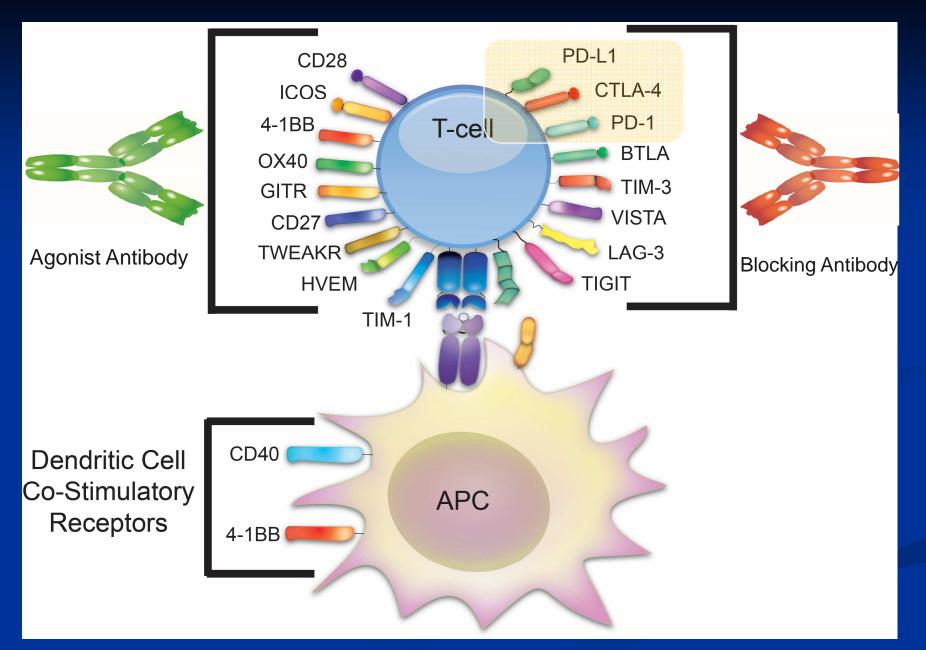
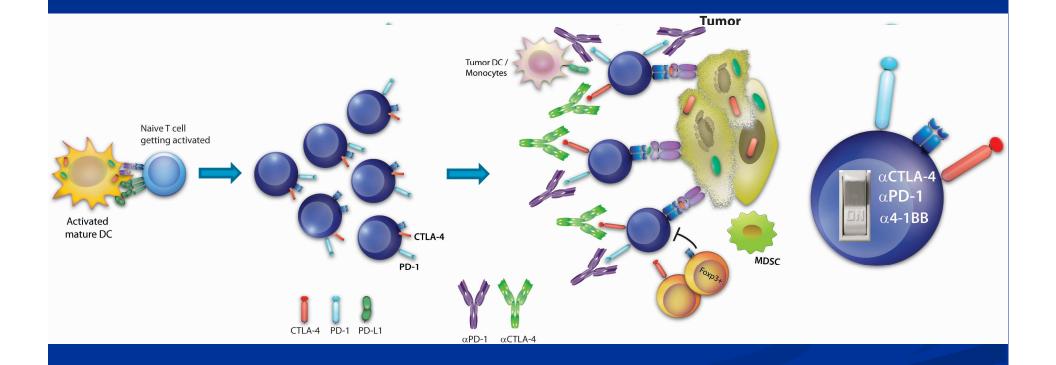
Understanding Checkpoint Inhibitors: Approved Agents, Drugs in Development and Combination Strategies

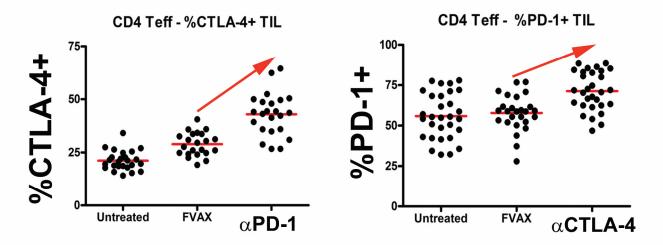

> Michael A. Curran, Ph.D. MD Anderson Cancer Center Department of Immunology

Disclosures

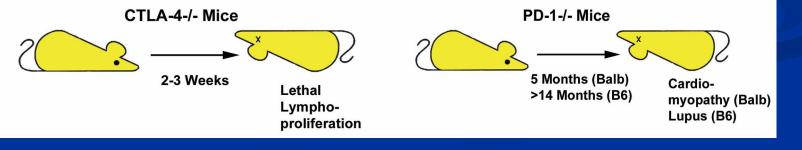
I have research collaborations with Bristol Myers Squibb, Astrazeneca, Adimab, Kairos and Threshold.


I receive royalties from the patent "Methods and Compositions for Localized Secretion of anti-CTLA-4 Antibodies".

I will be talking about investigational therapeutics.


Ai M., **Curran M.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

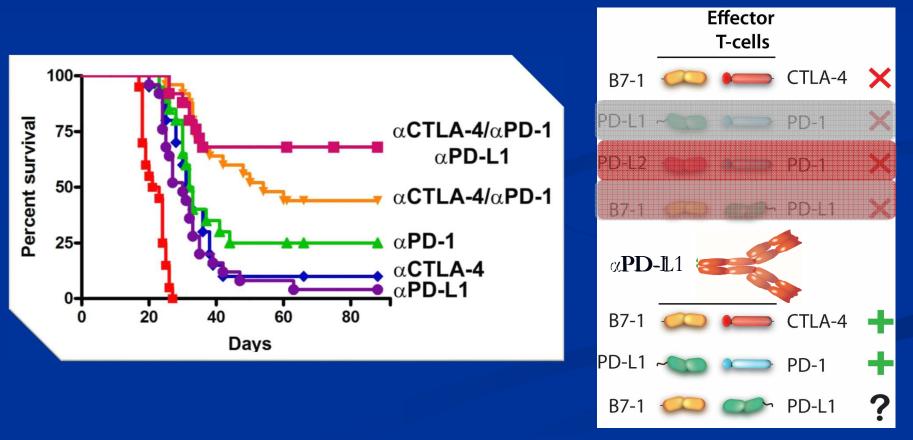
How do "immune checkpoint" antibodies like αCTLA-4 (Ipilimumab) and αPD-1 treat cancer?



Why choose to block the PD-1 pathway in addition to CTLA-4?

Blocking one co-inhibitory receptor leads to reciprocal upregulation of the other

CTLA-4 and PD-1 inhibitory signals are non-redundant


Curran M A et al. PNAS 2010; 107(9):4275-80.

PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors

Michael A. Curran^a, Welby Montalvo^a, Hideo Yagita^b, and James P. Allison^{a,1}

^aHoward Hughes Medical Institute, Department of Immunology, Memorial Sloan-Kettering Cancer Center, New York, NY 10065; and ^bDepartment of Immunology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan

Contributed by James P. Allison, January 19, 2010 (sent for review December 17, 2009)

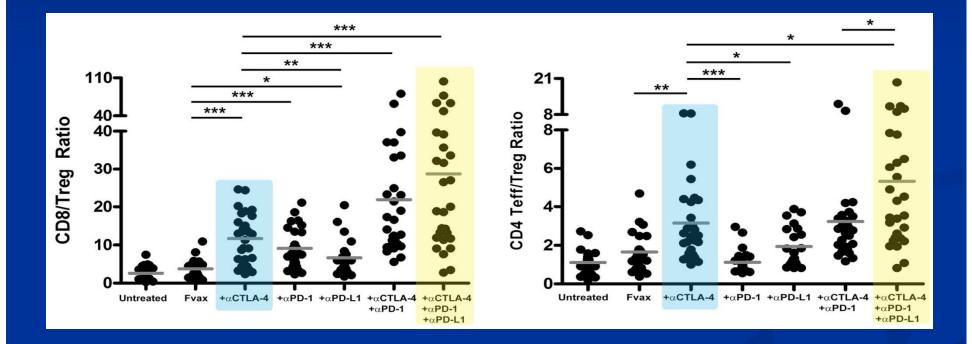
Curran M A et al. PNAS 2010; 107(9):4275-80.

Objective response rates in malignant melanoma with checkpoint blockade

	NIVO + IPI (N=314)	NIVO (N=316)	IPI (N=315)	
ORR, % (95% CI)*	57.6 (52.0–63.2)	43.7 (38.1–49.3)	19.0 (14.9–23.8)	
Two-sided P value vs IPI	<0.001	<0.001		
Best overall response — %				
Complete response	11.5	8.9	2.2	
Partial response	46.2	34.8	16.8	
Stable disease	13.1	10.8	21.9	
Progressive disease	22.6	37.7	48.9	
Unknown	6.7	7.9	10.2	
Duration of response (months)				
Median (95% CI)	NR (13.1, NR)	NR (11.7, NR)	NR (6.9, NR)	

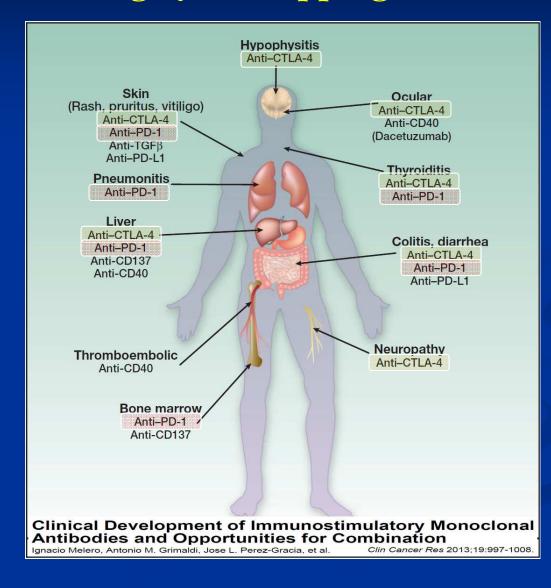
*By RECIST v1.1.

NR, not reached.

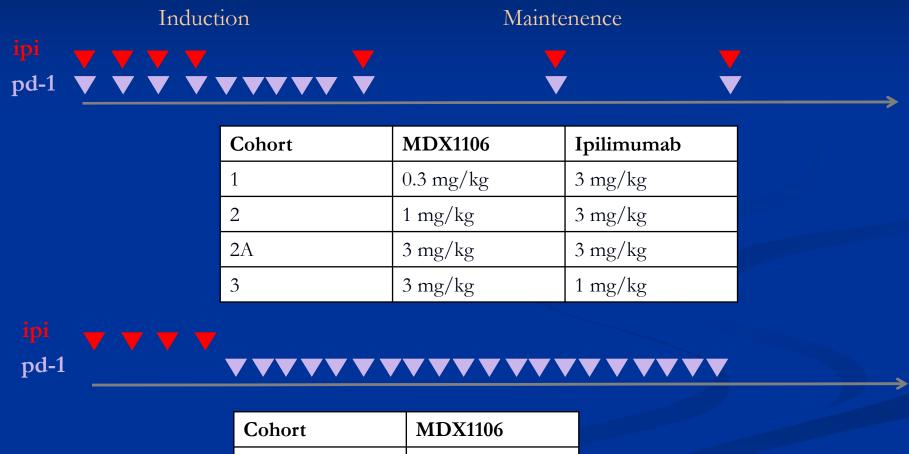

Wolchok et al. ASCO 2015

Two year survival: 2010 – standard of care – 18% Ipilimumab (FDA 2010) – 30% Nivolumab (FDA 2014) – 43% Ipi/Nivo (FDA 2015?) - ~90%

	B7-1 🥨 🖛 CTLA-4	PD-L1 ~ 🌑 💴 PD-1	
	B7-2 🥌 🦛 CTLA-4	PD-L2 💓 🖘 PD-1	B7-1 🥨 👉 PD-L1
Inhibits T cell proliferation	+++	++	++
Reduces cytokine production	+	+++	++
Reduces cytotoxicity	+	+++	?
Reduces APC co-stimulation	++		
Induces T cell apoptosis	-/+	++	?
Ligand expressed on tumor		++	+/-
Ligand in microenvironment	++	++	++
Supports Treg suppresion	++	++	+
Supports Teff to Treg conversion	+++	++	++

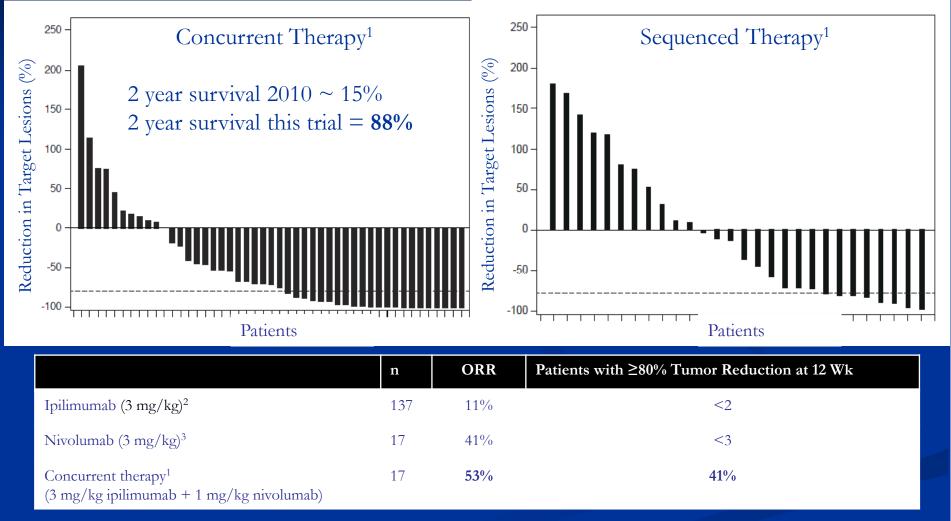

Michael A. Curran, Ph.D.

Conversion of the tumor micro-environment from suppressive to inflammatory

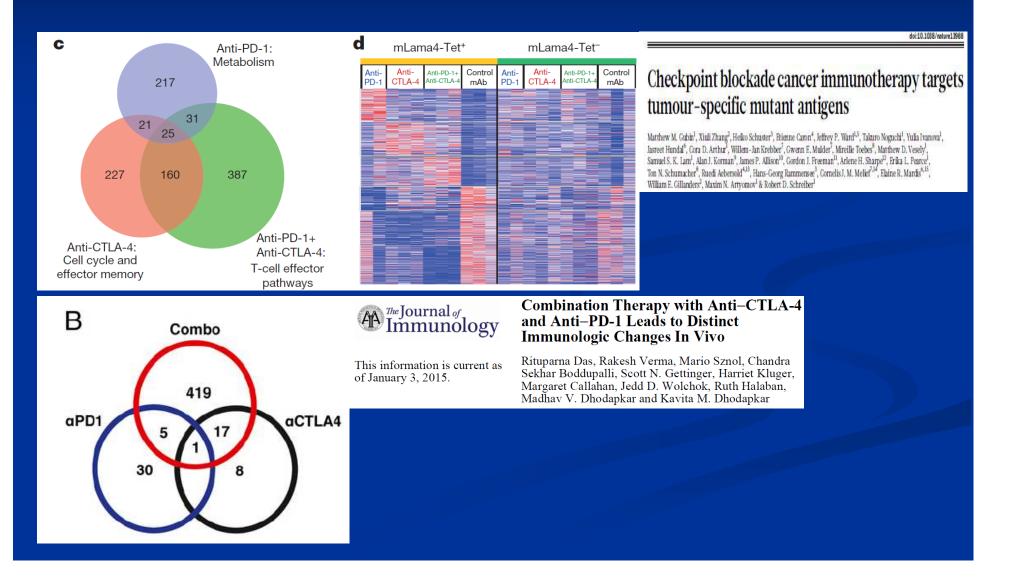


Curran M A et al. PNAS 2010; 107(9):4275-80.

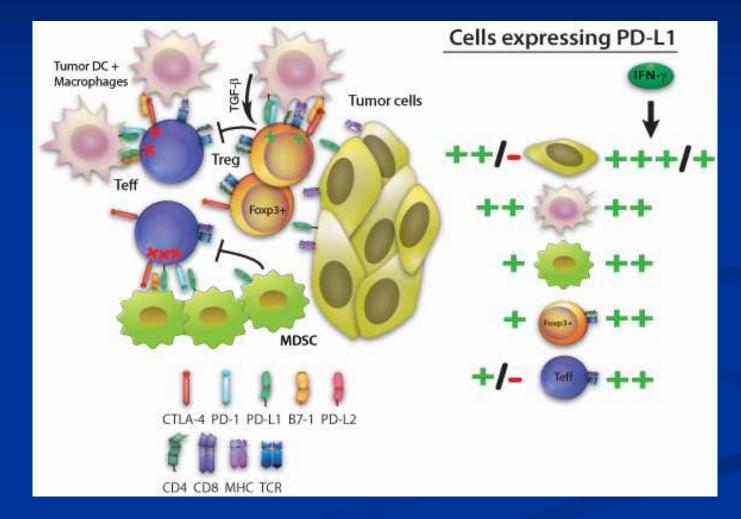
Risk/Benefit: aPD-1 monotherapy IrAE were less severe but largely overlapping with aCTLA-4



Phase I study: Concurrent and sequenced nivolumab and ipilimumab in melanoma


6	1 mg/kg
7	3 mg/kg

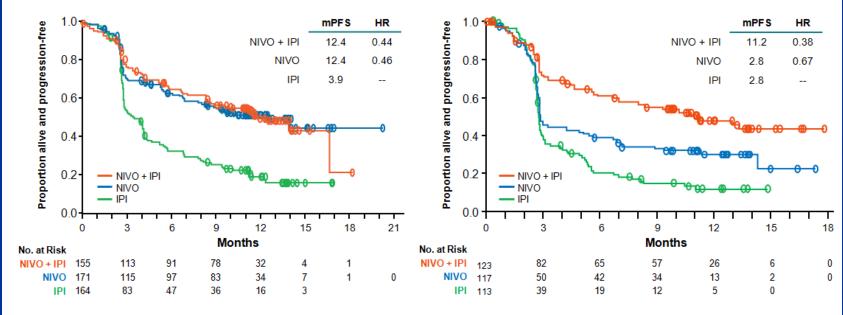
Clinical activity: combination of nivolumab and ipilimumab therapy



Wolchok et al. ASCO 2013, abs 9012, oral presentation. Hodi et al. N Engl J Med 2010;363:711-23. Topalian et al. N Engl J Med 2012;366:2443-54.

Combination checkpoint blockade = More than the sum of the parts

Predictive biomarkers for response to checkpoint blockade

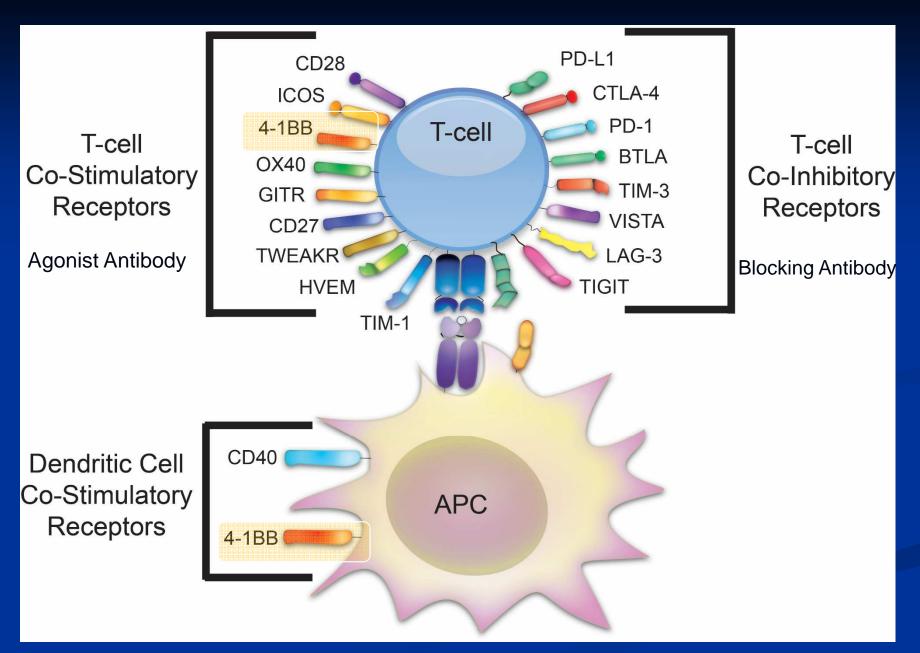

Idea: To expect benefit from α PD-1/ α PD-L1 treatment, there must be PD-L1 expressed.

PD-L1 is a biomarker for response to αPD-1 but not αPD-1 + αCTLA-4

PFS by PD-L1 Expression Level (1%)

PD-L1 ≥1%*

PD-L1 <1%*



*Per validated PD-L1 immunohistochemical assay based on PD-L1 staining of tumor cells in a section of at least 100 evaluable tumor cells.

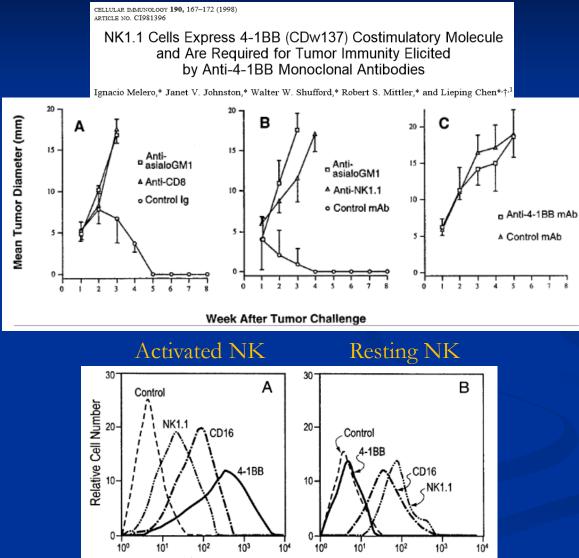
Wolchok et. al.

PRESENTED AT: ASCO Annual '15 Meeting

Note: Absolute Lymphocyte Count (ALC) < 1000 predicts no response to Ipilimumab but is also not predictive in the context of combination blockade of CTLA-4 and PD-1.

Ai M., **Curran M.A.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

4-1BB : Favorable expression profile for immunotherapy


Naïve	Effector	Memory		Table 1 Expres	ssion chara	cteristics of T	NFR and TNF m	nolecules by T	cells and APCs
				Molecule		T cells		A	PCs
					Naïve	Effector	Memory	Resting	Activated
			HVEM	CD27	++	+++	++/-	-	B*
level				CD70	-	+++*		-	B, DC, MØ
on le		/		HVEM	+++	+	+++	B, DC*	B, MØ*
essi		K		LIGHT	-	+++	s — s	DC	-
xbre	ve expression level		CD27	OX40	-	+++	+/-	-	B, DC*
				OX40L	-	+++*	_	-	B, DC, MØ
Relative				4-1BB	-	+++	+/	-	B, DC*
ă /			OX40, 4-1BB, CD30	4-1BBL	_	+++*	-	-	B, DC, MØ
				CD30	-	+++	+/-	-	-
				CD30L	-	+++*	-	-	B, MØ
0 1	2 3 4 5	5 6		Nature Reviews Imm	unology 3 , 609-620) (August 2003) doi:1	0.1038/nri1148		
n new Park	Days after activation	Months		Co-stimulatory		ie TNFR family: k	eys to effective		
Figure 2 Gener	ralized time course of expression	on of co-stimulatory TNF	B-family members.	Michael Croft ¹ About	the author				

course of expression of co-stimulatory INFR-family members.

Table 1 | Co-stimulatory and co-inhibitory receptor function in stages of T cell differentiation

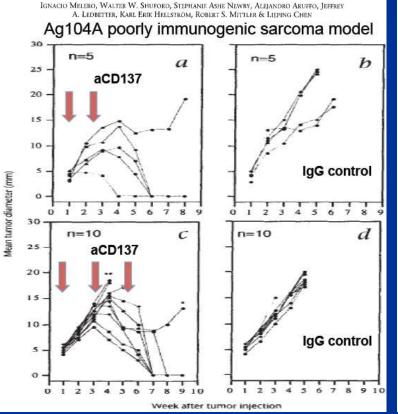
Receptor	T cell type	Priming	Cell growth	Т _н cell differentiation	Effector function	Survival	Memory
4-1BB	CD4⁺	ND	(+)	ThEO	(+)	(+)	(+)
	CD8⁺	ND	(+)	TcEO	(+)	(+)	(+)
Adapted from: Molecular mechanisms of T cell co-stimulation and co-inhibition							
Lieping Chen & Dallas B. Flies Nature Reviews Immunology 13, 227-242 (April 2013)							

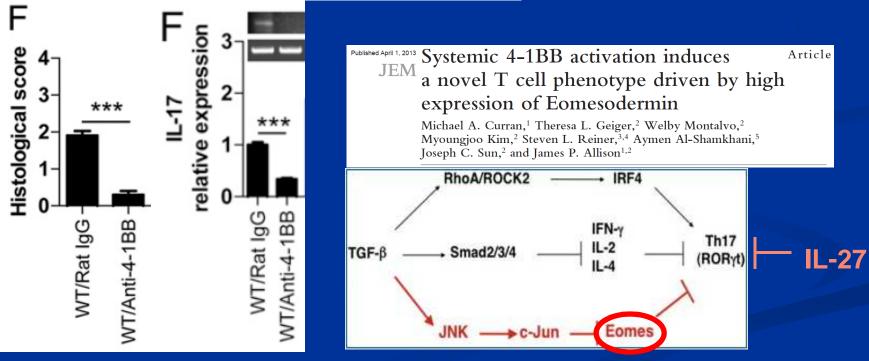
4-1BB activates NK Cells

Fluorescence Intensity

4-1BB antibodies cure many types of cancer in mouse models

Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors



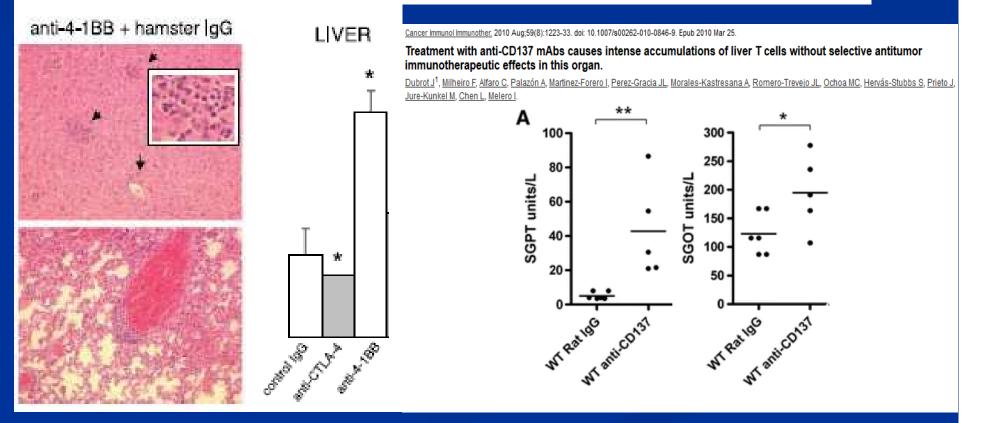

Table 1. Suppression of various tumors by targeting the 4-1BB-4-1BBL pathway

Agent	Cancer type suppressed
Anti-4-1BB mAb	Ag104A sarcoma
	MCA205, GL261 glioma
	C3 tumors, TC1 carcinoma
	J558 tumors
	A549 tumors
Variants of anti-4-1BB	K1735 melanoma
	M108 tumors
	K562 erythroleukemia
	FRa tumors
Anti-4-1BB combination therapy	B16 melanoma
	Renal cell carcinoma
	K1735 melanoma
	CT26 colon carcinoma
	MCA205 tumors
	MC38 tumors
	M109, EMT6 tumors
4-1BBL and its variants	Liver metastases
	Cholangiosarcoma
	Neuroblastoma
	AML, Wilms tumor 1
	Colon 2A and 26 tumors
	P815 plasmacytoma
	K562/AO2 tumors
	Mouse forestomach carcinoma

4-1BB antibodies can suppress autoimmune disease

4-1BB Triggering Ameliorates Experimental Autoimmune Encephalomyelitis by Modulating the Balance between Th17 and Regulatory T Cells *The Journal of Immunology*, 2011, 187: 1120–1128.

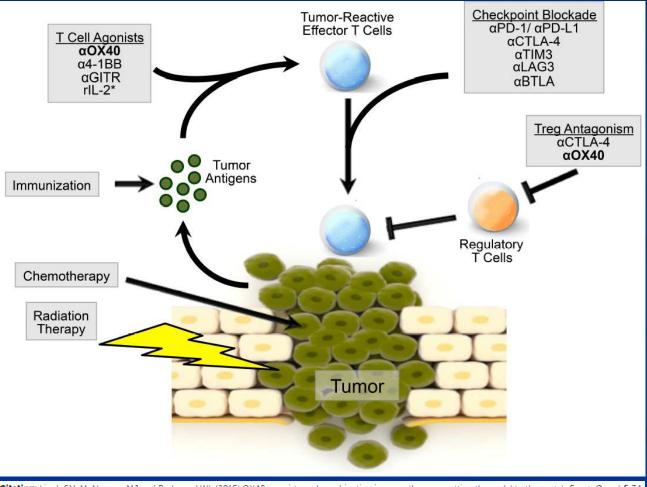
Young H. Kim,* Beom K. Choi,* Su M. Shin,* Chang H. Kim,* Ho S. Oh,* Sang H. Park,* Don G. Lee,* Myoung J. Lee,* Kwang H. Kim,* Dass S. Vinay,[†] and Byoung S. Kwon^{*,†}



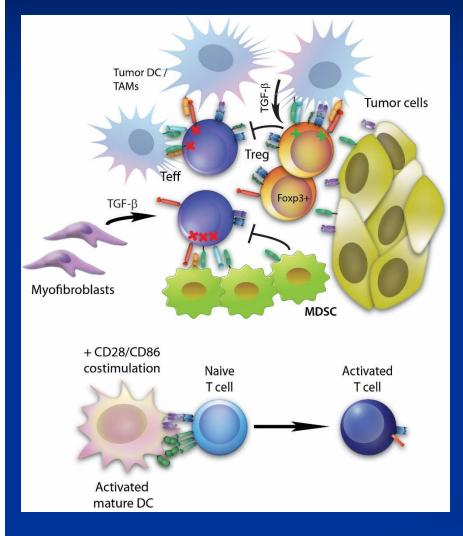
4-1BB agonist antibodies cause liver inflammation

Cancer Res. 2006 Jul 15;66(14):7276-84.

Combination therapy with anti-CTL antigen-4 and anti-4-1BB antibodies enhances cancer immunity and reduces autoimmunity.


Kocak E¹, Lute K, Chang X, May KF Jr, Exten KR, Zhang H, Abdessalam SF, Lehman AM, Jarjoura D, Zheng P, Liu Y.

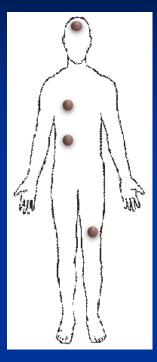
4-1BB/CD137 agonist antibody clinical summary


- Used as a monotherapy to treat solid tumors in some trials with PR and SD reported
- Used to activate NK (and myeloid) cells to mediate improved ADCC in combination with tumor-specific antibodies like Rituximab and Cetuximab (EGFR)
- BMS antibody is IgG4, does not block binding of 4-1BBligand but causes liver toxicity even at 0.3mg/kg
- Pfizer antibody is IgG2, does block 4-1BB-ligand, but does not cause severe liver toxicity even at 10mg/kg
- Combination trials with PD-1 have begun and with CTLA-4 are being planned

OX-40 antibodies augment effector T cells and deplete Tregs and are not known to cause substantial IRAE

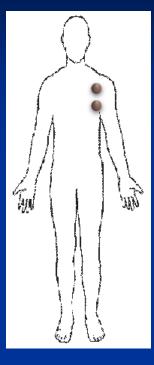
Citation: Linch SN, McNamara MJ and Redmond WL (2015) OX40 agonists and combination immunotherapy: putting the pedal to the metal. Front. Oncol. 5:34. doi: 10.3389/fonc.2015.00034

There are many potential targets for immunotherapeutic antibodies in the microenvironment

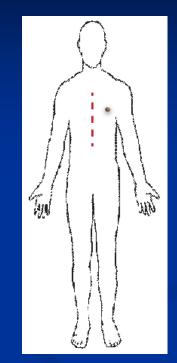


- 1) Blockade of T cell immune checkpoints (PD-1)
- 2) Activation of T cell co-stimulation (4-1BB)
- 3) Activation of myeloid cells (TLR, CD40)
- 4) Blockade of immunosuppressive cytokines (IL-10)
- 5) Blockade of stromal chemoattraction (CXCR4)
- 6) Blockade of angiogenesis (VEGFR2)
- 7) ADCC of tumor (CD20)
- 8) Depletion of suppressive cells (CTLA-4)
- 9) Killing of tumor with payloaded mAB (T-DM1)
- 10) Killing of suppressive stromal populations
- 11) Targeted delivery of stimulatory cytokines (IL-12)
- 12) Augmentation of tumor antigen presentation

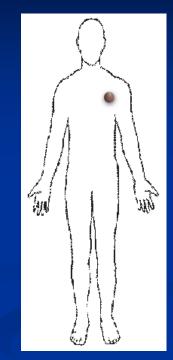
All targets are not created equal


- Tier 1(monotherapy efficacy in multiple tumors)
 - PD-1, CTLA-4, 4-1BB, CD40, PD-L1
 - Rituximab, Trastuzumab, Cetuximab
- Tier 2 (limited monotherapy efficacy, strong complementary function in combination)
 - OX-40, TIGIT, (maybe TIM3, KIR, CD27, GITR)
 - erbB3, Mesothelin
- Tier 3 (no monotherapy efficacy, potential for combination efficacy in multiple tumors)
 - LAG3, VISTA, ICOS, other TNFR, PS
- Tier 4 (combination efficacy in some models)
 - LAIR, other highly tissue-specific targets

One (combination) shoe doesn't fit all


Advanced Metastatic disease

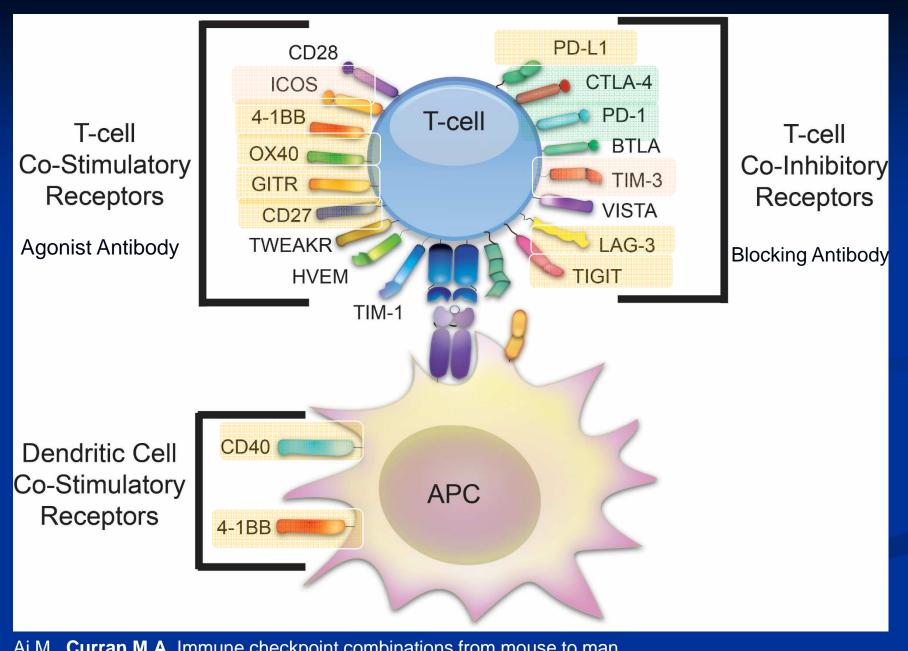
αCTLA-4/αPD-1 +Rad or drug or Anti-stromal therapy or STING


Locally advanced disease

αPD-1 or αPD-L1 +Rad or drug or Anti-stromal therapy or STING

MRD post-surgery αΟΧ40/αPD-L1

or αOX40/αMDSC or αOX-40/TLR


Localized, accessible disease Local αCTLA-4, α4-1BB or αCD40 or Local STING/TLR

Immune checkpoint modulating antibodies currently in the clinic

Table 1: T cell immune checkpoint modulating antibodies in the clinic

Target Molecule	Drug	Company	Development Stage
CTLA-4	Ipilimumab	Bristol-Myers Squibb	FDA Approved
	Tremelimumab	Medimmune/Astrazeneca Phase III Trial	
PD-1	Pembrolizumab	Merck	FDA Approved
	Nivolumab	Bristol-Myers Squibb	FDA Approval Pending
	AMP-514/MEDI0680	Medimmune/Astrazeneca	Phase I Trial
PD-L1	MPDL3280A	Genentech/Roche	Phase III Trial
	MEDI4736	Medimmune/Astrazeneca	Phase III Trial
	MSB0010718C	EMD Serono	Phase II Trial
	BMS-936559	Bristol-Myers Squibb	Phase I Trial
4-1BB	Urelumab	Bristol-Myers Squibb	Phase I Trial
	PF-05082566	Pfizer	Phase I Trial
OX-40	MEDI6469	Medimmune/Astrazeneca Phase I Trial	
	MEDI6383 (rOX40L)	Medimmune/Astrazeneca	Phase I Trial
	MOXR0916	Genentech/Roche	Phase I Trial
GITR	TRX518	Tolerx	Phase I Trial
CD27	CDX-1127	Celldex	Phase I Trial
CD40	CP-870,893	Genentech/Roche	Phase I Trial
LAG3	BMS-986016	Bristol-Myers Squibb	Phase I Trial

Ai M., **Curran M.A.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.

Ai M., **Curran M.A.** Immune checkpoint combinations from mouse to man. *Cancer Immunology Immunotherapy*, 2015.