

Checkpoint Inhibitors and Solid Organ Transplant

Maen Abdelrahim, MD, PhD, Pharm.B Associate Professor of Medicine Section Chief, GI Medical Oncology Medical Director, Cockrell Center for Advanced Therapeutics – Phase I program Houston Methodist Cancer Center and Weill Cornell Medical College

Advances in Cancer Immunotherapy™

Disclosures

- AD board and Speaker Ipsen, AstraZeneca
- I will not be discussing non-FDA approved indications during my presentation.

- > CPI in solid organ transplant recipients
- > CPI in liver transplant recipients
- Biomarkers for graft rejection
- Toxicity and management
- > CPI in liver transplant candidate

CPI in solid organ transplant recipients

RESEARCH ARTICLE

Open Access

Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: an institutional experience and a systematic review of the literature

Noha Abdel-Wahab^{1,2}, Houssein Safa³, Ala Abudayyeh⁴, Daniel H. Johnson³, Van Anh Trinh³, Chrystia M. Zobniw³, Heather Lin⁵, Michael K. Wong³, Maen Abdelrahim⁶, A. Osama Gaber⁶, Maria E. Suarez-Almazor^{1†} and Adi Diab^{3*†}

> 39 patients with transplantation were identified.

- ✤ 62% had metastatic melanoma.
- ✤ 59% had prior renal transplantation.
- ✤ 28% hepatic transplantation.
- ✤ 13% cardiac transplantation.

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Advances in Cancer Immunotherapy™

CPI in solid organ transplant recipients

Prior organ transplantation	Checkpoint inhibitor	Allograft rejection, no./ reported cases (%)	Median time to rejection, days (range)
All		16/39 (41)	15.5 (5-60)
Renal	Ipilimumab	2/4 (50)	21
	Nivolumab	2/5 (40)	18.5 (7-30)
	Pembrolizumab	4/9 (44)	21 (5-60)
	Ipilimumab + nivolumab	1/1 (100)	8
	Ipilimumab followed by nivolumab or pembrolizuamb ^a	2/4 (50)	14.5 (8-21)
	All	11/23 (48)	21 (5-60)
Hepatic	Ipilimumab	1/3 (33)	13
	Nivolumab	2/4 (50)	12.5 (7-18)
	Pembrolizumab	1/3 (33)	7
	Ipilimumab followed by pembrolizumab ^a	0/1 (0)	
	All	4/11 (36)	10 (7–18)
Cardiac	Ipilimumab	0/1 (0)	
	Nivolumab	1/2 (50)	5
	Pembrolizumab	0/1 (0)	
	Ipilimumab followed by pembrolizumab ^a	0/1 (0)	
	All	1/5 (20)	5

Table 2 Checkpoint Inhibitor-Induced Allograft Rejection in Patients with Cancer and Prior Solid Organ Transplantation

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Abdel-Wahab et al. Journal for ImmunoTherapy of Cancer.2019

CPI in solid organ transplant recipients

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Abdel-Wahab et al. Journal for ImmunoTherapy of Cancer.2019

- Liver transplant (LT) recipients have a 2-fold increased risk of cancer compared to matched general population
 - Cancer associated with oncogenic viruses, sun exposure, smoking and alcohol consumption.
- \succ LT is a curative treatment for HCC
 - Recurrence post LT occurs in up to 15%-20% with mOS only 12 month
 - CPI combination is the preferred first line therapy for HCC
- \succ Is it safe to use CPI post LT?.

Society for Immunotherapy of Cancer

Advances in Cancer Immunotherapy™

Author	Age (years)	Indication for LT	Indication for IO post- LT	Time from LT to ICI (years)	ICI therapy used	Immune suppression given at time of ICI	Graft PDL1 status	Best response to ICI	Liver toxicity	Time to develop toxicity	Treatment of toxicity	Response to treatment of toxicity
Kumar et al. ^[32] 2019	64	HCC	нсс	2	Nivolumab	NA	NA	NA	TCMR	1 week	High dose steroids, ATG, PLEX	Improvement of rejection
Gomez et al. ^[37] 2018	61	HCC	нсс	2	Nivolumab	NA	NA	NA	TCMR	1 month	Prednisone	Improvement of rejection
Anugwom et al. ^[38] 2020	62	HCC	нсс	5	Nivolumab	Tacrolimus	NA	NA	Immune hepatitis	2 months	Steroids	Worsening of hepatitis
Varkaris et al. ^[39] 2017	70	HCC	HCC	8	Pembrolizumab	Tacrolimus	NA	POD	no	-	-	-
Friend <i>et al</i> . ^[40] 2017	20	HCC	нсс	3	Nivolumab	Sirolimus	Pos	NA	TCMR + AMR	< 1 month	Pulse high dose steroids, IVIG	No response, death
Friend <i>et al.</i> ^[40] 2017	14	НСС	нсс	2	Nivolumab	Tacrolimus	Pos	NA	TCMR + AMR	< 1 month	High dose steroids	No response, death
Rammohan et al. ^[41] 2018	57	HCC	нсс	4	Pembrolizumab + sorafenib	mTOR inhibitor, tacrolimus	NA	CR	No	-	-	-
Amjad et al. ^[42] 2020	62	HCC	HCC	1.3	Nivolumab	Tacrolimus	NA	CR	No	-	-	-
DeLeon et al. ^[43] 2018	56	HCC	нсс	2.7	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
DeLeon et al. ^[43] 2018	55	HCC	НСС	7.8	Nivolumab	MMF, sirolimus	0%	POD	No	-	-	-
DeLeon <i>et al</i> . ^[43] 2018	34	HCC	нсс	3.7	Nivolumab	Tacrolimus	0%	POD	No	-	-	-
DeLeon <i>et al</i> . ^[43] 2018	63	HCC	нсс	1.2	Nivolumab	Tacrolimus	NA	NA	No	-	-	-
DeLeon <i>et al</i> . ^[43] 2018	68	HCC	нсс	1.1	Nivolumab	Sirolimus	30%	POD	TCMR	<1 month	NA	NA (died due to POD)
Gassmann et al. ^[45]	53	HCC	нсс	3	Nivolumab	Everolimus	NA	POD	TCMR	2 weeks	Steroids, tacrolimus	No response, death
De Toni et al. ^[46] 2017	41	HCC	нсс	1	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
Al Jarroudi <i>et al</i> . ^[50] 2020	70	НСС	нсс	3	Nivolumab	Tacrolimus	NA	NA	lmmune hepatitis vs. graft rejection	2 months	High-dose steroids	NA
Al Jarroudi et al. ^[50] 2020	62	HCC	нсс	2	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
Al Jarroudi et al. ^[50] 2020	66	HCC	HCC	5	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
Kuo et al. ^[34] 2018	62	HCC	Melanoma	4.5	lpilimumab then pembrolizumab	Sirolimus	NA	PR	No	-	- Yin et al. Hepa	- atoma Res 2021

Advances in Cancer Immunotherapy™

Schvartzman et al. ^[35] 2017	35	Biliary atresia	Melanoma	20	Pembrolizumab	Steroids, MMF	NA	CR	lmmune hepatitis	1 month	Steroids, MMF	Improvement of hepatitis
Ranganath et al. ^[36] 2015	59	Cirrhosis	Melanoma	8	Ipilimumab	Tacrolimus	NA	POD	No	-	-	-
Dueland <i>et al.</i> ^[47] 2017	67	Melanoma	Melanoma	1.5	Ipilimumab	Prednisone	NA	POD	TCMR	< 1 month	High-dose steroids, MMF, sirolimus	Improvement of rejection
DeLeon et al. ^[43] 2018	63	Cholangiocarcinom	Melanoma	3.1	Pembrolizumab	MMF, prednisone	25%	NA	TCMR	< 1 month	ATG, MMF, tacrolimus, prednisone	Improvement of rejection
Morales et al. ^[44] 2015	67	НСС	Melanoma	8	Ipilimumab	Rapamycin	NA	PR	lmmune hepatitis	2 months	None	Improvement of hepatitis
DeLeon et al. ^[43] 2018	54	HCC	Melanoma	5.5	Pembrolizumab	Everolimus, MMF	0%	CR	No	-	-	-
Chen et al. ^[33] 2019	61	Cirrhosis	CRC	2.5	Pembrolizumab	Prednisone (1mg/kg), tacrolimus	NA	PR	No	-	-	-
Biondani <i>et al</i> . ^[48] 2018	54	Cirrhosis	Metastatic Squamous NSCLC	13	Nivolumab	Prednisone, tacrolimus, everolimus	NA	POD	No	-	-	-
Lee et al. ^[49] 2019	73	HCC	Cutaneous SCC	12	Nivolumab	Everolimus	NA	NA	TCMR + AMR	1 month	High-dose steroids, everolimus, MMF	Improvement in TCMR, but persistent AMR

Society for Immunotherapy of Cancer

Advances in Cancer Immunotherapy™

Author	Age (years)	Indication for LT	Indication for IO post LT	from LT to ICI (years)	ICI therapy used	Immune suppression given at time of ICI	Graft PDL1 status	Best response to ICI	Liver toxicity	Time to develop toxicity	Treatment of toxicity	Response to treatment of toxicity
Kumar et al. ^[32] 2019	64	HCC	нсс	2	Nivolumab	NA	NA	NA	TCMR	1 week	High dose steroids, ATG, PLEX	Improvement of rejection
Gomez et al. ^[37] 2018	61	HCC	нсс	2	Nivolumab	NA	NA	NA	TCMR	1 month	Prednisone	Improvement of rejection
Anugwom <i>et al</i> . ^[38] 2020	62	HCC	нсс	5	Nivolumab	Tacrolimus	NA	NA	Immune hepatitis	2 months	Steroids	Worsening of hepatitis
Varkaris et al. ^[39] 2017	70	HCC	HCC	8	Pembrolizumab	Tacrolimus	NA	POD	no	-	-	-
Friend <i>et al</i> . ^[40] 2017	20	HCC	нсс	3	Nivolumab	Sirolimus	Pos	NA	TCMR + AMR	< 1 month	Pulse high dose steroids, IVIG	No response, death
Friend et al. ^[40] 2017	14	НСС	нсс	2	Nivolumab	Tacrolimus	Pos	NA	TCMR + AMR	< 1 month	High dose steroids	No response, death
Rammohan et al. ^[41] 2018	57	HCC	нсс	4	Pembrolizumab + sorafenib	mTOR inhibitor, tacrolimus	NA	CR	No	-	-	-
Amjad et al. ^[42] 2020	62	HCC	HCC	1.3	Nivolumab	Tacrolimus	NA	CR	No	-	-	-
DeLeon et al. ^[43] 2018	56	HCC	HCC	2.7	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
DeLeon et al. ^[43] 2018	55	HCC	нсс	7.8	Nivolumab	MMF, sirolimus	0%	POD	No	-	-	-
DeLeon <i>et al</i> . ^[43] 2018	34	HCC	нсс	3.7	Nivolumab	Tacrolimus	0%	POD	No	-	-	-
DeLeon et al. ^[43] 2018	63	HCC	нсс	1.2	Nivolumab	Tacrolimus	NA	NA	No	-	-	-
DeLeon <i>et al</i> . ^[43] 2018	68	HCC	нсс	1.1	Nivolumab	Sirolimus	30%	POD	TCMR	< 1 month	NA	NA (died due to POD)
Gassmann et al. ^[45]	53	HCC	нсс	3	Nivolumab	Everolimus	NA	POD	TCMR	2 weeks	Steroids, tacrolimus	No response, death
De Toni et al. ^[46] 2017	41	HCC	HCC	1	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
Al Jarroudi et al. ^[50] 2020	70	НСС	нсс	3	Nivolumab	Tacrolimus	NA	NA	lmmune hepatitis vs. graft rejection	2 months	High-dose steroids	NA
Al Jarroudi et al. ^[50] 2020	62	HCC	HCC	2	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
Al Jarroudi et al. ^[50] 2020	66	HCC	HCC	5	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
Kuo et al. ^[34] 2018	62	HCC	Melanoma	4.5	Ipilimumab then pembrolizumab	Sirolimus	NA	PR	No	-	-	-

CPI in liver transplant recipients

							_					
Schvartzman et al. ^[35] 2017	35	Biliary atresia	Melanoma	20	Pembrolizumab	Steroids, MMF	NA	CR	Immune hepatitis	1 month	Steroids, MMF	Improvement of hepatitis
Ranganath et al. ^[36] 2015	59	Cirrhosis	Melanoma	8	Ipilimumab	Tacrolimus	NA	POD	No	-	-	-
Dueland <i>et al</i> . ^[47] 2017	67	Melanoma	Melanoma	1.5	lpilimumab	Prednisone	NA	POD	TCMR	< 1 month	High-dose steroids, MMF, sirolimus	Improvement of rejection
DeLeon <i>et al.</i> ^[43] 2018	63	Cholangiocarcinom	Melanoma	3.1	Pembrolizumab	MMF, prednisone	25%	NA	TCMR	< 1 month	ATG, MMF, tacrolimus, prednisone	Improvement of rejection
Morales <i>et al</i> . ^[44] 2015	67	нсс	Melanoma	8	Ipilimumab	Rapamycin	NA	PR	Immune hepatitis	2 months	None	Improvement of hepatitis
DeLeon et al. ^[43] 2018	54	HCC	Melanoma	5.5	Pembrolizumab	Everolimus, MMF	0%	CR	No	-	-	-
Chen <i>et al.</i> ^[33] 2019	61	Cirrhosis	CRC	2.5	Pembrolizumab	Prednisone (1mg/kg), tacrolimus	NA	PR	No	-	-	-
Biondani <i>et al</i> . ^[48] 2018	54	Cirrhosis	Metastatic Squamous NSCLC	13	Nivolumab	Prednisone, tacrolimus, everolimus	NA	POD	No	-	-	-
Lee et al. ^[49] 2019	73	НСС	Cutaneous SCC	12	Nivolumab	Everolimus	NA	NA	TCMR + AMR	1 month	High-dose steroids, everolimus,	Improvement in TCMR, but persistent AMR

➤ ~40% ORR and ~15% CR to CPI.

> These response data is similar to data from non-transplant patients.

In the post transplant setting, CPI can have comparable efficacy to the non-transplant setting. Considering the effect of immunosuppressants.

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

MMF

Toxicity:

- > Safety data from post-transplant patients are limited due to the limited use in this setting.
- It is apparent that the PD-1/PD-L1 and CTLA-4 checkpoint pathways contribute to immune tolerance of a transplanted organ.
- Immunofluorescence analysis of graft biopsies
 - Shows high expression of PD-1/PD-L1 in all grafts
 - Highlights the role of immune checkpoints in graft immune tolerance.

Toxicity:

- > Mouse orthotopic liver transplant model:
 - PD-L1 is expressed by hepatocytes and cholangiocytes of liver allografts
 - PD-1 expression increased on allograft infiltrating T cells.
 - ✓ Raises concern that administration of CPI may increase the risk of T-cell mediated rejection (TCMR).

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

CPI in liver transplant recipients

Toxicity:

- Graft rejection associated with immunotherapy is an acute process
- Believed to be T-cell mediated given the loss of immune-tolerance from PD-1/PD-L1 or CTLA-4 pathway blockade.
- Histological features of cellular rejection include T-cell infiltration and inflammation of the portal, bile duct, and venous endothelial systems.
- All confirmed cases of graft rejection had component of TCMR, with some AMR

Choudhary et al. J. Cli. Exp. Hepatology. 2017

CPI in liver transplant recipients Toxicity: Markers of CPI safety

Table 1. Summary of case reports of use of immune checkpoint inhibitors in the post liver transplant setting

Author	Age (years)	Indication for LT	Indication for IO post- LT	Time from LT to ICI (years)	ICI therapy used	Immune suppression given at time of ICI	Graft PDL1 status	Best response to ICI	Liver toxicity	Time to develop toxicity	Treatment of toxicity	Response to treatment of toxicity
Kumar et al. ^[32] 2019	64	НСС	HCC	2	Nivolumab	NA	NA	NA	TCMR	1 week	High dose steroids, ATG, PLEX	Improvement of rejection
Gomez et al. ^[37] 2018	61	HCC	HCC	2	Nivolumab	NA	NA	NA	TCMR	1 month	Prednisone	Improvement of rejection
Anugwom <i>et al</i> . ^[38] 2020	62	HCC	HCC	5	Nivolumab	Tacrolimus	NA	NA	Immune hepatitis	2 months	Steroids	Worsening of hepatitis
Varkaris et al. ^[39] 2017	70	HCC	HCC	8	Pembrolizumab	Tacrolimus		POD	no	-	-	-
Friend <i>et al</i> . ^[40] 2017	20	HCC	HCC	3	Nivolumab	Sirolimus	Pos	NA	TCMR + AMR	< 1 month	Pulse high dose steroids, IVIG	No response, death
Friend et al. ^[40] 2017	14	НСС	HCC	2	Nivolumab	Tacrolimus	Pos	NA	TCMR + AMR	< 1 month	High dose steroids	No response, death
Rammohan et al. ^[41] 2018	57	HCC	HCC	4	Pembrolizumab + sorafenib	mTOR inhibitor, tacrolimus	NA	CR	No	-	-	-
Amjad et al. ^[42] 2020	62	HCC	HCC	1.3	Nivolumab	Tacrolimus	NA	CR	No	-	-	-
DeLeon et al. ^[43] 2018	56	HCC	HCC	2.7	Nivolumab	Tacrolimus	NA	POD	No	-	-	-
DeLeon et al. ^[43] 2018	55	HCC	HCC	7.8	Nivolumab	MMF, sirolimus	0%	POD	No	-	-	-
DeLeon <i>et al</i> . ^[43] 2018	34	HCC	HCC	3.7	Nivolumab	Tacrolimus	0%	POD	No	-	-	-
DeLeon et al. ^[43] 2018	63	HCC	HCC	1.2	Nivolumab	Tacrolimus	NIA	NA	Nic	-	-	-
DeLeon et al. ^[43] 2018	68	HCC	HCC	1.1	Nivolumab	Sirolimus	30%	POD	TCMR	< 1 month	NA	NA (died due to POD)
Gassmann et al. ^[45]	53	HCC	HCC	3	Nivolumab	Everolimus	NA	POD	TCMR	2 weeks	Steroids, tacrolimus	No response, death
Dueland <i>et al</i> . ^[47] 2017	67	Melanoma	Melanoma	1.5	Ipilimumab	Prednisone	NA	POD	TCMR	< 1 month	High-dose steroids, MMF, sirolimus	Improvement of rejection
DeLeon et al. ^[43] 2018	63	Cholangiocarcinoma	Melanoma	3.1	Pembrolizumab	MMF, prednison	25%	NA	TCMR	< 1 month	ATG, MMF, tacrolimus, prednisone	Improvement of rejection
Morales <i>et al</i> . ^[44] 2015	67	HCC	Melanoma	8	Ipilimumab	Rapamycin	NA	PR	Immune hepatitis	2 months	None	Improvement of hepatitis
© 2021-2022 Society for Immuno	otherapy of (Cancer										

CPI in liver transplant recipients Toxicity: Markers of CPI safety

RESEARCHARTICLE

PD-L1 Deficiency within Islets Reduces Allograft Survival in Mice

Dongxia Ma¹, Wu Duan², Yakun Li¹, Zhimin Wang¹, Shanglin Li¹, Nianqiao Gong¹, Gang Chen¹, Zhishui Chen¹, Chidan Wan³*, Jun Yang¹*

or CD8⁺cells/PF

20 4 4 0 0

CD4

CD8

PD-L1 deficiency within islets does not affect islet function.

- However, islet PD-L1 deficiency increased allograft rejection
 - Associated with enhanced inflammatory cell infiltration
 - ➢ Recipient T-cell alloreactivity.

CPI in liver transplant recipients Toxicity: Markers of CPI safety

Sitc > Advances in Cancer Immunotherapy™

Pilot evaluation of PD-1 inhibition in metastatic cancer patients with a history of liver transplantation: the Mayo Clinic experience

Thomas T. DeLeon¹, Marcela A. Salomao², Bashar A. Aqel³, Mohamad B. Sonbol¹, Raquel T. Yokoda¹, Ahmad H. Ali³, Adyr A. Moss⁴, Amit K. Mathur⁴, David M. Chascsa³, Jorge Rakela³, Alan H. Bryce¹, Mitesh J. Borad^{1,5,6}

ID	Immunotherapy	Line of therapy	RECISTv1.1 response	DOT (months)	PFS (months)	OS (months)	Reason for stopping therapy	Graft rejection	Allograft PD-L1 staining	PD-L1 tumor staining	TILs	Prior sorafenib therapy	Immunosuppressive agent(s) used
1	Nivolumab	3	PD	1.2	2.2	1.2	Progression	No	-	10%	10%	Yes	Tacrolimus
2	Pembrolizumab	2	CR	9.5	21.1*	21.1	Complete response	No	0%	5%	50%	No	Everolimus, mycophenolate mofetil
3	Nivolumab	4	PD	1.1	0.7	1.1	Progression	No	0%	-	-	Yes	Mycophenolate mofetil, sirolimus
4	Nivolumab	5	PD	1.3	1.3	1.3	Progression	No	0%	0%	5–10%	Yes	Tacrolimus
5	Nivolumab	2	-	0.3	-	0.3	Multi-organ failure	NO	_	0%	10%	Yes	Tacrolimus
6	Nivolumab	2	-	0.9	-	0.9	Graft rejection	Yes	30%	0%	-	Yes	Sirolimus
7	Pembrolizumab	2	-	0.7	-	0.7	Graft rejection	Yes	25%	-	-	No	Mycophenolate mofetil, prednisone
Median	N/A	2	N/A	1.1	1.8	1.1	N/A	N/A	0%	0%	10%	N/A	N/A

*, denotes ongoing response; -, denotes that data not available for evaluation. ID, patient identification; RECIST, response evaluation criteria in solid tumors; DOT, duration of therapy; PFS, progression free survival; OS, overall survival; PD-L1, programmed death ligand-1; TIL, tumor infiltrating lymphocyte.

CPI in liver transplant recipients

Toxicity: Markers of CPI safety

- Among all the screened patients, 50% of patients had positive PD-L1 expression in the graft
- Treated with toripalimab (anti-PD-1) 240 mg of every 3 weeks. #LearnACI

- ≻ All patients (100%) with NO graft rejection.
- One patient with positive PD-L1 (not eligible) treated with toripalimab (off protocol).
 - Developed graft rejection 7 days after Rx
 - Died of liver failure 146 days after Rx.

© 2021–2022 Society for Immunotherapy of Cancer

Advances in Cancer Immunotherapy™ CPI in liver transplant recipients Toxicity: Markers of CPI safety:

- The lack of acute rejection during CPI treatment reflects a predominant role of PD-1 in determining graft tolerance.
- Positive PD-L1 staining in biopsy suggest higher risk of acute rejection. Can initiation of CTLA-1 blocking agents be considered?
- Emerging thought on using PD-L1 expression as a marker of safety for anti-PD1 therapy in transplant patients. Not a guideline yet.

CPI in liver transplant recipients Toxicity: FACTS

Systematic review of 83 patients

Patients experiencing allograft rejection—n (%) 33 (39.8) 23/53 (43.4) Kidney recipients Liver recipients 9/24 (37.5) 1/6 (16.7) Heart recipients Time (weeks) to graft rejection from first CPI use-5.6 (7.0) mean (SD) Kidney recipients 7.3 (7.9) Liver recipients 2.1 (1.0) 1 (NA) Heart recipients n = 18 Rejection histology-n (%) T cell-mediated rejection 11 (61.1) Mixed T cell- and antibody-mediated rejection 7 (38.9) Positive C4d staining 4/7 (57.1)

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

d'Izarny-Gargas et al Am J Transplant 2020

CPI in liver transplant recipients

Toxicity: Management

Systematic review of 83 patients

Immunosuppressive regimen at first CPI use-n (%)

Continentonalda	50 ((0.0)
Corticosteroids	50 (60.2)
Calcineurin inhibitors	34 (41.0)
mTOR inhibitors	30 (36. 1)
Antimetabolites	21 (25.3)
At least 1 drug other than corticosteroids	64 (77.1)
Modification of immunosuppressive regimen before CPI use	36/55 (65.5)
Overall rejection outcomes—n (%)	n = 31
Complete recovery	2 (6.5)
Partial recovery	7 (22.6)
End-stage organ failure	22 (71.0
#LearnACI	

Rejection treatment—n (%)	n = 28
Intravenous corticosteroids	23 (82.1)
Oral corticosteroids	7 (25.0)
Calcineurin inhibitors	7 (25.0)
mTOR inhibitors	4 (14.3)
Antimetabolites	4 (14.3)
Intravenous immunoglobulins	2 (7.1)
Antithymocyte globulins	1 (3.6)
Plasma exchange	1 (3.6)
No treatment	3 (10.7)
End-stage organ failure after rejection—n (%)	
In kidney recipients	16/22 (72.7)
In liver recipients	6/8 (75.0)
In heart recipients	0/1 (0.0)
Following anti-PD-1/PD-L1 therapy	17/24 (70.8)
Following anti-CTLA-4 therapy	2/4 (50.0)
Following combination therapy	3/3 (100.0)

© 2021–2022 Society for Immunotherapy of Cancer

Society for Immunotherapy of Cancer

Advances in Cancer ImmunotherapyTM

CPI in liver transplant recipients

Toxicity: Management

Death-censored rejection-free survival higher in patients rece at least 1 drug other than corticosteroids #LearnACI

		HR (95% CI)				Ŧ				р
At least one drug othe	er than corticosteroids	0.26 (0.097 – 0.71)	-	-	-	-				0.009 *
History of prior graft r	rejection	4.99 (1.219 – 20.46)	,			ŀ		•		 0.025 *
Time since transplant	ation ≥ 8 years	0.38 (0.153 – 0.95)			-	÷				0.038 *
Calcineurin inhibitors		0.57 (0.179 – 1.84)		-	-		-			0.352
Immunotherapy type	Anti-CTLA-4	Reference				÷				
	Anti-PD-1/PD-L1 or combination	2.35 (0.680 - 8.12)				-	-		•	0.177
# Events: 25; Global p-	value (Log–Rank): 0.003 ace Index: 0.76	034	0.1	0.2	0.5	1	2	5	10	20

Factors associated with a lower risk of rejection

Rejection is higher with prior allograft rejection

survival higher in patients receive Rejection is higher with anti-PD-1 vs CTLA-4(not significant)

➢ Rejection rates is similar across CPI and IS types.

> No association between allograft rejection and other irAEs.

© 2021–2022 Society for Immunotherapy of Cancer

➤Use of CPI in the treatment of liver cancer have evolved rapidly

- Become the preferred first line of therapy (atezolizumab plus bevacizumab)
- Durvalumab/tremelimumab (phase 3, HIMALAYA trial) increase OS, pending FDA approval
- Increase interest in using CPI as bridging/neoadjuvant therapy to liver transplant
- Is it safe to use CPI before LT?

CPI in liver transplant candidate

- The clinical outcome of patients receiving immunotherapy before transplant remains unknown.
- Between 2017 and 2020, 9 patients with HCC were successfully transplanted after receiving nivolumab as neoadjuvant/bridging therapy before LT.
 One transplant (11%) was from a living donor.
 - ✤ Nivolumab 240 mg given every 2 weeks.
 - Eight (89%) patients received their last dose within 4 weeks of transplant.

- Median follow-up of 16 months post-transplant:
 - ✓ No severe allograft rejections, tumor recurrences, or deaths occurred.
 - ✓ One patient developed mild acute rejection secondary to low tacrolimus level (<6 ng/ml) and responded rapidly to increased dosage.</p>
 - Explant pathology revealed near complete (>90%) tumor necrosis in one-third of the cases.

Maen Abdelrahim, MD, PhD, Pharm.B, The Methodist Hospital Research Institute

CPI in liver transplant candidate

^{© 2021–2022} Society for Immunotherapy of Cancer

CPI in liver transplant candidate

© 2021–2022 Society for Immunotherapy of Cancer

Abdelrahim, M et al. Cancers. 2021

- The absolute risk of graft rejection with CPI post-transplant is better predicted with strict patient selection criteria and randomized controlled trials.
- > PD-L1 expression as a safety marker for CPI therapy in transplant patients is evolving.
- > Factors associated with lower risk of rejection is the use of at least one drug other than corticosteroids.
- > Use of immunotherapy in liver transplant recipients is promising, prospective clinical trial is ongoing.

Advances in Cancer Immunotherapy™

Thank you

Advances in Cancer Immunotherapy™

Thank you

