STTC 2016

NATIONAL HARBOR, MD

NOVEMBER 9-13, 2016

sitc

SITC 2016

NATIONAL HARBOR, MD
NOVEMBER 9-13, 2016

T cell function and specificity in colorectal cancer

Arnold Han, MD, PhD

Columbia University
sitc
Society for Immunotherapy of Cancer

Presenter Disclosure Information
 Arnold Han, MD, PhD

The following relationships exist related to this presentation:

Provisional U.S. patent related to TCR sequencing

STTC 2016
 Systemic Analysis of Human CRC

Society for Immunotherapy of Cancer

STTC 2016

Understand phenotypes of tumor-specific T cell repertoire

SITC 2016

Experiment

Extract and Analyze Single T cells

STTC 2016

Single-Cell vs Bulk Analysis

SITC 2016

The Complexity of T cell Function

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

SITC 2016

TCR diversity: V(D)J Recombination

Diversity ~ 10^{15}
Janeway et al

SITC 2016

Deep Sequencing

SITC 2016

Single-cell gene expression and TCR sequencing by deep sequencing

Unique DNA sequence barcode (Cell-Specific) TCR sequences
Cytokine/Transcription Factor Sequences

Han et al, Nature Biotechnology, 2014
CANCER IMMUNOTHERAPY WORLDWIDE

SITC 2016

Paired TCR and phenotypic analysis: 35+ parameters/cell

STTC 2016

Visualizing high dimensional T cell data:

 T-SNE

STTC 2016

Visualizing high dimensional T cell data: T-SNE

STTC 2016

Visualizing high dimensional T cell data: T-SNE

GATA3

PRF

TBET

TGFB

TNF
0
1

STTC 2016

Visualizing high dimensional T cell data: T-SNE

STTC 2016

Visualizing high dimensional T cell data: T-SNE

Phenotypes of TILs

STTC 2016

Distinguishing features of CD8 TILs

PD1 and exhaustion? : CD8

Perforin

Granzyme

SITC 2016

Ongoing: T cells in cancer All cells/cancers are NOT equal

- Compare T cell profiles between tumors
- correlate with disease stage, prognosis, and degree of mutation (MSS, MSI)
- Identify functionally significant cell types
- Identify targets for therapy
- Adoptive Transfer

SITC 2016
 <sitc>
 Society for Immunotherapy of Cancer

Single-Cell RNAseq is coming

STTC 2016

 Systemic Analysis of Human CRC

 Systemic Analysis of Human CRC}

Society for Immunotherapy of Cancer

Sample acquisition
1.

Tcell phenotyping

Tumor/Normal
Understand phenotypes of tumor-spechic T cell repertole

Determine T cell antigen specificities

SITC 2016

T cell antigen discovery

Identified pMHC ligands are related for any given TCR

Whole-library 10^{8} sequences

TCR-specific peptides 10^{3} sequences

SITC 2016

Neo-antigens:

Personalized Tumor Vaccines

In Vitro/Ex Vivo Analyses

- Mass Spec of eluted
peptides
- Peptide binding to RMA-S
- Tetramer staining of TILs

In Vivo Analyses

- Vaccine induced T cell response
- Prevention of tumor outgrowth

Synthesize Peptides

By Jeffrey Ward
Nature Medicine,
2013

SITC 2016

TCR specificity: Different approaches to the same question

Begin with T cell
Sequence TCR
Screen Random Libraries

Begin with tumor
Sequence tumor Predict Neo-Epitopes
Test Epitopes

Pros:
Unbiased method
Let tumor tell us what antigens are relevant Self-Antigens, CT antigens, Exogenous Antigens

Cons:
Peptide Length
MHC restriction
Undercoverage of peptide space CANNOT DETERMINE A SINGLE ANTIGEN

SITC 2016

TCR sequences isolated from single clones

Patient A (HLA A:02:01/02:01)

CDR3a	CDR3ß	Pair Frequency
CAGGGGADGLTF	CASSLGLEQFF	22
CVVTETNAGKSTF	CASSADTGVNQPQHF	4
CALSEAEAAGNKLTF	CASSLGGGHTEAFF	3
CALSEAGMDSNYQLIW	CASSLVNGLGYTF	3
CAMREGRYSGAGSYQLTF	CATSRDRGQDEKLFF	3
CAVNSGNTGKLIF	CSARDYQGSQPQHF	1
CAVPFLYNQGGKLIF	CSARDYQGSQPQHF	1
CAVGEIVGTASKLTF	CASSYYIKFEQYF	1
CAVNDFNKFYF	CASSADTGVNQPQHF	1

Patient B (HLA A:02:01/02:06)

CDR3a	CDR3ß	Pair Frequency
CALMNYGGATNKLIF	CASMGRSYGYTF	9
CAVETSNTGKLIF	CASSQGVGQFKNTQYF	4
CALSAGASGAGSYQLTF	CASSSSGGLVDTQYF	3
CAASSTGNQFYF	CASSLSGRQGGSYEQYF	2
CAVDSGGYNKLIF	CASSIPRGSSQPQHF	1

	$=\mathrm{CD} 8^{+}$PD1 ${ }^{-}$
	$=\mathrm{CD} 8^{+}$PD1 ${ }^{+}$

CALSEARGGATNKLIF	CASSRDTVNTEAFF	4	CALSEARGGATNKLIF	CASSRDFVSNEQYF

SITC 2016

3 TCRs converge the HLA*A2:01 library

Patient A

5	TRBV7-9	CASSLVNGLGYTF	TRAV19	CALSEAGMDSNYQLIW
4	TRBV10-1	CASSRDTVNTEAFF	TRAV19	CALSEARGGATNKLIF

Patient B

1	TRBV10-1	CASSRDFVSNEQYF	TRAV19	CALSEARGGATNKLIF	*	CD8-2s

Patient A	C	A	S	S	R	D	T	V	N	T	E	A	F	F
Patient B	C	A	S	S	R	D	F	V	S	N	E	Q	Y	F

SITC 2016

Peptide								Naive	RD1	RD2	RD 3	RD 4
S	M	G	V	T	Y	E	M	0	3	6744	71690	141732
Y	M	G	V	S	Y	E	M	0	0	55	2430	1781
Y	M	G	V	V	Y	E	M	0	1	158	1070	142
K	M	G	V	T	Y	E	M	0	0	9	511	183
K	K	K	Q	K	T	T	V	0	1	100	430	98
F	M	G	V	T	Y	E	M	0	0	18	275	181
F	M	G	V	S	Y	E	M	0	0	5	165	60
G	L	G	V	S	Y	E	M	0	0	4	152	62
N	L	G	V	S	Y	E	M	0	0	4	93	13
T	L	G	V	T	Y	E	M	0	0	3	74	0
K	M	G	V	L	Y	E	M	0	0	3	61	88
Q	L	R	R	C	V	I	L	0	3	225	60	89
L	K	L	D	Y	G	Q	M	0	2	160	34	43
F	M	G	V	T	Y	E	V	0	0	0	19	176
S	M	G	V	T	A E	E	V		CQR	18	, 14T	ERAPY

SITC 2016

Exome sequencing results reveal putative epitope for TCR 9

SYEWTHT

SITC 2016

sitc
Society for Immunotherapy of Cancer
TCRs isolated from Patient A and Patient B share peptide motif

CD8-1s TCR

SITC 2016

CD8-1s and CD8-2s share a common prediction: wild-type MED23

CD8-1s TCR

CD8-2s TCR

MED23 = Mediator of RNA polymerase II transcription subunit 23

TLHYYEMHL

Role in Ras-active lung cancer
Yang X et al. PNAS. (2012)
Role in tumorigenesis for hepatocellular carcinoma. Guo Y et al. J Gastroenterol Hepatol. (2015)

Role in esophageal squamous cell carcinoma.
Shi J et al. Mol Carcinogenesis. (2014)
Putative role in colorectal cancer Jo YS et al. Pathol. Oncol. Res. (2015)

SITC 2016

Future Directions:

Antigens driving T cells in colorectal cancer

- Link antigen specificities to T cell phenotypic profiles
- Can we find common TCR motifs or specificities across different patients?
- Systematic identification of tumor antigens in mouse models

STTC 2016

SITC 2016

Future Directions: Therapeutic Implications

1. TCR mimic antibodies

2. Adoptive transfer of TCR engineered T cells

Maus,

SITC 2016

Therapeutically Relevant TIL TCRs

STTC 2016

Davis Lab
Mark Davis
Trevor Hinshaw Leo Hansmann Jake Glanville

Quake Lab Stephen Quake
John Beausang

Khatri Lab Purvesh Khatri
Shane Lofgren

Garcia Lab
K. Christopher Garcia

Marvin Gee
Michael Birnbaum
Suzanne Fisher Juan Mendoza

