therapy leading to complete durable regression in HR+Her2- metastatic breast cancer

Zacharakis N et al., Nat Med 2018

Proof of concept that neo-antigen specific T-cell therapies can promote adaptive immunity in non-inflamed tumors

Limited but encouraging data:

Neo-antigen reactive TIL therapy in HR+HER2- BC

¹Adoptive TIL therapy in KRAS ^{G12D} CRC

Early signals of neo-antigen specific immune responses with PCVs

- **Personalized approach** may require longer manufacturing time lines
- Efficacy may be superior is earlier lines of therapy
- May require patients to exhibit good performance status (lymphodepletion + IL-2 therapy required for TIL protocols)
- Will these be curative in solid tumors?
- ²Evidence in Melanoma for durable CRs. Loss of ³functional b2-microglobulin, ¹HLA haplotype associated with progression

Monitoring patients on personalized T-cell therapies

Are T-cell responses observed to antigens through the course of therapy?

Tetramer positive immune cells, ELISPOT

Antigen specificity- Tetramers

Rius, et al., J Immunol, 2018

ELISPOT- General sense for immune reactivity

Synthetic Immunity Approaches

Similar mechanism:

- T-cell mediated tumor cell killing independent of pre-existing immunity
- T-cell proliferation at site of activity
- Cell surface target expression (or HLA-peptide presentation) required

T-cell directed bi-specifics can inflame non-inflamed tumors

Infiltration and proliferation of T-cells

Tumor regression post CEA-TCB tx

Response associated with **CEA** expression

Bacac M et al., CCR 2016

Clinical translation of pre-clinical MOA-CRC Phase I experience for CEA-TCB

Increase in proliferating tumor resident T-cells upon CEA-TCB treatment

Patient A: - 28% Patient B: 2%

Loss of CEA+ tumor cells in responding tumors

Promising activity of CEA-TCB in 3rd line MSS CRC - Low TMB, Low PD-L1 tumors

Responses in two distinct solid tumors with NY-ESO Data from ongoing MRCLS study

Best overall response	N=8
Confirmed CR	0
Confirmed PR	3
Unconfirmed PR	1
Stable disease	3
Progressive disease ^a	0
Not assessed ^b	1
Overall unconfirmed response	4

^a Three patients have progressed

^b Patient 11832 recently treated and post-infusion disease assessment is not yet available

June 1-5, 2018
McCormick Place | Chicago, IL | #ASCO18

response

Emerging Biomarkers for Synthetic Immunity

Loss of target expression (CD19) in a ALL patient relapsing from CD19+ CAR-T

Grupp S et al., NEJM 2013

Observed in ~ 28% of patients with ALL

Proof of concept that synthetic immunity approaches are feasible in solid tumors and CIT refractory heme malignancies

CEA T-cell directed bi-specifics

Clinical activity to both monotherapy and Atezolizumab combinations in MSS CRC (High CEA expression)

NY-ESO SPEAR T cells

Myxoid Liposarcoma, Synovial Sarcoma (diseases with high NY ESO expression)

¹BCMA CAR-T cells

Activity observed in Multiple Myeloma

Many molecules in early drug development: CD20, CD22, Her2, FcRH5, MAGE-A4, A10 ²Antigen loss observed as a potential mechanism of escape On-target off tumor toxicity is a watch out for these therapies Durability of response in solid tumors is unknown

Patient profiling in the era of Personalized cancer immunotherapy

WES (proposed neo-antigens, driver mutations) RNAseq (target expression for Synthetic immunity) IHC (disease specific)

WES (proposed neo-antigens)
ELISPOT/Tetramer assays for immune monitoring
ctDNA, disease burden for tumor monitoring

Treatment decision algorithms

Patients receive best-in-disease tailored treatment

An informed patient

