

Immunotherapy for the Treatment of Hematologic Malignancies

Mohammad Abu Zaid, MD

Assistant Professor of Medicine – Indiana University

- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.

Outline: Major immunotherapies under development

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Immune checkpoint inhibitors

FDA-approved checkpoint inhibitors: lymphoma

Drug	Indication	Dose
Nivolumab	Classical Hodgkin lymphoma , relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Adult/pediatric refractory classical Hodgkin lymphoma or relapsed after 3 previous therapies	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)
Pembrolizumab	Adult/pediatric refractory primary mediastinal large B-cell lymphoma or relapsed after 2 previous therapies**	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)

**Not recommended for patients with PBMCL that require urgent cytoreductive therapy.

© 2020–2021 Society for Immunotherapy of Cancer

Efficacy of approved checkpoint inhibitors: lymphoma

Study	Treatment	Patient population	Overall response rate	Complete response rate	Landmark OS
CheckMate 205	Nivolumab	Brentuximab vedotin-naïve cHL	65%	29%	1-year: 92%
		Bretuximab vedotin after auto-HCT cHL	68%	13%	1-year: 93%
		Bretuximab vedotin before/after auto-HCT cHL	73%	12%	1-year: 90%
KEYNOTE-087	Pembrolizumab	cHL progressed after ASCT and BV	78.3%	26%	3-year: 86.3%
		cHL after salvage chemo and BV, ineligible for ASCT	64.2%	26%	3-year: 85.7%
		cHL progressed after ASCT without BV treatment	71.7%	31.7%	3-year: 87.6%
KEYNOTE-013	Pembrolizumab	PMBCL with relapse/ineligible for ASCT	48%	33%	1-year: 65%
KEYNOTE-170	Pembrolizumab	PMBCL ineligible for ASCT with progression on <u>></u> 2 previous therapies	45%	13%	1-year: 58%

cHL: Classical Hodgkin lymphoma; PMBCL: primary mediastinal B cell lymphoma

Armand, J Clin Oncol 2018; Zinzani, ASH 2019.

#LearnACI

In development: Immune checkpoint inhibitors in AML

Study	Population	Treatment(s)	ORR	Median OS (months)	Status
NCT02775903	Untreated AML	Azacitidine + durvalumab	20%	13.0	Active, not
		Azacitidine	23%	14.4	recruiting
NCT02397720	Relapsed/refractory AML	Azacitidine + nivolumab	33%	6.4	Recruiting
		Azacitidine + nivolumab + ipilimumab	44%	10.5	
NCT02768792	Relapsed/refractory AML	HiDAC followed by pembrolizumab	46%	8.9	Active, not recruiting
NCT02845297	Relapsed/refractory AML	Azacitidine + pembrolizumab	31%	10.8	Recruiting
	Newly diagnosed AML, <u>>65</u> years of age		70.5%	13.1	

ASH 2019: Zeidan, Daver, Zeidner, Gojo.

© 2020–2021 Society for Immunotherapy of Cancer

In development: Macrophage checkpoint: CD47

Treatment	Populations	ORR	CRR	Median DOR
Azacitidine +	Untreated MDS	91.7%	50%	NR (>4.9 months)
magroliumab	Untreated AML	63.6%	41%	NR (>5.8 months)

- CD47 is expressed on some cancer cells
- CD47 signaling through SIRPα prohibits macrophage phagocytosis of cancer cells – "don't eat me"
- Blocking interaction of CD47 and SIRPα promotes adaptive immune responses and boosts tumor cell phagocytosis

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Antibody-drug conjugates

- 1. Antibody binds to receptor on tumor cell
- 2. ADC is internalized and broken down
- 3. Drug payload performs its MOA (here, microtubule disruption)
- 4. Apoptosis is induced in target cell

FDA-approved antibody-drug conjugates

Drug	Target antigen	Indication
		Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies
Brentuximab vedotin	CD30	Cutaneous anaplastic large cell lymphoma or CD30+ mycosis fungoides ≥ 1 previous therapies
		Classical Hodgkin lymphoma - first line with combination chemo
		Classical Hodgkin lymphoma consolidation after auto-HSCT
Inotuzumab ozogamicin	CD22	Relapsed/refractory/MRD+ B-cell ALL
Polatuzumab vedotin (w/ bendamustine & rituximab)	CD79b	DLBCL \geq 2 previous therapies
Gemtuzumab ozogamicin	CD33	R/R or newly-diagnosed CD33+ AML in adults or pediatric patients
Belantamab mafodotin	BCMA	R/R multiple myeloma after > 4 prior therapies

#LearnACI

Efficacy of approved ADCs – brentuximab vedotin

	Study	Treatment(s)	Patient population	Overall response rate	Complete response rate	Landmark OS
	NCT00848926	Brentuximab vedotin	Relapsed/refractory Hodgkin lymphoma after failed auto-SCT	75%	33%	5-year: 41%
	NCT00866047	Brentuximab vedotin	Relapsed/refractory systemic anaplastic large cell lymphoma	86%	66%	5-year: 60%
	ECHELON-1	Brentuximab vedotin + doxorubicin, vinblastine, and dacarbazine	Previously untreated stage III or IV Hodgkin lymphoma	2-year modified PFS rate: 82.1%		
		Doxorubicin, bleomycin, vinblastine, and dacarbazine		2-year modifi	ed PFS rate: 7	7.2%
	AETHERA	Brentuximab vedotin	Unfavorable-risk relapsed or primary	Median PFS: 4	42.9 months	
		Placebo	after auto-SCT	Median PFS: 2	24.1 months	
Chen,	Blood 2016; Pro, Blood 2	2017; Connors, N Engl J				HOPA sit

Med 2018; Moskowitz, Lancet 2015. © 2020–2021 Society for Immunotherapy of Cancer

Society for Immunotherapy of Cancer ADVANCES IN Cancer

Efficacy of approved ADCs

Study	Treatment(s)	Patient population	Key outcomes
INO-VATE	Inotuzumab ozogamicin Standard-of-care chemo	Relapsed/refractory B cell precursor ALL	CR/CRi rate: 73.8% vs 30.9% Median OS: 7.7 vs 6.2 months 2-year OS: 22.8% vs 10%
GO29365	Polatuzumab vedotin + bendamustine & rituximab Bendamustine & rituximab	Relapsed/refractory DLBCL	CRR: 40.0% vs 17.5% Median PFS: 9.5 vs 3.7 months Median OS: 12.4 vs 4.7 months
ALFA-0701	Gemtuzumab ozogamicin + daunorubicin + cytarabine Daunorubicin + cytarabine	De novo acute myeloid leukemia	CR/CRp rate: 81.5% vs 73.6% Median OS: 27.5 vs 21.8 months Median EFS: 17.3 vs 9.5 months
DREAMM-2	Belantamab mafodotin	R/R multiple myeloma after IMiD, PI, and anti-CD38	ORR: 31% Median PFS: 2.9 months

In development: Novel ADCs in clinical trials

Trial	Indication	Treatment(s)	ADC target antigen	Phase
NCT03544281	R/R multiple myeloma	GSK2857916 + lenaolidomide + dexamethasone	BCMA	2
		GSK2857916 + bortezomib + dexamethasone		
NCT03386513	CD123+ AML, BPDCN or ALL	IMGN632	CD123	1/2
NCT03424603	R/R B cell malignancies	STRO-001	CD74	1
NCT03682796	R/R B cell lymphoma	TRPH-222	CD22	1
NCT04240704	CLL or NHL	JBH492	CCR7	1
NCT03833180	Pre-treated hematologic malignancies	VLS-101	ROR1	1

© 2020–2021 Society for Immunotherapy of Cancer

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

© 2020–2021 Society for Immunotherapy of Cancer

Bispecifics in immunotherapy

Commonly CD3 on T cells, CD16 for NK and macrophages, etc

#LearnACI

Clinical use of immune cell engagers

Drug	Indications	CD19
	Relapsed/refractory B-ALL	
Blinatumomab	B-ALL in 1 st or 2 nd complete response with MRD ≥ 0.1%	CD3

Blinatumomab prescribing information.

Blinatumomab in R/R B-ALL

Trial	Patient population	Treatment	Key outcomes
NCT02013167	Adults with R/R B-ALL	Blinatumomab	Median OS: 7.7 vs 4.0 months
		Chemotherapy	Median DOR: 7.3 vs 4.6 months
NCT01207388	Adults with MRD+ B-ALL	Blinatumomab	Complete MRD response rate: 78% Median OS: 36.5 months

MRD+ B-ALL

Dosing regimens for blinatumomab

	Cycle		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)
MRD- positive B- ALL	Induction cycle 1	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Consolidation cycles 2-4	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Cycle		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)
	Induction cycle 1	Days 1-7	9 mcg/day	5 mcg/m ² /day (not to exceed 9 mcg/day)
		Days 8-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
R/R B-	Induction cycle 2	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
ALL		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Consolidation cycles 3-5	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Continued therapy cycles	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
	6-9	Days 29-42	56-day treatment-free interval	56-day treatment-free interval

Blinatumomab prescribing information.

Dosing regimens for blinatumomab – **R/R B-ALL**

Blinatumomab prescribing information.

Common side effects of T cell engagers

Cytokine release syndrome

- Characterized by initial flu-like symptoms, which progress into a shock-like syndrome with elevation in cytokine levels
- Patients display fever, vascular leakage, and organ dysfunction
- Variable onset and course
- Pre-treatment with dexamethasone required
- Management:
 - IL-6 and IL-6R antagonism
 - Corticosteroids
 - Other cytokine receptor antagonists

B cell aplasia

- Due to current clinical agents targeting CD19, which is expressed by both normal and neoplastic B cells
- May result in hypogammaglobulinemia
- Increased risk of infection
- Managed through administration of intravenous immunoglobulin

Stay tuned: more information on toxicity management later in this program

Neurotoxicity

- Also known as "immune effector cell-associated neurotoxicity syndrome" (ICANS)
- Manifests as confusion, delirium, seizures, cerebral edema
- Largely unknown mechanisms
- Incidence increases with more doses, increased age, more prior therapies
- Management:
 - Supportive care for low-grade
 - Corticosteroids for highergrade

In development: Novel immune cell engagers in clinical trials

Trial	Indication	Treatment	Target antigens	Phase
NCT03214666	HR myelodysplastic syndromes, R/R AML, systemic mastocytosis	GTB-3550 (TriKE)	CD16, IL-15, CD33	1/2
NCT03516591	High-risk myelodysplastic syndromes	AMV564	CD33, CD3	1
NCT03739606	CD123+ R/R blood cancers	Flotetuzumab	CD123, CD3	2
NCT02730312	CD123+ R/R blood cancers	XmAb14045	CD123, CD3	1
NCT03888105	R/R B cell NHL	Odronextamab	CD20, CD3	2
NCT03309111	Previously treated multiple myeloma	GBR 1342	CD38, CD3	1/2
NCT03761108	R/R multiple myeloma	REGN5458	BCMA, CD3	1/2

© 2020–2021 Society for Immunotherapy of Cancer

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

Comparing T cell engagers and CAR T therapy

	CAR T cells	T cell engagers (BiTEs)
Structure	Synthetic gene construct encoding an scFv against tumor antigen linked to activation/costimulatory motifs	Recombinant protein with two specificities: one for tumor antigen and one for T cell antigen (usually CD3)
Effector cell types	Engineered CD8+ and CD4+ T cells	Endogenous CD8+ and CD4+ T cells
Immune synapse	Atypical	Typical
Serial killing	Yes	Yes
Killing mechanisms	Perforin and granzyme B, Fas-Fas-L, or TNF/TNF-R	Perforin and granzyme B
Trafficking	Active	Passive
Clinical applications	Pre-treatment lymphodepletion followed by a single infusion	No lymphodepletion; repeat administration and continuous infusions.
Specificity	Manufactured for each patient	"Off-the-shelf"

Slaney, Cancer Disc 2018.

Chimeric antigen receptors

- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex

Evolution of CAR constructs

CAR T manufacturing and administration

(3) Grow CAR T cells (4) Infuse CAR T cells into patient #LearnACI (5) CAR T cells attack cancer cells (5) CAR T cells attack cancer cells (6) CAR T cells attack cancer cells (6) CAR T cells attack cancer cells (7) CAR T cells attack cancer cells (8) CAR T cells

© 2020–2021 Society for Immunotherapy of Cancer

(Sitc) Society for Immunotherapy of Cancer

ADVANCES IN

IMMUNOTHERAPY™

FDA-approved CAR T cell therapies

Drug	Target/co- stimulatory domain	Indication	Dose
Axicabtagene ciloleucel	CD19/CD28	Adults with r/r large B-cell lymphoma, Including diffuse large B-cell lymphoma, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)
Tisagenlecleucel	CD19/4-1BB	Patients ≤25 yr with refractory B-cell acute lymphoblastic leukemia or in 2+ relapse	0.2-0.5x10 ⁶ CAR-positive, viable T cells per kg if under 50 kg 0.1-2.5x10 ⁸ CAR-positive, viable T-cells if over 50 kg
Tisagenlecleucel	CD19/4-1BB	Adults with r/r large B-cell lymphoma after 2+ therapies Including DLBCL, high-grade B-cell lymphoma, DLBCL arising from follicular lymphoma	0.6-6.0 x 10 ⁸ CAR-positive, viable T cells
Brexucabtagene autoleucel	CD19/CD28	Adults with mantle cell lymphoma (MCL) who have not responded to or who have relapsed following other treatments kg bodyweight (up to 2x1	
			ACCC Avecation of Community Cancer Centers

#LearnACI

Comparing clinical trials of CAR T therapies

Trial	Indication	Treatment(s)	ORR	Landmark OS	Grade 3+ toxicity rates
ZUMA-2	R/R mantle cell lymphoma	Brexucabtagene autoleucel (KTE- X19)	86% CRR: 57%	1-year: 86%	CRS: 18% NE: 46%
ZUMA-1	Refractory large B cell lymphoma	Axicabtagene ciloleucel	83% CRR: 58%	2-year: 50%	CRS: 11% NE: 32%
JULIET	R/R diffuse large B cell lymphoma	Tisagenlecleucel	52% CRR: 40%	1-year: 49%	CRS: 22% NE: 12%
ELIANA	R/R B cell acute lymphoblastic leukemia	Tisagenlecleucel	82% CRR: 62%	18-month: 70%	CRS: 48% NE: 13%

Wang, ASH 2019; Locke, Lancet Oncol 2019; Schuster, N Engl J Med 2019; Grupp, Biol Blood Mar Trans 2019. MERICAN ACADEMY OF REERGENCY MEDICINE Ausciation of Carmunity Cancel Centers

© 2020–2021 Society for Immunotherapy of Cancer

CAR T side effects

- Cytokine Release Syndrome (CRS)
- Neurotoxicity
 - ICANS: Immune effector cell-associated neurotoxicity syndrome
 - NE: Neurologic events
- B cell aplasia
- Macrophage Activation Syndrome (MAS)/HLH

CAR T side effects - CRS

#LearnACI

Eligibility considerations for CAR

- Disease
 - Relative stability during CAR T manufacturing (~2-6 weeks)
 - Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
 - CNS control
- Patient
 - Adequate cell counts
 - DVT, bleeding, infection, neuro disorders
 - Functional status: at screen vs. day of CAR T infusion
- Other
 - Social support, reimbursement
 - Availability of tocilizumab for CRS management

© 2020–2021 Society for Immunotherapy of Cancer

In development: Novel CAR T therapies in clinical trials

Trial	Indication	Treatment	Target antigen	Phase
NCT03651128	R/R multiple myeloma	bb2121	BCMA	3
NCT03971799	R/R pediatric AML	CD33CART	CD33	1/2
NCT04186520	R/R B cell malignancies	CAR-20/19 T cells	CD19, CD20	1/2
NCT04109482	R/R BPDCN, AML, HR MDS	MB-102	CD123	1/2
NCT03287817	Diffuse large B cell lymphoma	AUTO3	CD19, CD22	1/2
NCT02690545	R/R HL and NHL	ATLCAR.CD30	CD30	1/2

© 2020–2021 Society for Immunotherapy of Cancer

Conclusions

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns

#LearnACL

Additional Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z Journal for ImmunoTherapy of Cancer	
POSITION ARTICLE AND GUIDELINES Open Access The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia CossMark Michael Boyiadzis ¹¹ , Michael R. Bishop ²¹ , Rafat Abonou ³ , Kenneth C. Anderson ⁴ , Stephen M. Ansell ⁵ , David Avigan ⁶ , Lisa Barbarotta ⁷ , Austin John Barrett ⁸ , Koen Van Besien ⁹ , P. Leif Bergsagel ¹⁰ , Ivan Borrello ¹¹ , Joshua Brody ¹² , Jill Brufsky ¹³ , Mitchell Cairo ¹⁴ , Ajai Chari ¹² , Adam Cohen ¹⁵ , Jorge Cortes ¹⁶ , Stephen J. Forman ¹⁷ , Jonathan W. Friedberg ¹⁸ , Ephraim J. Fuchs ¹⁹ , Steven D. Gore ²⁰ , Sundar Jagannath ¹² , Brad S. Kahl ²¹ , Justin Kline ²² , James N. Kochenderfer ²³ , Larry W. Kwak ²⁴ , Ronald Levy ²⁵ , Marcos de Lima ³⁶ , Mark R. Litzow ²⁷ , Anuj Mahindra ³⁸ , Jeffrey Miller ⁹ , Nikhil C. Munshi ³⁰ , Robert Z. Orlowski ³¹ , John M. Pagel ³² , David L. Porter ³³ , Stephen J. Russel ⁵ , Karl Schwartz ³⁴ , Margaret A. Shipp ³⁵ , David Siegel ³⁶ , Richard M. Stone ⁴ , Martin S. Tallman ³⁷ , John M. Timmerman ³⁸ , Frits Van Rhee ³⁹ , Edmund K. Waller ⁴⁰ , Ann Welsh ⁴¹ , Michael Werner ⁴² , Peter H. Wiernik ⁴³	Open access Position and guidelines FumunoTherapy of Carrer The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma Nina Shah, ¹ Jack Aiello, ² David E Avigan, ³ Jesus G Berdeja, ⁴ Ivan M Borrello, ⁵ Ajai Chari, ⁶ Adam D Cohen, ⁷ Karthik Ganapathi, ⁸ Lissa Gray, ⁹ Damian Green, ¹⁰ Amrita Krishnan, ¹¹ Yi Lin, ^{12,13} Elisabet Manasanch, ¹⁴ Nikhil C Munshi, ¹⁵ Ajay K Nooka, ¹⁶ Aaron P Rapoport, ¹⁷ Eric L Smith, ¹⁸ Ravi Vij, ¹⁹ Madhav Dhodapkar ²⁰

• Some figures created using Biorender.com

Case Studies

© 2020–2021 Society for Immunotherapy of Cancer

Case Study 1

- A 65 year old woman who presented in 6/2018 with progressive fatigue and intermittent right upper quadrant abdominal pain.
- CBC: leukocytosis.
- BM Bx: B-cell acute lymphoblastic leukemia, BCR-ABL negative, CD20 negative.
- Hyper-CVADx3 cycles and prophylactic IT chemo \rightarrow CR.
- Maintenance with POMP regimen in January 2019.
- 6-MP: caused elevated transaminases and her 6-MP was reduced to 50 mg daily. She was then started on prednisone/vincristine in the beginning of her second month, but developed severe abdominal pain and further elevation of liver function tests. Her 6-MP was held and eventually her liver function tests returned normal.
- The patient was then started on methotrexate the third month of maintenance, but developed elevated ALT levels after a month of methotrexate.

© 2020–2021 Society for Immunotherapy of Cancer

- May, 2019: Recurrent abdominal pain and weakness
- BM Bx: relapse of ALL Ph –ve, CD19 +ve
- What are her options?
 - 1. Blinatumomab
 - 2. Inotuzumab ozogamicin
 - 3. Tisagenlecleucel
 - 4. Chemotherapy
 - 5. Clinical trial

- She received blinatumomab \rightarrow CR2
- Proceeded to allogenic HSCT with a matched unrelated donor.
- One year after transplant she started complaining of abdominal pain. CT with retroperitoneal lymphadenopathy. Bone marrow biopsy chimerism is 100% donor.

Case Study 1

- What are her options?
 - 1. Blinatumomab
 - 2. Inotuzumab ozogamicin
 - 3. Tisagenlecleucel
 - 4. Chemotherapy
 - 5. Clinical trial
 - 6. A second allogenic transplant
 - 7. Donor lymphocyte infusion

