Overview of Mouse-Mouse Models

Marcus Bosenberg, MD, PhD

Yale school of medicine

Disclosures

• None

Yale school of medicine

Overview

- Types of models
 - GEMMs
 - Chemically induced
 - Syngeneic grafts
- Approaches to understanding tumor immune responses
- Increasing the predictive value of mousemouse preclinical models

Genetically engineered mouse models (GEMMs)

- Combination of transgenic, knock-in, knock-out
- Germline vs restricted to tumor cell
- Stochastic vs generalized hyperplasia
- Characteristics
 - Long latency
 - Incomplete penetrance
 - Very few somatic mutations
 - Physiological mitotic rate and TME
 - Low rate of metastasis
 - Difficult to induce effective immune responses
 - Very high bar for therapies being tested

Genetically engineered mouse models (GEMMs)

- How to improve GEMMs for preclinical immune therapy testing
 - Increasing antigenicity
 - Mutator alleles
 - Chemical carcinogenesis
 - Model antigens
 - Enhanced immune backgrounds

Chemically-induced mouse models

- Induction of tumors by administration of chemical carcinogens
- MCA model (Schreiber)
- Characteristics
 - Fully penetrant
 - Variable latency (can be long)
 - Unclear histological cancer type (sometimes)
 - High number of somatic mutations
 - Can be very immunogenic
 - Often used as syngeneic grafts

Syngeneic mouse models

- Engraftment of mouse cancer lines that are not rejected upon grafting into an immune competent host
- B16, MC38, CT26
- Characteristics
 - Easy/cheap/fast to use
 - Typically subcutaneous injection of cells
 - Tumors can grow very quickly (2-3 weeks for B16)
 - Variable immunogenicity
 - Variable responses to immune therapies
 - Hard to compare with other syngeneic models

Syngeneic mouse models

- Characteristics
 - Driver genes are frequently not known
 - Contribution of endogenous retrovirus are not known
 - Mutation burden is frequently high
 - Makes comparison with low-mutation burden analog difficult
 - Makes identification of relevant antigens difficult

Syngeneic mouse models

- Ways to improve syngeneic models:
 - Use multiple lines driven by human-relevant genetic changes
 - Series of similar lines with variable mutation burden
 - Ability to evaluate antigen-specific responses
 - Advanced imaging available to follow immune responses sequentially
 - Evaluate anti-tumor responses at metastatic sites
 - Make lines from inbred cells using CRISPR

What is an effective immune response in a mouse model?

- Usually tumor volume plots are performed
- Significant separation of curves is often the endpoint
 Would be progressive disease in humans
- Overall survival (to a tumor volume endpoint)
- Correlative studies are often performed
 - Quantitation of T-cell infiltrate by flow cytometry
 - Usually performed at the end of the experiment, when tumors are ~1 cm³ in volume

What is an effective immune response in a mouse model?

What is an ideal immune response in a mouse model?

Yale University Mouse Melanoma (YUMM) lines

Syngeneic mouse melanoma lines		
<u>Name</u>	<u>Genotype</u>	<u>Status</u>
YUMM1	Braf ^{v600E} Pten ^{-/-} Cdkn2a ^{-/-}	20 lines
YUMM2	Braf ^{V600E} Pten ^{-/-} Bcat ^{sta/+}	2 lines
YUMM3	Braf ^{v600E} Cdkn2a ^{-/-}	4 lines
YUMM4	Pten ^{-/-} Cdkn2a ^{-/-}	4 lines
YUMM5	Braf ^{V600E} p53 ^{-/-}	4 lines
YUMM6	Braf ^{V600E} Pten ^{-/-}	1 line
YUMM7	Braf ^{v600E} Bcat ^{sta/+} Cdkn2a ^{-/-}	In progress
YUMM8	Braf ^{v600E} Lkb1 ^{-/-} Cdkn2a ^{-/-}	In progress
YUMM9	Nras ^{Q61R} Cdkn2a ^{-/-}	In progress
YUMM10	Nras ^{Q61R} p53 ^{-/-}	In progress

Meeth et al., PCMR, 2016

YUMMER 1.7 Cell Line

• Parental cell line (YUMM1.7) exposed to 3 rounds of high-dose UVB radiation and clonally selected

YUMMER regresses in wt C57BL/6 background

Depletion of either CD4 or CD8 T cells increases growth significantly

Regression of YUMMER is titratable

Regression of YUMMER is titratable

The YUMMER model is very responsive to checkpoint inhibition

Characteristics of the anti-melanoma tumor immune response

- Early myeloid infiltration
- Characteristic onset of T-cell infiltration (Day 7)
- Distinct onset of immune-mediated cell killing (Day 8)
- Tumor regression vs escape (by Day 15-18)
- Plenty of T-cells in escaping tumors, most are at tumor-infiltrating edge
- The above features are not accurately represented by flow cytometry alone
- Quantitative pathology approaches

Foxp3 YUMMER 500K Day 25

Left Ventricle Injection Models

Yale school of medicine

SLIDE 26

Future Plans

- Syngeneic models
 - Variable mutation burden
 - Identification of class I and class II antigens
 - Functional evaluation of responses
 - Improved imaging
 - 2-photon
 - Light sheet
 - Cell line and host reporters
 - Single cell quantitative pathology
 - CRISPR screens
 - Combination therapies

Acknowledgements

Bosenberg Lab

- Jake Wang
- Katie Meeth
- Xiaoni Liu
- Irina Krykbaeva
- Kim Blenman
- Bill Damsky
- Alexandra Charos
- William Damsky
- Durga Thakral
- Shang-Min Zhang
- Goran Micevic
- Nicholas Theodosakis

Collaborators

- Susan Kaech (Yale)
- Curtis Perry (Yale)
- Many others on other projects

Funding

- NCI
- Melanoma Research Alliance
- Melanoma Research Foundation
- Hervey Family Foundation
- Sokoloff Family MRATSA
- DOD
- CBIF

Yale school of medicine