

NATIONAL HARBOR, MD NOVEMBER 9-13, 2016

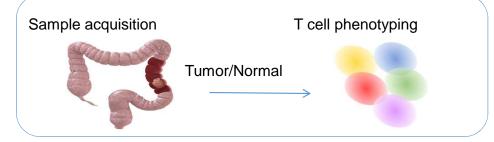
T cell function and specificity in colorectal cancer

Arnold Han, MD,PhD

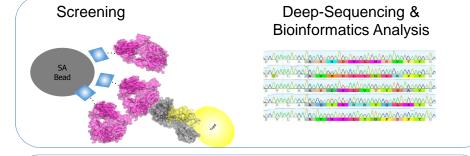
Columbia University

Presenter Disclosure Information

Arnold Han, MD, PhD


The following relationships exist related to this presentation:

Provisional U.S. patent related to TCR sequencing

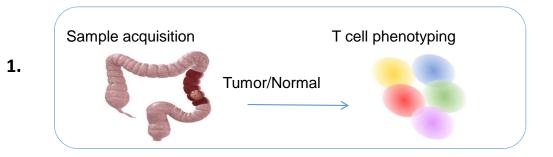

Systemic Analysis of Human CRC

1.

Understand phenotypes of tumor-specific T cell repertoire

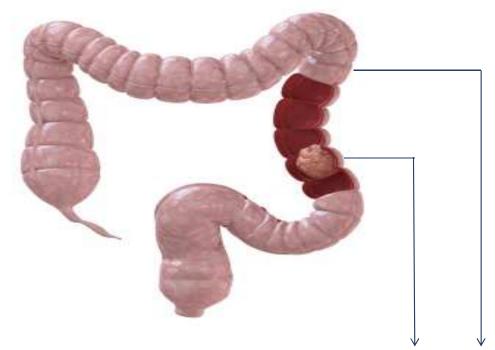
2.

Determine T cell antigen specificities


3.

Investigate therapeutic potential

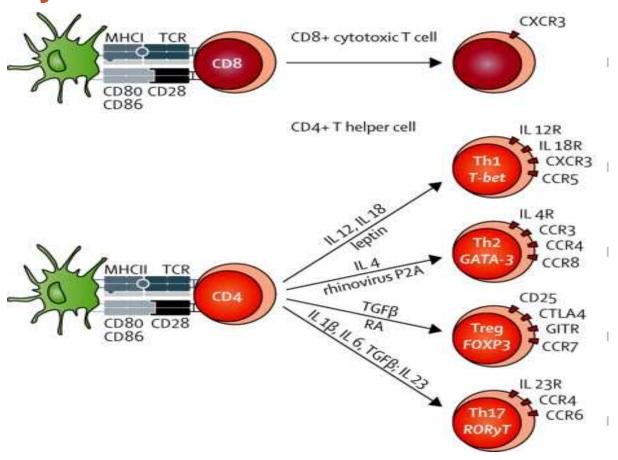
Arnold Han, MD, PhD

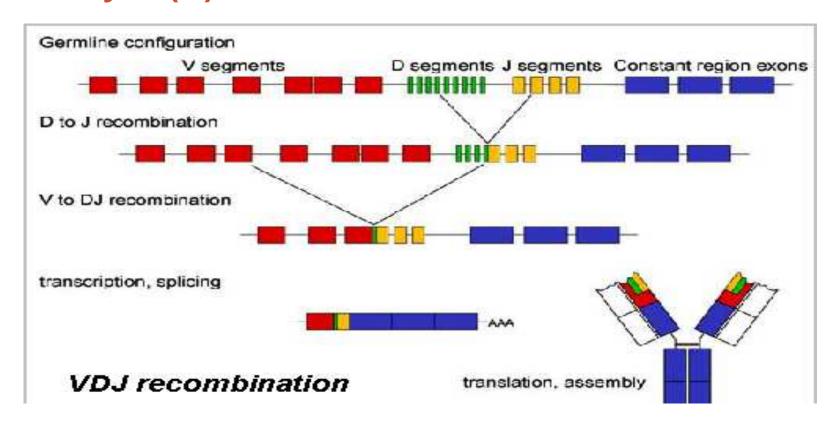


Understand phenotypes of tumor-specific T cell repertoire

Experiment

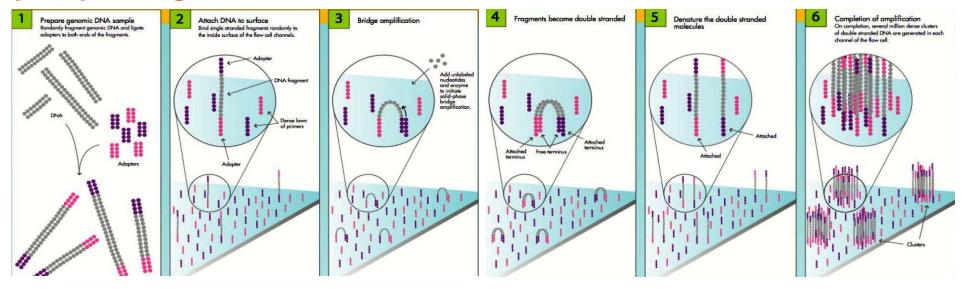
Extract and Analyze Single T cells


Single-Cell vs Bulk Analysis

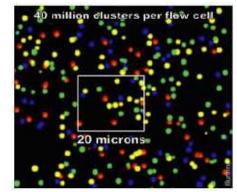


The Complexity of T cell Function

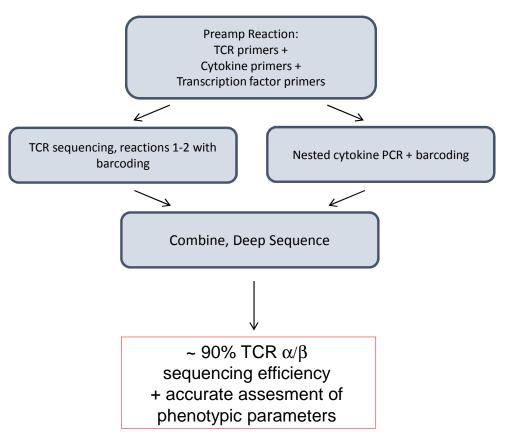
TCR diversity: V(D)J Recombination

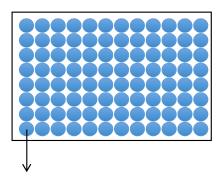


Diversity ~ 10¹⁵

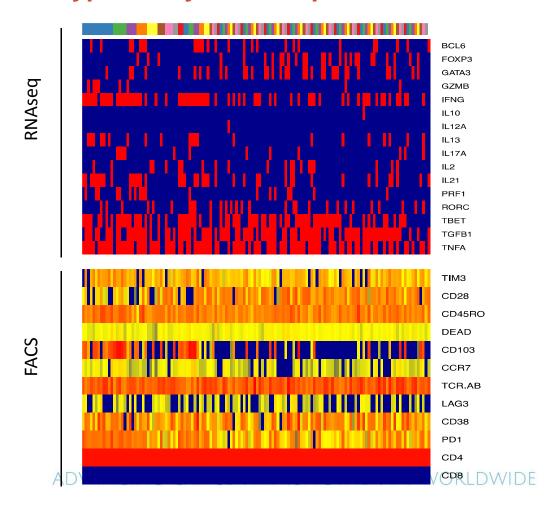

Janeway et al

Deep Sequencing



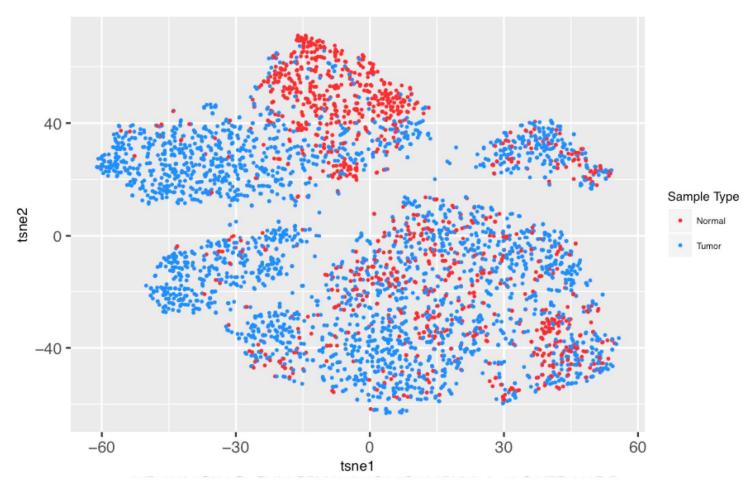

VS. Conventional (Sanger Based Sequencing): Single Molecules are Sequenced Throughput $> 10^7$

Single-cell gene expression and TCR sequencing by deep sequencing

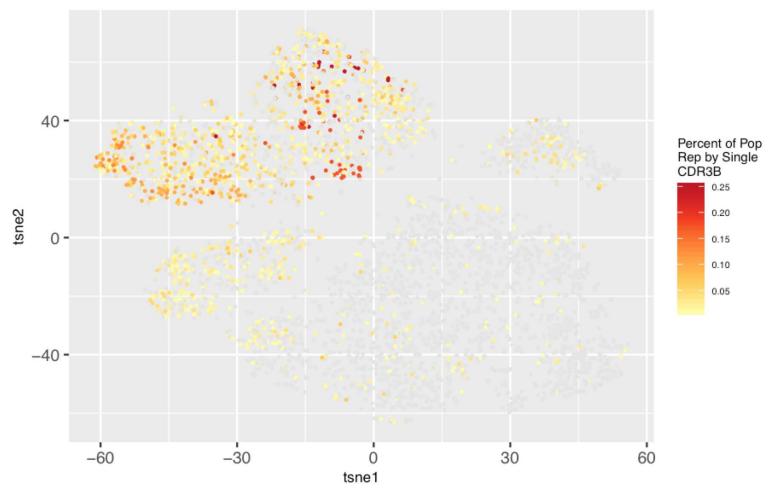

Unique DNA sequence barcode (Cell-Specific) TCR sequences Cytokine/Transcription Factor Sequences

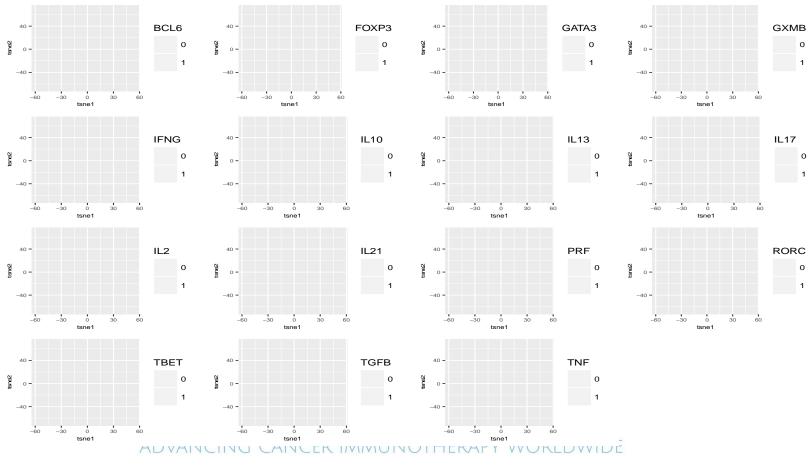
Han et al, Nature Biotechnology, 2014

CANCER IMMUNOTHERAPY WORLDWIDE


Paired TCR and phenotypic analysis: 35+ parameters/cell

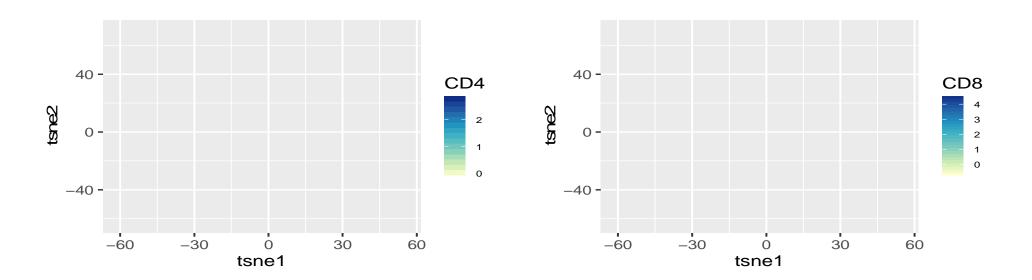
Visualizing high dimensional T cell data:


T-SNE

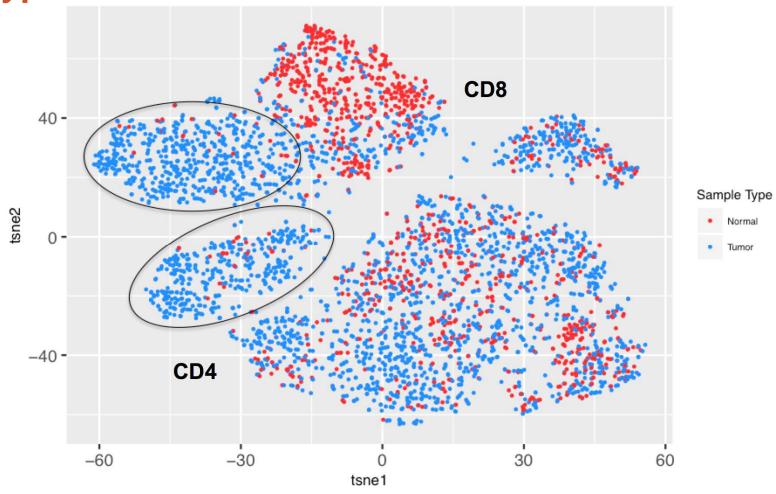

Visualizing high dimensional T cell data:

T-SNE

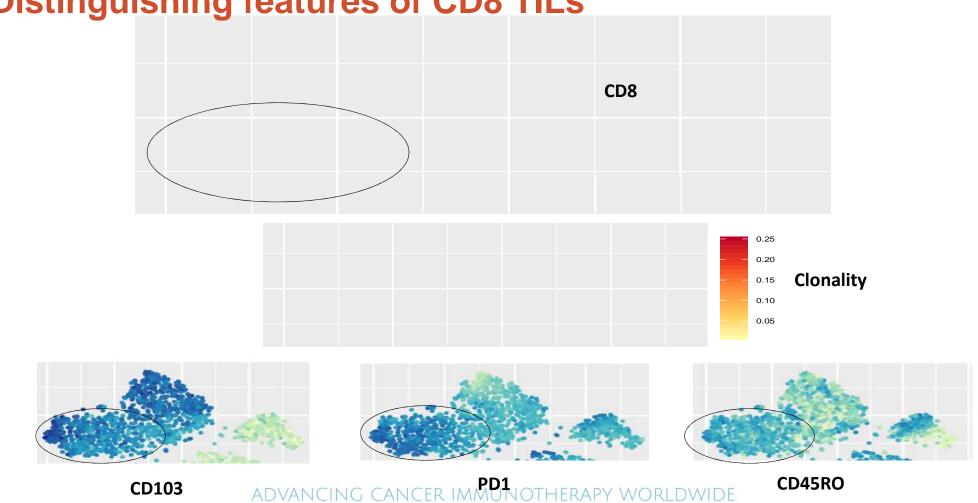
Visualizing high dimensional T cell data: T-SNF


Visualizing high dimensional T cell data:

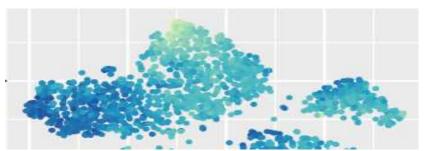
ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE



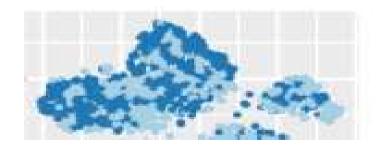
Visualizing high dimensional T cell data: T-SNE

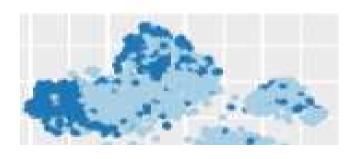


Phenotypes of TILs



Distinguishing features of CD8 TILs





PD1 and exhaustion?: CD8

PD1

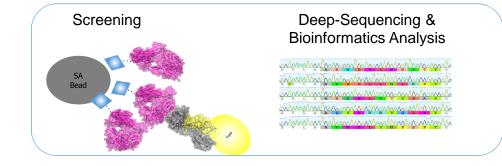
Perforin

Granzyme

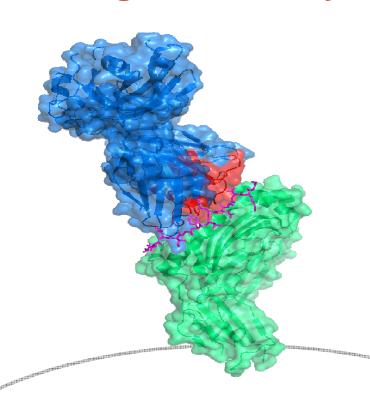
Ongoing: T cells in cancer All cells/cancers are NOT equal

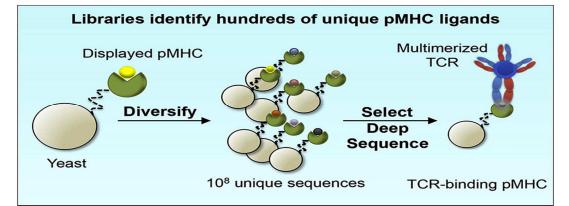
- Compare T cell profiles between tumors
 - correlate with disease stage, prognosis, and degree of mutation (MSS, MSI)
- Identify functionally significant cell types
 - Identify targets for therapy
 - Adoptive Transfer

Single-Cell RNAseq is coming

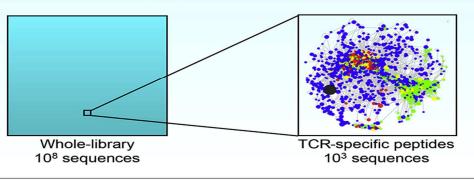

2.

Systemic Analysis of Human CRC


Understand phenotypes of tumor-specific T cell repertoire

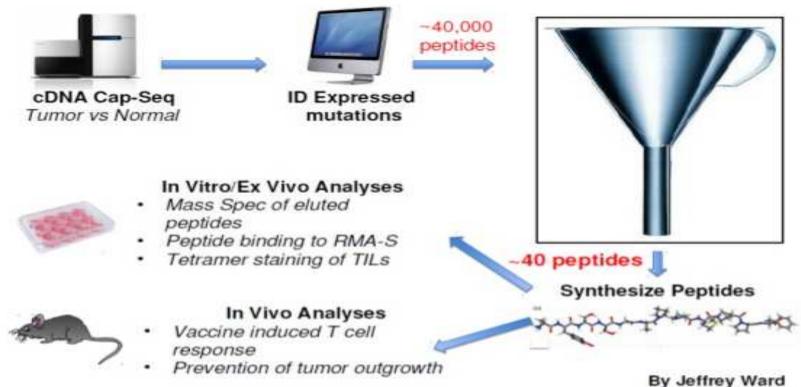


Determine T cell antigen specificities



T cell antigen discovery

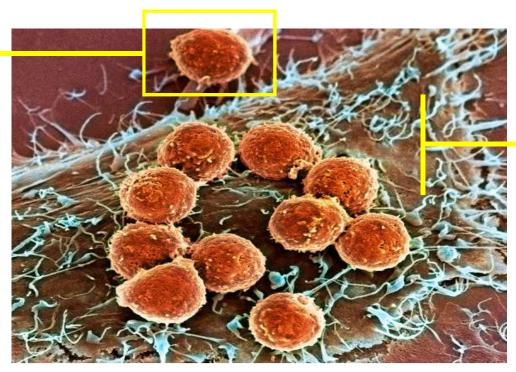
Identified pMHC ligands are related for any given TCR



PY WORLDWIDE

ME Birnbaum et al. Cell. 2014

Neo-antigens: Personalized Tumor Vaccines



Nature Medicine, 2013

TCR specificity: Different approaches to the same question

Begin with T cell
Sequence TCR
Screen Random Libraries

Begin with tumor Sequence tumor Predict Neo-Epitopes Test Epitopes

Pros:

Unbiased method Let tumor tell us what antigens are relevant Self-Antigens, CT antigens, Exogenous Antigens Cons:

Peptide Length
MHC restriction
Undercoverage of peptide space
CANNOT DETERMINE A SINGLE ANTIGEN

TCR sequences isolated from single clones

Patient A (HLA A:02:01/02:01)

Patient B (HLA A:02:01/02:06)

CDR3a	CDR3β	Pair Frequency
CAGGGADGLTF	CASSLGLEQFF	22
CVVTETNAGKSTF	CASSADTGVNQPQHF	4
CALSEAEAAGNKLTF	CASSLGGGHTEAFF	3
CALSEAGMDSNYQLIW	CASSLVNGLGYTF	3
CAMREGRYSGAGSYQLTF	CATSRDRGQDEKLFF	3
CAVNSGNTGKLIF	CSARDYQGSQPQHF	1
CAVPFLYNQGGKLIF	CSARDYQGSQPQHF	1
CAVGEIVGTASKLTF	CASSYYIKFEQYF	1
CAVNDFNKFYF	CASSADTGVNQPQHF	1

CDR3α	CDR3β	Pair Frequency
CALMNYGGATNKLIF	CASMGRSYGYTF	9
CAVETSNTGKLIF	CASSQGVGQFKNTQYF	4
CALSAGASGAGSYQLTF	CASSSSGGLVDTQYF	3
CAASSTGNQFYF	CASSLSGRQGGSYEQYF	2
CAVDSGGYNKLIF	CASSIPRGSSQPQHF	1

= CD8+ PD1-

= CD8+ PD1+

CALSEARGGATNKLIF CASSRDTVNTEAFF 4 CALSEARGGATNKLIF CASSRDFVSNEQYF 2

3 TCRs converge the HLA*A2:01 library

Patient A


5	TRBV7-9	CASSLVNGLGYTF	TRAV19	CALSEAGMDSNYQLIW	TCR 9	
4	TRBV10-1	CASSRDTVNTEAFF	TRAV19	CALSEARGGATNKLIF	CD8-1s	

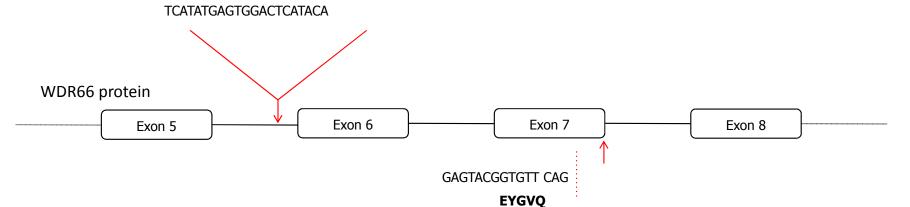
Patient B

1	TRBV10-1	CASSRDFVSNEQYF	TRAV19	CALSEARGGATNKLIF	*	CD8-2s	
---	----------	----------------	--------	------------------	---	--------	--

Patient A	С	Α	S	S	R	D	Т	V	N	Т	Е	Α	F	F	
Patient B	С	Α	S	S	R	D	F	V	S	N	Е	Q	Υ	F	
				†	†	1		†		1					

* = Shared with Normal Tissue

TCR 9



											Pepude Position											
				Ň					V		N A			_	1	2 :	3	4	5	6	7	8
				V		7	V	S						Α								
		-		2		က	4	2	9		<u> </u>			C								
Peptide Peptide								Naïve	RD1	RD 2	RD3	RD 4	_	D E								
S	M	G	V	Т	Y	E	M	0	3	6744	71690	141732		F								
Y	M	G	V	S	Y	E	M	0	0	55	2430	1781		Ğ								
Y	M	G	V	V	Y	E	M	0	1	158	1070	142		н								
K	M	G	V	Т	Y	E	M	0	0	9	511	183		I								
K	K	K	Q	K	Т	Т	V	0	1	100	430	98		K							ſ	
F	M	G	V	Т	Y	E	M	0	0	18	275	181		L M								
F	M	G	V	S	Y	E	M	0	0	5	165	60		N							l	
G	L	G	V	S	Y	E	M	0	0	4	152	62		Р								
N	L	G	V	S	Y	E	M	0	0	4	93	13		Q								
Т	L	G	V	Т	Y	E	M	0	0	3	74	0		R								
K	M	G	V	L	Y	E	M	0	0	3	61	88		S T								
Q	L	R	R	С	V	I	L	0	3	225	60	89		\ \ \ \ \ \								
L	K	L	D	Y	G	Q	M	0	2	160	34	43		w							l	
F	M	G	V	Т	Y	E	V	0	0	0	19	176		Y								
S	M	G	V	TA	BV		V	IG CAN	VC€R	M8//	1 <u>1</u> 4TH	ERAPY	WORLE		E							

Exome sequencing results reveal putative epitope for TCR 9

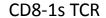
SYEWTHT

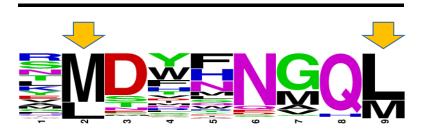
WT: EYGV.....QNYVTF
Mut: EYGVSYEWTHTQNYVTF

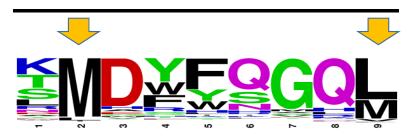
Putative Epitope: EYGVSYEW

TCRs isolated from Patient A and Patient B share peptide motif CD8-1s TCR

CD8-2s TCR


	CDO 15 FCIC																		
	Peptide	Naïve	RD 1	RD 2	RD3	RD 4				Pe	eptic	le			Naïve	RD 1	RD 2	RD 3	RD 4
L	M D M H N G Q <mark>L</mark>	0	16	10775	20608	39700	Т	M	D	F	Y	Q	G	Q <mark>L</mark>	0	0	2185	105899	170631
R	<mark>L</mark> DAMNGQ <mark>L</mark>	0	7	6484	11464	807	K	M	D	Y	F	S	G	Q <mark>L</mark>	0	0	2214	83644	22803
R	M D Y N N M Q M	0	3	3656	8193	5229	S	M	D	W	F	Q	G	Q M	0	0	894	50234	137230
S	M D T F Q G Q M	0	7	4053	6926	1074	L	M	D	Y	W	Q	G	Q <mark>L</mark>	0	0	1104	31733	14304
G	M D Y H N G H L	0	3	3518	6103	217	N	M	M	W	F	Q	G	Q <mark>L</mark>	0	0	352	8382	1456
Y	<mark>L</mark> DFHNGQ <mark>L</mark>	0	7	3341	6022	19091	K	M	Η	W	F	N	G	Q <mark>L</mark>	0	0	397	7366	451
L	M D Y T N M Q L	0	5	2536	4742	186	Т	M	D	Y	W	Q	G	H L	0	0	332	6050	309
N	<mark>L</mark> DWANVQ <mark>L</mark>	0	4	2359	4702	150	R	M	D	R	F	N	G	Q <mark>L</mark>	0	0	591	5962	199
M	M D L H N G Q <mark>L</mark>	0	3	2271	4439	21190	S	M	D	Τ	F	Q	G	Q M	0	0	604	5601	197
K	M D Y H E G Q <mark>L</mark>	0	1	2256	4434	410	V	M	S	Η	F	E	G	Q <mark>L</mark>	0	0	376	4065	83
Т	<mark>L</mark> DGFNGQ <mark>M</mark>	0	1	2177	3982	359	L	M	D	Y	Т	N	M	Q <mark>L</mark>	0	0	322	2750	68
V	M S H F E G Q <mark>L</mark>	0	1	2388	3830	376	K	M	D	Y	Η	I	G	Q M	0	0	226	2403	83
Α	M D Y L N A Q <mark>L</mark>	0	4	1911	3440	215	V	M	D	Η	F	Q	A	Q <mark>L</mark>	0	0	170	1975	69
Q	L D W N N M Q M	0	8	1726	3433	102	N	M	G	F	E	N	M	Q <mark>L</mark>	0	0	132	1144	22
R	M G Y H N G Q L	0	2	2010	3261	367	Y	L	D	Η	K	Т	L	R L	0	15	866	881	285





CD8-1s and CD8-2s share a common prediction: wild-type MED23

CD8-2s TCR

MED23 = Mediator of RNA polymerase II transcription subunit 23

TLHYYEMHL

Role in Ras-active lung cancer Yang X et al. PNAS. (2012)

Role in tumorigenesis for hepatocellular carcinoma. Guo Y et al. J Gastroenterol Hepatol. (2015)

Role in esophageal squamous cell carcinoma. Shi J et al. Mol Carcinogenesis. (2014)

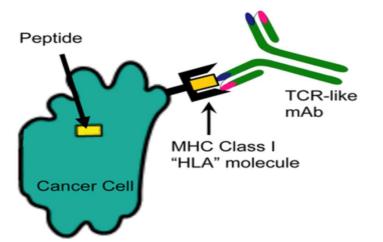
Putative role in colorectal cancer Jo YS et al. Pathol. Oncol. Res. (2015)

Future Directions: Antigens driving T cells in colorectal cancer

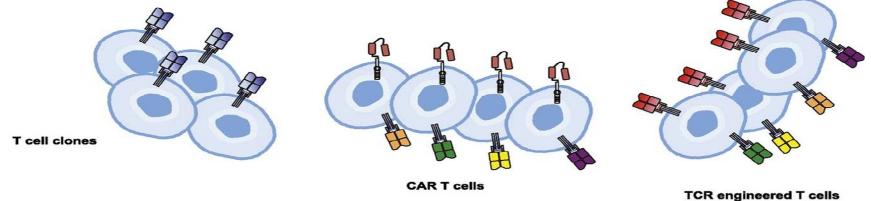
- Link antigen specificities to T cell phenotypic profiles
- Can we find common TCR motifs or specificities across different patients?
- Systematic identification of tumor antigens in mouse models

Sample acquisition T cell phenotyping 4 Tumor/Normal Deep-Sequencing & Screening **Bioinformatics Analysis** Argania walio wali 2. vuttaihalisti sõvavladustasti suvavas Sexus Market Market Market and Architecture (začenejlogalgatycznejtyajnogranycznejtych nyfije nighted year in the children in a children i TCR-based therapies 3.

Understand phenotypes of tumor-specific T cell repertoire

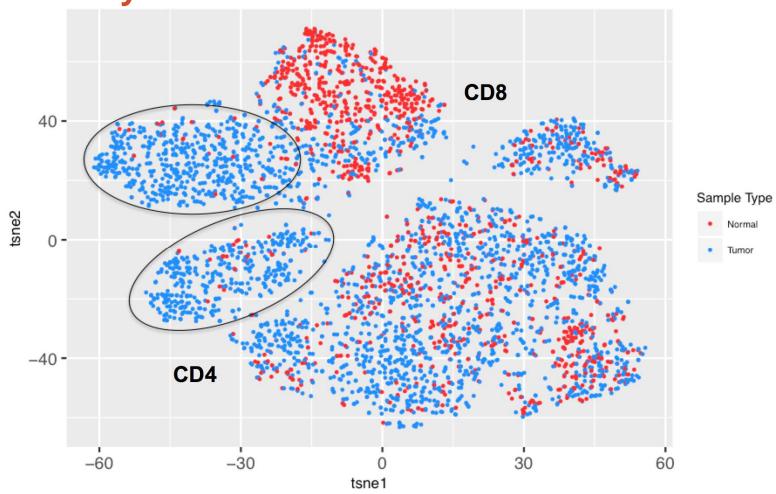

Determine T cell antigen specificities

Investigate therapeutic potential


Future Directions: Therapeutic Implications

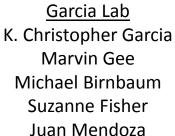
1. TCR mimic antibodies

Scheinberg, 2013


2. Adoptive transfer of TCR engineered T cells

Maus, 2014

Therapeutically Relevant TIL TCRs



Davis Lab
Mark Davis
Trevor Hinshaw
Leo Hansmann
Jake Glanville

Quake Lab
Stephen Quake

Khatri Lab Purvesh Khatri Shane Lofgren

John Beausang

