Adoptive T-Cell Transfer for Metastatic Cancer

James Yang Surgery Branch, NCI August 7, 2015

Disclosure

Dr. Yang has no relevant financial relationships to disclose

T-Cell Adoptive Therapy: Concept and Principles

- The main obstacles to immune rejection of a patient's cancer are an inadequate anti-tumor T-cell repertoire and an immunosuppressive tumor microenvironment
- Vaccination has been largely inadequate to address the former and is performed in the ongoing presence of the latter

Adoptive Cell Therapy (ACT): Concept and Principles

- Transferring tumor-reactive T-cells activated and expanded in vitro rapidly establishes an anti-tumor repertoire
- In vitro expansion permits the use of reagents and methods not tolerated in vivo
- This also allows independent manipulation of lymphocytes and the tumor microenvironment to optimize efficacy

Sources of Tumor-Reactive T-Cells for Transfer

- Tumor infiltrating lymphocytes (TIL): Most human melanomas contain resident T-cells that can recognize the autochthonous tumor
- Cloning the T-cell receptor from a tumor-reactive T-cell allows it to be gene-engineered into other PBL and confer that tumor recognition
- Other novel receptors have also been devised to target tumor antigens

Melanoma TIL (Tumor Infiltrating Lymphocytes)

Fresh digest

One week

Two weeks

Preparative Host Immunosuppression Enhances ACT

- Host immunosuppression prior to T-cell transfer increases T-cell survival and efficacy by:
 - Removing resident Tregs
 - Inducing homeostatic cytokines
 - Reducing competition for cytokines ('sinks')
 - Non-specifically increasing TLR ligands (LPS)

Cyclophosphamide + Fludarabine Non-Myeloablative Chemotherapy

Nov 10, 2003

Feb 9, 2012

Pre-Treatment

11 Months

TIL for Metastatic Melanoma

- Between 2000 and 2007, 93 patients with measurable metastatic melanoma were treated with a preparative lymphodepleting regimen followed by TIL and IL-2
- 86% had visceral metastases
- 83% had tried prior IL-2
- Only 2 patients were treated twice and there was one patient death during treatment due to sepsis

What Can Be Targeted on Cancers? Categories of Tumor Associated Antigens

- Tissue differentiation antigens (MART1, gp100, CEA, CD19)
- Tumor germline antigens (NY-ESO1, MAGE)
- Overexpressed proteins supporting malignant phenotype (hTERT, EGFR)
- Proteins containing tumor specific mutations (MUM-1, CDK4, B-catenin, erbB2IP)
- Viral proteins (HPV, EBV, MCC)

'Self' and 'Non-Self' Antigens

- Tissue differentiation antigens
- Tumor testis antigens
- Overexpressed proteins supporting malignant phenotype
- Proteins containing tumor specific mutations
- Viral antigens (virally induced CA)

'Self' and 'Non-Self' Antigens

- Tissue differentiation antigens
- Tumor testis antigens
- Overexpressed proteins supporting malignant phenotype
- Proteins containing tumor specific mutations
- Viral antigens (virally induced CA)

Unmutated Self Antigens Mutated Non-Self Antigens

- Constant between patients (off-theshelf reagents)
- Potential for autoimmune toxicity
- T-cell repertoire may be limited by thymic deletion

- Totally patient specific
- Very low potential for autoimmunity
- No central thymic tolerance ('neoantigens')

Targeting Shared Antigens with Receptor-Engineered T-Cells

- High-efficiency, stable gene insertion into mature human T-cells is possible using viral gene-therapy vectors
- Safe "one-shot" replication-incompetent retroviruses have been safely used to modify T-cells in hundreds of patients
- Native alpha-beta T-cell receptors (TCR) as well as chimeric antigen receptors (CAR) have been used

TCRs & Chimeric Antigen Receptors (CAR)

• Single chain MoAb antigen-binding domains can be covalently linked in tandem with intracellular costimulatory and T-cell activation moieties

TCRs

VS

CARs

- Target antigen is processed and presented by MHC
- Any protein made in the cytoplasm could be recognized
- Requires pt have correct HLA allele

- Target antigen is recognized intact
- Only proteins on the external cell surface can be recognized
- No HLA restriction

Retargeting PBL Against CD19 With a Chimeric Antigen Receptor (CAR)

	CD19-expressing targets			CD19-negative targets		
Effector cells	Toledo	Nalm6	CD19-K562	NGFR-K562	CCRL-CEM	alone
	(IFN-g pg/mL)					
anti-CD19 CAR-transduced	2180	4765	48050	581	193	110
Not transduced	63	70	59	66	66	31

Dangers of Targeting Normal Self-Antigens

- TCRs recognizing tumor antigens were cloned and retrovirally introduced into the PBL of HLA-appropriate patients
- These were expanded in vitro and administered exactly as with TIL
- Initially, the melanoma/melanocyte antigens MART-1 and gp100 and the colon antigen CEA were targeted

Targeting Melanocytic Proteins: Anti-MART1 TCR-Engineered PBL

PBL with TCR Targeting CEA

Effective attack on normal self-antigens may cause unacceptable autoimmunity

Are There Safe "Self" Antigens on Tumors?

- 38 patients with metastatic melanoma or synovial sarcoma expressing NY-ESO-1 were given their PBL transduced with a TCR recognizing NY-ESO-1
- The overall RRs were 55% for patients with melanoma and 61% for patients with synovial sarcoma
- Five patients achieved CR with 4 ongoing at 1-5 years
- No autoimmune toxicities were seen

Gene Therapy with Anti-NY ESO-1 TCR (Melanoma)

December 2009

March 2012

Synovial Sarcoma

August 2010

Feb 2015

August 2010

Feb 2015

Targeting CD19

- Multiple investigators have reported dramatic responses in chemotherapy refractory lymphoma, CLL and ALL
- Concomitant IL-2 is not needed
- This therapy induces B-cell aplasia, but autoimmune B-cell destruction may be an acceptable toxicity when treating B-cell malignancies

Kochenderfer et al, Blood 2010 Porter et al, NEJM 2011 Maude et al, NEJM 2014 Lee et al, Lancet 2015

Anti-CD19 CAR: Follicular Lymphoma

May 2009

March 2015

Primary Mediastinal B-Cell Lymphoma

Pre-Treatment

22 Months

Gene-Engineered PBL Targeting Unmutated 'Self' Antigens

- Unacceptable toxicity:
 - Melanocyte proteins
 - CEA
 - MAGE-A3 (HLA-A2)
- Acceptable toxicity:
 CD19
- No apparent autoimmunity:
 NY-ESO-1

Targeting Viral Antigens in Virally-Induced Cancers

- Tumors have to retain expression of viral oncoproteins
- Cannot have essential normal tissues still expressing viral antigens
- Best current candidates are HPV, EBV and MCPyV

PBL Engineered with Anti-HPV E6 TCR

Pre-Treatment

4 Months *Christian Hinrichs*

T-Cells Targeting Tumor-Specific Mutations: The Ultimate Antigens

- Tumor-specific mutations are, by definition, confined to the tumor
- They are seen as 'foreign' by the immune system and are therefore more likely to be immunogenic
- High avidity T-cell responses against them have not been edited out by central thymic tolerance (neg selection)
- Melanoma TIL often contain such T-cells

Comprehensive Screening Techniques: Tandem Minigenes or Long Peptides to Display mutAgs

Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer

Eric Tran,¹ Simon Turcotte,¹* Alena Gros,¹ Paul F. Robbins,¹ Yong-Chen Lu,¹ Mark E. Dudley,¹† John R. Wunderlich,¹ Robert P. Somerville,¹ Katherine Hogan,¹ Christian S. Hinrichs,¹

Science, May 2014

43 yo F with cholangiocarcinoma

Maria R. Parkhurst,¹ James C. Yang,¹ Steven A. Rosenberg¹±

Treated with bulk TIL - minimal response

Tumor WES - 26 non-synonymous mutations

TIL screening with tandem minigenes - *mut*-ERBB2IP reactivity (CD4+)

First bulk TIL culture - 10¹⁰ of these T-cells (retrospectively)

New TIL selected and expanded - 12 x 10¹⁰ of these cells (95% reactive)

Tandem minigenes (TMG):

•Three TMGs generated for Pt. MB (26 mutations)

TMG-2	TMG-3
RAP1GDS1	SENP3
RASA1	LHX9
RETSAT	KLHL6
SEC24D	AR
SLIT1	PDZD2
TARBP1	HLA-DOA
TGM6	LONRF3
TTC39C	
POU5F2	
	TMG-2 RAP1GDS1 RASA1 RETSAT SEC24D SLIT1 TARBP1 TGM6 TTC39C POU5F2

•Only TMG-1 induces IFN-g secretion and upregulation of the CD4+ T-cell activation marker OX40

Tumor Burden (RECIST)

Treatment #1: Bulk TIL

Pre-Treatment

7 Months

Treatment #2: Selected TIL

October 2013

Feb 2015

First Treatment- Bulk TIL

Pre-Treatment

7 Months

Second Treatment-Selected TIL

October 2013

Feb 2015

Conclusions

- T-cell transfers can cure some patients of widespread metastatic melanoma
- Peptide and minigene techniques have shown that many tumor-reactive TIL frequently recognize tumor-specific mutations
- New hypotheses about the importance of T-cells targeting these 'neoantigens' need to be validated by evidence that they treat cancer successfully

Overview of Tumor Rejection

Acknowledgements:

Steven Rosenberg Chief, Surgery Branch, NCI

- Rob Somerville
 TIL Lab
- Paul Robbins
- Udai Kammula
- Richard Sherry
- Stephanie Goff
- Chris Klebanoff
- Steve Feldman

- Eric Tran
- Yong-Chen Lu
- Kenichi Hanada
- Christian Hinrichs
- Clinical Fellows and Nursing Staff