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Immunotherapy’s continued explosive growth

Therapy type
T-cell targeted
immunomodulator I - T - 2+
Cell therapy #8335 “679

Other immunomodulator |1142 mms Clinical phase Qver 5000 aCtive
Cancer vaccine 2155 ﬂ«ws =g:::2: |n:lmun0'0nc-0|09y
CD3-targeted bispecific mab 7|94 M Phase 2 trials worldwide
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Number of active clinical trials

263 targets in the pipeline in year 2017

468 targets in the pipeline in year 2019
192° @50 02008

91% increase in the number of active
agents in development since 2017, a
78% increase in active targets, and a
60% increase in companies and other
organizations with an immuno-oncology
pipeline

Yu et al (Cancer Research Institute). Nat Rev Drug Discovery 2019



Objectives and scope

Immune

*  Why do some patients respond and profiling

others don’t? To identify biomarkers an d

with translational potential to optimize .

immunotherapeutic strategies function
« To develop molecular signatures that

define immune response categories to |m muno-

correlate with the clinical outcomes p at h 0 | 0 g y

« To define immunophenotype
characteristics of response that will be
valid for diverse immuno-oncology
classes with different mechanisms of

action Immur_logenomics
and microbiome

> Need for analytically validated assays and procedures, and harmonized interpretation of data



ldentifying immunotherapy biomarkers

- Cutting-edge technology platforms ) Patient
(
« Technical expertise in assay development )U\@T@)“)‘V‘U“\
and instrument platforms
« Scientific expertise in human immunology > wﬁl&@@@ﬁ@

« Computation expertise in data analysis
and visualization

J
Develop innovation with high-dimensional Improve assay standardization
assays to monitor disease-relevant immune and minimize experimental
signatures and discover new mechanisms, variability to maximize data quality
biomarkers and immune targets and reproducibility

%



Multiscale, dynamic atlas of immune changes
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Except adoptive transfer, most immunotherapies directly target the immune system
rather than the tumor itself: how to find a good biomarker when targeting a network?

Assembling a multidisciplinary team for molecular, genetic,
microbial, and cellular signatures

Ensuring reproducibility and robustness while fostering innovation

Obtaining adequate biospecimens to explore markers
at the tumor site and in the periphery

Interpreting the complex data generated using computational tools

Correlating disparate data sets with clinical outcome



Some lead biomarkers in immune checkpoint blockade

* Tumor immune infiltration

* Tumor mutation burden

« Stratifying biomarkers (inclusion/exclusion): driver alterations (EGFR/ALK in NSCLC)
 MSI-H/dMMR (FDA approved general indications)

« PD-L1 tissue expression (FDA companion/complementary test)

Promising other candidates

« Gut microbiota composition and metabolites
* Peripheral blood markers
» Soluble: cytokine, protein analytes, antibody
« Cellular: activation/suppression markers, cell populations (pre-exhausted T cells),
tumor antigen specificity, T cell repertoire
« Stromal markers and tissue-resident immune cells
» CtDNA/cfDNA/CTC



PD-L1 expression matters...

Independent predictive value of PD-L1 on immune
cells and tumor cells (h=4549 NSCLC treated with
atezolizumab, using SP263 IHC assay)
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Pembrolizumab’s FDA companion test 22C3 IHC

Patient characteristics:
PD-L1 expressionin KEYNOTE-042"

PD-L1 prevalencein patients with urothelial carcinoma
enrolled in KEYNOTE-052 (N=370)*

CPs<10

PD-L1 prevalence in patients with cervical cancer
enrolled In KEYNOTE-158 (Cohart E, n=08)

NSCLC Cervical Urothelial
Medi n ival of pati ith KEYNOTE-052 efficacy results from .
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Chemotherapy (n=637)

121 months

Objective Response Rate"

Sz 14%*
1| 0%
0 patients had unknown PD-L1 status

orall & Exclades patients with nknown PO-L1 statrs

From Agilent.com

* PD-L1 staining as the only approved companion or
complementary test for immunotherapy
*  PD-L1" tumors respond better to PD-1/PD-L1 blockade

* Three tests are approved with only partial overlap in
interpretation of their results

+ Dynamic changes upon treatment and heterogeneity
are difficult to capture

* Some patients experiencing benefit in PD-L1 low
tumors, and many patients have no response despite
PD-L1 high tumors.



Tumor mutation burden (TMB) as biomarker

TMB correlates with response to PD-1

blockade in NSCLC
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Multitude of studies indicating high TMB correlates
with better response to immune checkpoint blockade

(cutoff for high TMB typically at = 10 mut/mb)
*  CheckMate-227 trial
* CheckMate-568 trial — independently of PD-L1 expression

Meta-analysis in NSCLC treated with anti-PD-1/PD-L1
(n=1290) showed TMB = 20 mut/mb associated with
increased OS and clinical benefit (JAMA.
2019;321:1391-1399)

Rationale based on higher likelihood of creating
neoepitopes for T cell-mediated tumor rejection

Trials have been proposed based on high TMB as a
biomarker

However, recent withdrawal of TMB =10 mut/mb as a
supplemental biologics license FDA application for
frontline combination ipilimumab/nivolumab in NSCLC



PD-L1 IHC and mutational load as independent biomarkers

Meta- anaIyS|s in various tumor types (n=9887)
p=0.08

Tumor Mutational Burden

Tumor mutation burden

Parameter

No. of
genes

Types of
mutations
captured

Germline
mutations

Yarchoan, ...,

WES FM NGS (F1CDx)

~22 000 gene coding 324 cancer-related genes
regions

Coding missense Coding, missense, and indel
mutations in tumor mutations per Mb of tumor
genome genome

Subtracted using Estimated via bicinformatics
patient-matched algorithms and subtracted

normal samples

Jaffee. JCI Insight. 2019

(2]
o

)

PD=L1 Postive (

PD-L1 positive (%)

“Fhymic
DLBCL

NSCLC
MerkelCC e CN =

“Melanoma®
SCC

“Uveal

. P —-Breast SCLC
~"cRre

Tumors with

=10 mut/mb

Median THE 10 " 25
Median tumor mutational burden (TMB)

@4_.

76

100% 1,50

(0} %e A ((//) G/QOO/*yo

% % 940 S, C
Y /1/@ @ OI
77

§

by F1CDx NGS assay (percant)

Tumors with > 10 mutMb

{5‘
“Z»"‘

. /‘
. nuullllllll""“

fﬁf’) f’ 5£’
s «F’
fﬁg‘;:& i‘f’é" ’ °‘:e af,f{ f
Q"”‘;? % f bw,o
f c#
?f‘f e»

S

Chan et al. Annals Oncol. 2019:30;44-56,

&

Combined predictors of best clinical
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Density and localization of immune infiltrate matters...

CD8 T cell infiltration before and during
pembrolizumab in advanced melanoma.
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Nature 515, 568-71 (2014)

Metastatic urothelial carcinoma
(n=214) treated with nivolumab
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Emerging biomarkers with novel methods may matter...

Cancer patients treated with PD-1 blockade, sequenced Signature of tumor macrophages by scRNAseq

for gut bacteria by 16S or shotgun metagenomics associated with poor outcome in early NSCLC
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T cell states, exhaustion, and metabolism

Potential models of cellular mechanisms of A

combination anti-CTLA4 and anti-PD-1 therapy oicpcimuption,
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Cancer Immune Monitoring and Analysis Centers and
Cancer Immunologic Data Commons

The CIMAC-CIDC Network: A Cancer Moonshot Initiative (U24)

The CIMAC-CIDC network will provide a standing infrastructure of bioassays and data commons for correlative
studies in NCI-funded trials involving immunotherapy ($50M+)
4 CIMACs for scientific expertise and a wide range of highly specialized services using state-of-the-art equipment

One CIDC for centralized bioinformatics resources for data collection and integration across trials and clinical databases

Scope of work
Support correlative studies in early (phase 1 /2) immunotherapy trials in the CTEP Trial Networks and Grant-supported trials
900 patients / multiple timepoints / year for comprehensive profiling
Many additional patients from industry and non-NCl trials through Partnership for Accelerating Clinical Trials (PACT, $220M)

NATIONAL " " CIMAC-CIDC

CANCER Immuno-Oncology
INSTITUTE . % Biomarkers Network




CIMACs-CIDC Network Structure J

[

NI 2

Laboratory Coordinating Committee (LCC) ]
MD Anderson Mount DANA-FARBER Stanford
-G&laee.l:&nter Sinai CANCER INSTITUTE University
CIMAC 1 CIMAC 2 CIMAC 3 CIMAC 4 R
Ignacio Wistuba Sacha Gnjatic Cathy Wu Holden Maecker
Chant. Bernatchez Steve Hodi Sean Bendall
Gheath Al-Atrash y
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CIMACs-CIDC Network Structure

Clinical trial group

iBiospecimens

Biobank

Samples for
assays

CIMAC(s)

* Clinical data for correlative study

,,.\_.,,,\_.:--.,\_-__7__CIinicaI data for further annotation of CIDC data

.

A

v

—Biomarker data

from assays

CIDC

* Clinical data
* Biomarker data
* Correlative analysis

results

CIMAC and clinical trial investigators access
annotated assay & clinical data, and perform
correlative analysis via the CIDC platform.

A

m NATIONAL CANCER INSTITUTE

Controlled-access

data sharing

(after
exclusivity
period)

-:-:'- % CIMAC-CIDC

..." Immuno-Oncology
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- Workflow with the clinical networks

(Trial Pland |
groups Specimen Data to
New trials or Collection clinical team +Joint primary
| existing trials | @y ’ analysis
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L

biobank, and NCI
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Biomarker discovery strategy

Enroliment Trea}ment

Progression

|

il 1 1t
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Assays and platforms for CIMACs

Tier 1 assays

Tier 2 assays

(recommended for most trials) (trial-dependent)

+ Whole Exome Sequencing (WES)

Microbiome
» TCR repertoire

* RNA-seq - Single-cell-seq
» |HC singleplex » ctDNA-seq
+ PD-L1 FDA approved assay - MIBI
+ IHC/IF multiplex s
* scRNA-TCR
- CyTOF
» Olink Other Assays:

Nanostring 10 panel

ELISA, B cell response, T cell functional
assays (ELISPOT, multimers)

A prospective CIMAC Umbrella Protocol
for collections and processing of
specimens has been developed.

m> NATIONAL CANCER INSTITUTE

#25+ CIMAC-CIDC
Slide Courtesy of Holden Maecker, PhD, .ﬁg i

“o 5% v Diomarker Nelwork

Stanford University CIMAC “ere



Analytical validation procedure and data

¢ accuracy

* precision

« analytical sensitivity

« analytical specificity including interfering substances
« reference intervals (normal values) with controls and calibrators

« standardization, harmonization, reproducibility and ruggedness

« establishment of appropriate quality control and improvement procedures
« any other performance characteristics required for assay performance

Precise Accurate Both

Sharing and comparing SOPs

Specimen collection umbrella protocols with QC parameters
Harmonizing instrument, assay, and analytical procedures

Proficiency panels — sending around samples for testing and analysis
Agreeing on interpretation even when platforms differ (multiplex IHC...)



Harmonization and proficiency panels

Sharing of SOPS
across CIMACs

o

nterlaboratory
proficiency testing

Group
review —— ¥

CIMAC consensus
for final set of SOPs
%
Continuous intermittent

proficiency testing

Courtesy: DFCI Tissue Biomarker Laboratory

MDACC: Michael Tetzlaff, Edwin Parra, Jack Lee
DFCI: Evisa Gjini, Ana Lako, Donna Neuberg, Scott Rodig
Mt Sinai: Guray Akturk, Sacha Gnjatic

Phase 0: Harmonization of algorithms and of scanning for

smglet IHC
DFCI shared pre-stained H&E slides from human tissues, scanned
centrally and redistributed for local scanning: Normal tonsil (n=3),
Melanoma (n=3), Colorectal adenocarcinoma (n=3), Head and Neck
Squamous cell carcinoma (n=3), with KI67, CD68, CD3.

Phase I: Harmonization of algorithms for scoring miIF

*  Two samples of head and neck SCC (HN-SCC) stained at one site (DFCI)
and only ROI-Tiffs were scored in a multi-site manner using identically
stained and scanned images, with CD3, CD8, PD-1, PD-L1, CytoK

Phase Il: Harmonization of staining and algorithms for scoring

mIF and mIHC
Sequential unstained slides from the above 2 HN-SCCs were distributed
to all sites

»  Staining was performed for CD3, CD8, PD-1, PD-L1, CytoK at all sites,
with site-specific protocols, site-specific platforms and site-specific
antibody clones

* Image scoring was performed on ROI-Tiffs generated in each of the sites

Phase Ill: Expanded Harmonization of Staining and

Algorithms for scoring mIF and mIHC
*  Same as above with unstained serial slides from TMAs (n=27 tissues)



Challenge: harmonizing different methods of staining and quantification
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Challenges: Different antibody clones, platforms, and visualization

1.  Different antibody clones Multiplex IF and multiplex IHC
2. Different IHC/IF protocols 2Fd MDAT Mt Sinal
. . . Platform Leica Bond Leica Bond Leica Bond
3. MUIUpleX pane|S Un'quely bl.“lt at Scanner Vectra Vectra Hamamatsu
eaCh inStitUtion Image analysis| Inform 2.4.2 PE Inform 2.4.2 PE QuPath 0.1.3
4. Different platforms for staining, D3 A0452 Dako A0452 Dako 2GV6 Ventana
scanning and/or quantiﬁcation CD8 €8/144b Dako C8/144b Thermoscientific €8/144b Dako
. . . PD-1| EH33 Cell Signaling EPR48772 Abcam NAT105 ABCAM
5' [_)Ifferent g_eographlc reg|0ns Of the PD-L1] 405.9A11 Cell Signaling E1L3N Cell Signaling E1L3N Cell Signaling
tissue stained Keratin AE1/AE3 Dako AE1/AE3 Dako AE1/AE3 Dako
Different geographic regions
Strategy: of the same tumor change
Select same regions of interest (ROIs) from a the \:caIIlIJes . even V‘;]he"go'
tissue microarray (TMA) to harmonize caretully selecting the ROI.
DFCI MDACC
Disease Patients analyzed
Bladder 4
HNSCC 4
Lung 6
Melanoma 6
Renal 8
Total 28




CD3 staining:
Bladder_ Patient 3

CD3 staining:
Lung_Patient 1




Harmonization results from TMA multiplex IHC/IF
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Challenges for combination biomarkers

 Infrastructure required to perform and implement various assays
« Harmonization of multiple assays more difficult to achieve

« Should each assay be considered independently or sequentially?
« Cost of complex assays

» Degree of required personalization — cost/benefit analysis

Deliverables

« SOPs collected for all assays, to be posted on CIMAC website for larger
scientific community

« Validation reports generated for most assays by each CIMAC

« Multiple rounds of harmonization and reports — unprecedented concordance

« Umbrella guidelines for specimen collection, to be posted on CIMAC website



Next: Combing single cell protein and RNA detection

Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq)

Stoeckius et al. Nature Methods 14, 865—-868 (2017)

Multiplexed quantification of proteins and transcripts in single cells (REAP-Seq)

Peterson et al.,

Do you
want to
study
proteins?

...or do you
want to
study RNA?

Nat Biotechnol. (2017)
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Upcoming methods

Slide-seq: near-single cell transcriptomics directly on tissues at 10um definition
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Importance of validation and harmonization to reliably define baseline characteristics
and mechanisms of response or resistance to various immuno-oncology drugs

It is unlikely that a single predictive biomarker will be found for immuno-oncology

Validation and harmonization efforts should help push biomarker discovery forward

Single cell data analyses and data mining with deep learning are the next frontiers
for discoveries in immunotherapy

Era of personalized combined biomarkers
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