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Common Cancer Drivers

Cell Growth Genes: cell division

Angiogenesis-related Genes: obtain nutrients from blood

Metastasis-related Genes: escape tissue of origin and
continue growth

Immune Suppression: remain invisible to immune
system surveillance




Tumor Associated Antigens
What 1s Different about the Tumor?

How to identify a tumor antigen:
Use TIL (tumor 1nfiltrating lymphocytes) which can “recognize” the
tumor to screen a cDNA library:

1.Which cDNA transfected into an unrelated (but HLA-matched) cell
line confers TIL recognition?

2. Identity gene encoded by plasmid in cDNA library



The Classics: Commonly Targeted Shared Tumor Antigens

1)

2)

3)

4)

5)

MAGE-1, -2 and -3, BAGE and RAGE, which are non-mutated ‘“cancer-testes” antigens
expressed in a variety of tumor cells

lineage specific tumor antigens, like the melanocyte/melanoma lineage antigens MART-
I/Melan-A (MART-1), gp100, gp75, mda-7, tyrosinase and tyrosinase-related-protein
(TRP-1 and -2), or the prostate antigens PSMA and PSA

proteins derived from genes mutated in tumor cells compared to normal cells, like
mutated ras, bcr/abl rearrangement or mutated p53

proteins derived from oncoviruses, like Human Papilloma Virus (HPV) proteins E6 and
E7, HBV, HCV, MCPV

non-mutated proteins with a tumor-selective, increased expression, including CEA, PSA,
Her2/neu and alpha-fetoprotein (AFP), and differentially glycosylated MUC-1
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Timeline of cancer
vaccine development.
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Recent US immunotherapy approvals by type

TABLE of CONTENTS [Generic Drug Name (trade name): Manufacturer]

Checkpoint Inhibitors: anti PD-1 type (monoclonal antibodies)
Nivolumab (Opdivo): Bristol-Myers Squibb
Pembrolizumab (Keytruda): Merck
Checkpoint Inhibitors: anti PD-L1 type (monoclonal antibodies)
Atezolizumab (Tecentriq): Genentech
Avelumab (Bavencio): EMD Serono

Durvalumab (Imfinzi): Astrazeneza
Checkpoint Inhibitors: anti CTLA-4 type (monoclonal antibodies)

Ipilimumab (Yervoy): Bristol-Myers Squibb

Monoclonal antibody targeting CD20

Obinutuzumab (Gazyva): Genentech

Chimeric Antigen Receptor T-cells "CAR-Ts":

Axicabtagene (Yescarta): Kite Pharma
Tisagenlecleucel (Kymriah): Novartis

Oncolytic Virus:

Talimogene laherparepvec "T-VEC" (Imlygic): Amgen

Recombinant Antigen Vaccine:

Sipuleucel T (Provenge): Dendreon

COMBINATION THERAPIES:

Ipilimumab + Nivolumab




US Immunotherapy Approvals by tumor
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Cancer vaccine

MSI-high tumors of any histology



Tumor Antigens
“private” or patient-specific

Narmal cell presents self peptides bound
to MHC malecules

Jc

i

A point mutation in a self protein allows
binding of a new peplide o MHC molcaules

2l

v
A point mutation in a self peplide creates
a new eplitope for recognition by T cells

B >
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Mutation: processed and presented? In which MHC? How to identify for each patient?




Three Phases of the Cancer Immuno-editing

Transformed

Carcinogens
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Gavin P. Dunn, Lloyd J. Old, Robert D. Schreiber

The Immunobiology of Cancer Inmunosurveillance and Immunoediting
Immunity, Volume 21, Issue 2, 2004, 137 - 148

Did we already get rid
of the “easy” tumor
cell targets?



Effector

(activated) Exhausted

(chronic infection & cancer)
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T Cell Exhaustion. Naive cells express mainly BTLA and low levels of TIM3. Effector cells express a wider variety of inhibitory
receptors. The levels of certain inhibitory receptors such as PD1, CTLA-4, LAG3, and TIM3 may peak at the effector phase. Thereafter,
expression differs in chronically stimulated cells (“exhausted cells””) where inhibitory receptors are relatively maintained, as opposed to
memory cells after clearance of an acute infection where inhibitory receptors are down-modulated.

Front. Immunol., 26 June 2015 Fuertes, Speiser




Cell Therapies tor Cancer: Vaccines

Antigen Presenting Cells:

Allogeneic tumor cells (+/- cytokines like GM-CSF)
Autologous tumor cells (+/- cytokines like GM-CSF)
Transfected cell lines (MRC-5 + tumor DNA/RNA)
Activated B cells

Dendritic Cells




ADVANCES IN
©

IMMUNOTHERAPY ™

Components of a cancer vaccine

Antigen Adjuvant Vecior ) Mode of Administration

Emulsifiers Injection
Whole tumor NH, Viral vectors —
(?E},Rz
“SF%

Frotein antigen Dendrtic cells

ggﬁ Innate agonists ,%/_/ ’&

Syslemic infusion

. ik
7
Antigenic peptide(s) Antibodies Attenuated bactaria Masal spray
And RNA/DNA (D) ACCCH

© 2017 Society for Immunotherapy of Cancer



Vaccines
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Dendritic Cells at the
center of the immunological
universe:

Sampling their environment
Sensing pathogens

Trafficking from the periphery to
lymph nodes

Presenting antigen and shaping
the adaptive immune response

Inhibiting unwanted responses
(tolerance) and activating needed
responses

Many different types of DC




DC Vaccines

»200 DC trials since 1996
» 5 current phase III trials recruiting

» 5 current phase Il trials of DC + anti-PD-1

Dendreon Sipuleucel T: >$80,000/patient; Pittsburgh: $6,500/pt.
Historically, 5-10% CR+PR in late stage patients in some trials, 0% in other trials.

Recent DC vaccine studies (combinations, author conclusions):

1. Kongstad, Svane: Cytotherapy 2017: DC + chemo in 43 prostate cancer pt. (safe and immunogenic)

2. Schreibelt, De Vries: CaRes 2016: 14 stg. IV melanoma pt., CD1c+ isolated blood DC, 16 hour culture, + gp100 and
tyrosinase. 4/14 pt. PFS 12-35 mo.

3. Wilgenhof, Neyns: JCO 2016: 39 “adv. Melanoma” pt., mRNA: gp100, tyrosinase, MAGE-A3, MAGE-C2/DC + ipi.
“Encouraging” ORR, 8 CR+7 PR/39.

4. Greene, Peoples: CII 2016: DC/tumor fusions + low dose IL-2 in 25 melanoma pt. Benefit for some?

5. Carreno, Linette: Science 2015: 3 stg. III melanoma pt., DC+ neoAg peptides, some + immune responses (proof of
principle).

6. Chodon, Ribas: CCR 2014: DC + MART-1 ACT, 14 melanoma pt., objective responses, needs improvement for durability
7. Ribas, Gomez-Navarro: CCR 2009: DC + anti-CTLA-4, 16 melanoma pt., combo not better.




Why DC Vaccines?

* Originally considered a stand-alone therapeutic approach to promote regression
of tumors.

 After being proven “safe and immunogenic” over years, testing in earlier stage
patients and in the prevention setting in high risk patients is being pursued.

* With the success of checkpoint blockade and data supporting the need for a pre-
existing immune response in the tumor for checkpoint response, vaccines may
be critical to promote antitumor immunity in those who lack it spontaneously.
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MART-1 loaded-DC Clinical Trials

7/97- 4/01; Clin.Ca.Res., 3/03
5/01- 4/02; J. Immunother., 9/04
3/02- 3/04; J. Immunother., 4/08

PBMC
GO PBMC: ~
MART-1,; 55 - ELISPOT Which
\ - MHC Tetramer > correlates
- DC - ICS with
X3 - cytotoxicity ) clinical
AdVMARTI response?

Pep.Phase I: 10°, 10, 107 DC/injection
1.v. vs. 1.d. at each dose (18 pt.)

Pep. Phase II: 107 DC/injection, i.d. (10 pt.)
AdV Phase I/II: 107 DC/injection, i.d. (23 pt.)

PI: J.S. Economou
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Summary of Completed MART-1-based Clinical Trials

Phase I MART-1,, ;5 pep/DC:

10°, 106, 107 DC/injection; routes: i.v. vs. i.d. (18 pt., stg. III-IV)

13/16 immune responses by MHC tetramer; and 13/15 by IFNg ELISPOT
10 pt. w/disease: 2 SD (4, 12 mo.), 1 CR (w/determinant spreading™)

8 pt. NED: 5/8 remained NED (18+ to 27+ mo.)

Phase II MART-1,, ;5 pep/DC:

107 DC/injection, i.d. (10 pt., stg. II-IV)

9/10 MART-1 immune responses by MHC tetramer and/or IFNg ELISPOT

5 pt. w/disease: 1 MR, 1 SD (6 mo.), 1 CR (w/determinant spreading®, + ipi).
4/5 NED remained NED (20+ to 27+ mo.)

AdVMARTI1/DC:
3/02-3/04 (23 enrolled); 14 received all 3 vaccines (all metastatic)
12/13 MART-1 immune responses by IFNg ELISPOT; 9/14 MHC Tetramer+
1 “unevaluable” (54+ mo., w/determinant spreading®),
4 SD (27, 33, 36*%, 42 mo.), 1 became resectable/NED (56+ mo.)*
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Vaccination

What have
vaccines been
shown to do?

Tumour antigens

b Pre-existing
tumour-specific
Tcell

Z. Hu, P. Ott, C. Wu Nat Rev Immunol 2018

Maive T cell

De novo tumour-
specific T cell
response

Amplification of
existing tumour-
specific T cell
response

Increased breadth
and diversity of
tumour-specific

T cell response

MNature Reviews | Inmunology



Multi-Antigen-AdV-Transduced DC with IFNa Boost Trial

30 Patients Randomized:
1:1 to high dose i.v. IFNa

IFNa boost
DIAGRAM
leukapheresis
Leukapheresis/Biopsy:
CD8+/CD4+ PBMC:
-Multi-cytokine ELISPOT for
immunizing antigens
3 i -Determinant Spreading ELISPOT
. vaceines, -Serum Luminex
3 tumor antigen 1ntr7a-dermal, -Tetramer Assay/phenotyping
Adenovirus 10" DC per -Avidity (A2/DR4)
injection, -NK activation
every other week _TIL analyses
-Tumor antigen analysis
SCHEDULE |
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AdV/DC  AdV/DC  AdV/DC 30% 1o
Lepk. #1  # # #3 Leyk. #2 IFNa Leuk. #3
i 1 [T
s | . | s
day —14 day 0 day +14 day +28 day +42 day +56 (for 4 weeks) 14 days post IFN a

CMV-Tyrosinase-IRES-

VECTOR MAP |

-SV40pA

Tumor Biopsy:
Analysis of vaccine antigens
(not inclusion criterion)

Analysis of additional antigens
(for potential determinant
spreading assay antigens)

RSV-MAGEA6-BGHpA

AdV type 5




T cell subset ELISPOT analysis
Determinant spreading antigens

1nes.
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More diversity in the blood = better outcome
Expansion of good clones in the tumor = better outcome

Science. 2015 May 15 Cancer immunotherapy. A dendritic cell vaccine increases the breadth and diversity of
melanoma neoantigen-specific T cells.

Carreno BM, Magrini V, Becker-Hapak M, Kaabinejadian S, Hundal J, Petti AA, Ly A, Lie WR, Hildebrand WH, Mardis ER, Linette GP




The antigen matters: Alpha Fetoprotein (AFP)

1. 1.8 kb cDNA, 15 exons/14 introns over 22 kb of genomic DNA, chromosome 4, 18aa leader
sequence for secretion.

2. Transcriptionally regulated, cell-type specific promoter and enhancer, silencers utilized after birth.

3. 609 aa glycoprotein (591aa mature size), synthesized in fetal liver and yolk sac, major serum protein
before birth.

4. Possible roles in serum component transport (esp. fatty acids), binds hormones including
estrogen, possible breast cancer prevention role, binds TNFa, possible immunoregulatory
role.

5. Serum levels in fetus: maximum at 10-13 weeks (3 mg/ml), decreases to 30-100 ug/ml at birth, adult
levels 1-3 ng/ml.

6. 50% to 80% HCC express AFP (serum AFP up to 1 mg/ml).

7. 14 HLA-A2.1-restricted peptides were characterized (4 immuno-dominant, 10 sub-dominant) and
the 4 immunodominant were found to be immunogenic in vivo, in HCC pt. with high serum AFP.

(Cancer Res. 99, Molec. Immunol. 00, J. Immunol. 01, Clin. Cancer Res. *03)



AFP Based Immunotherapy Clinical Trials for HCC

phAFP +
#3 phGM-CSE
i.m. plasmid
primes @ 0, 1, 2 mo. J

AFP 3, 145 AdVhAFP i.m.
#1 AFP 55 166 boost @ month 3

AFP542—550

AFPIW 145 PBMC
#2 | AFP,q o Immune Response:

AFP,s 13y PBMC:
AFPs5 550 -IFNg ELISPOT
%3 -MHC Tetramer
-Treg, NK activation

Trials: #1 Peptides/Montanide (Clin. Cancer Res. 2003)
#2 Peptides/DC (Clin. Cancer Res. 2006)
#3 DNA prime/AdV boost i.m. (JTM, 2015)



Summary of Completed AFP-based Clinical Trials

AFP peptides/Montanide:
6 patients, Stage [Va, IVb,
Four AFP peptides in Montanide ISA adjuvant
100 ug, 500 ug each peptide, 3 intradermal injections (skin toxicity only)
6/6 immune responses by MHC tetramer and/or IFNy ELISPOT
No objective clinical responses or AFP decreases, OS = 2-17 months

AFP peptides/DC:
10 patients, stage I1I-IVb
Four AFP peptides pulsed onto autologous GM-CSF/IL-4 DC
3 injections, intradermal, no toxicities
8/10 immune responses by MHC tetramer and/or IFN y ELISPOT
No objective clinical responses, 2 serum AFP decreases, OS = 2-35 months

AFP DNA prime/AFPAdV boost:
2 patients, stage 11
AFP + GM-CSF plasmids x 3, then AVhAFP x 1; monthly i.m.
Pt. #1 Minimal AFP-specific T cell immunity and low anti-AdV neutralizing antibodies.
9 mo. AFP positive recurrence.
Pt. #2 Strong AFP-specific T cell immunity and + anti-AdV neutralizing antibodies.
18 mo. AFP-negative suspected recurrence.



Patient Autologous DC Vaccine Cells

040903.001 042403.001

SSC-H
0 200 400 600 800 1000
L 1 i L L f

0 200 400 600 800 1000

CD86

CD40
CD8&3
CCRH

Example from an immunotherapy vaccine study. Some patients were able to expand
large numbers of DC bearing cell surface markers CD40, CD83, CD86 and CCR7,
but not all. These 2 patients did not receive the same vaccine.

Important data in dot plots and histograms often not presented in published papers
Butterfield, CCR 2006



Human monocytes cultured with or without normal AFP or
tumor-derived AFP during DC culture:

OVA nAFP tAFP

AFP alters DC phenotype to an immature phenotype that cannot be reversed by maturation,
AFP inhibits DC metabolic function and T cell stimulatory capability (Pardee 2014, Santos 2019)



Other effective platforms: Synthetic and Viral Vaccines

1. TVEC (Amgen) *FDA approved 2015
—  Oncolytic virus: HSV-1 + GM-CSF transgene
—  Metastatic melanoma, 26% response rate (vs. 6% in control arm)

2. ISA101 (Immune System Activation)
— HPV16 Synthetic long peptide (SLP, 24-32mer) in Montanide
—  Cervical cancer
—  Appears to synergize with cisplatin chemotherapy

3. STINGVAX (Aduro)

—  Cyclic dinucleotides (CDN) are recognized by Stimulator of Interferon Genes (STING):
TLR-like mechanism

—  STINGVAX = CDN with a GM-CSF secreting tumor cell vaccine

4. Prostvac
—  Vaccinia (prime) and fowlpox (boost) viruses encoding PSA and three costimulatory
molecules

— Overall survival in advanced prostate cancer increased by 9 months
Presented at SITC annual meeting 2013



T-VEC:

Talimogene laherparepvec key genetic modifications:
JS1/ICP34.5-/ICP47-/HGM-CSF

AICP34.5 AICP34.5 AICP47
/ nem> 4%{:& pﬁ.\ US11

Genetic modifications of talimogene laherparepvec. The viral gene ICP34.5 was deleted and replaced
with a human granulocyte-macrophage colony-stimulating factor (hGM-CSF) expression cassette
comprising the cytomegalovirus (CMV) promoter, hGM-CSF, and a bovine growth hormone
polyadenylation (pA) signal. Expression of the viral gene US11 is driven by the ICP47 promoter



Selective viral replication in Tumor cells rupture for an Systemic tumor-specific Death of distant cancer cells
tumor tissue oncolytic effect immune response
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Talimogene laherparepvec proposed mechanism of action. CmMV cytomegalovirus, GM-CSF granulocyte-
macrophage colony-stimulating factor, hGM-CSF human GM-CSF, pA poly-adenosine, TDA tumor-derived antigen

Cancer Immunol Immunother. 2017; 66(10): 1249-1264.
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Oncolytic Viruses

H5Y
OncovEX,

Vaccimia Ix-
594

ctia ]
adenovirus
[+GMCSF)

Seneca
WValley
Wirus

dsRiNA m I a:lh-'al:cd

IE
+
Coxsa
TUMOR

chie
Wirus J
ICAR-
CELL
Viral
= Activate Hoat
ek _}Dmue Replication GMCSF it
Cofpare ';
ﬁﬂimmuu response
[ )

J _

IAAEE IMmuhe MeLponie
Panln.
'.'lms Complement. —
mediated “f
(5T
Releaie of

Oncolytic Virus

Figure 1: Mechanisms of action of oncolytic viruses. DAF — Decay Accelerating Factor, GM-CSF — Granulocyte Macrophage-Colony Stimulating
Factor, HSV — Herpes Simplex Virus, hTERT — Human Telomerase, ICAM-1 — Intercellular Adhesion Molecule-1, ICP — Infectious Cell Protein, INF-f3 —
Interferon beta, NDV — Newcastle Disease Virus, VSV — Vesicular Stomatitis Virus.



The prevalence of somatic mutations
across human cancer types.
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Malignant transformation of cells depends on accumulation of
DNA damage.

The immune system frequently responds to the neoantigens
that arise as a consequence of this DNA damage.

Recognition of neoantigens appears an important driver of the
clinical activity of both T cell checkpoint blockade and
adoptive T cell therapy as cancer immunotherapies.



Neoantigens can be targeted by therapeutic
vaccines
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*Neoantigens have emerged as targets of effective tumour-directed T cell responses.
Increased neoantigen load is associated with improved patient outcomes.

*Three clinical trials of neoantigen-based vaccines in patients with melanoma, using
dendritic cells loaded with short peptides, long peptides or RNA, have shown the
safety, feasibility and robust immunogenicity of this approach.

*A crucial aspect of a vaccine targeting neoantigens is the selection of epitopes that
can be presented in vivo by tumour or antigen-presenting cells. HLA-binding
prediction, high-resolution mass spectrometry and understanding of antigen
processing are important research areas for further discovery.

*Optimal neoantigen delivery — use of the most effective formulations, immune

adjuvants, delivery vehicles and dosing — in combination with complementary
therapies will be crucial for maximum therapeutic effectiveness.

Towards personalized, tumour-specific, therapeutic vaccines for cancer, Z. Hu, P. Ott, C. Wu Nat Rev Immunol 2018
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Computational identification of nheoantigens is a

multistep-process
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I There is a need for better prediction models

PARKER INSTITUTE
for CANCER IMMUNOTHERAPY

Tumor mutation

Gene expression

Peptide Processing

HLA Binding

. ‘ .I | I‘I

T cell activation

Only a fraction of identified mutations are expressed and
translated

Only a fraction of the expressed mutated peptides is presented on
the HLA

Only a fraction of these neoepitopes are immunogenic and
recognized by autologous T cells

No one knows what makes a peptide immunogenic
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Generation of a personal, multi-
peptide neoantigen vaccine for
patients with high-risk melanoma

A. Somatic mutations were identified by WES
of melanoma and germline DNA and their
expression confirmed by tumor RNA-
sequencing. Immunizing peptides were
selected based on HLA binding predictions.
Each patient received up to 20 long peptides
in 4 pools.

B. Clinical event timeline for 6 vaccinated
patients from surgery until time of data cutoff
(36 months from study initiation).

PA.Ott, ...C. J. Wu, An Immunogenic Personal

Neoantigen Vaccine for Melanoma Patients, Nature
2017



Neoepitope pipelines are becoming more common, diverse and
complex
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TESLA : a community-based effort to optimizing neoepitope
discovery

Nadine Defranoux, PhD
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I The Tumor neoEpitope SelLection Alliance «

TESLA aims to :
Bring together key players in the field of neoantigen discovery
Elucidate current differences in prediction methodologies

Generate high quality epitope validation sets that provide a basis for participating groups to assess and
improve their prediction pipelines

|dentify the best algorithm features that predict which tumor neoantigens are recognized by T cells and
stimulate an immune response

Assess and expand the viability of epitope prediction methods to a broad array of cancer types

TESLA is not:
Competition to determine ‘the best’ pipeline
A clinical program to validate predicted neoepitopes in patients.

PARKER INSTITUTE B



TESLA: from sample acquisition to neoepitope prediction,
validation and analysis
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MNature Reviews | Immunology

Z. Hu, P. Ott, C. Wu Nat Rev Immunol 2018
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Measuring Immunity in Immunotherapy
Clinical Trals:

* Was the cytokine induced (right time/place/level)?

* Did the vaccine activate tumor-specific T cells?

* Did the adoptively transterred effector cells
survive/traffic to the tumor/kill the tumor?

* Was immune suppression reversed?

* Were the target cells/molecules activated?

* Did the target cells/molecules get to the tumor site and
show activity?

* Was the therapeutic intervention an improvement?
 Why or why not?



The dawn of vaccines for cancer prevention
Olivera J. Finn, Ph.D., Univ. Pittsburgh
Nature Reviews Immunology volume 18, pages 183—-194 (2018)

* Developments in imaging and other screening methods have made possible the
detection of pre-malignant lesions.

*Therapeutic cancer vaccines based on viral antigens for the control of viral cancers
have not shown effectiveness in advanced disease but have been highly effective at
clearing pre-malignant lesions.

*Vaccines based on nonviral antigens might be similarly more effective against pre-
malignant lesions of nonviral cancers, and the few completed or ongoing phase |
and Il clinical trials of preventive cancer vaccines have already shown clinical
efficacy.
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