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Immunotherapy’s continued explosive growth

Yu et al (Cancer Research Institute). Nat Rev Drug Discovery 2019

91% increase in the number of active 

agents in development since 2017, a 

78% increase in active targets, and a 

60% increase in companies and other 

organizations with an immuno-oncology 

pipeline

Over 5000 active 

immuno-oncology 

trials worldwide



 Need for analytically validated assays and procedures, and harmonized interpretation of data

• Why do some patients respond and 

others don’t? To identify biomarkers 

with translational potential to optimize 

immunotherapeutic strategies 

• To develop molecular signatures that 

define immune response categories to 

correlate with the clinical outcomes 

• To define immunophenotype

characteristics of response that will be 

valid for diverse immuno-oncology 

classes with different mechanisms of 

action

Data
analysis

QC

Immuno-
pathology

Immunogenomics
and microbiome

Immune 
profiling 
and 
function

Objectives and scope



• Cutting-edge technology platforms

• Technical expertise in assay development 

and instrument platforms

• Scientific expertise in human immunology

• Computation expertise in data analysis 

and visualization

Patient 

cohorts

Develop innovation with high-dimensional 

assays to monitor disease-relevant immune 

signatures and discover new mechanisms, 

biomarkers and immune targets 

Improve assay standardization

and minimize experimental 

variability to maximize data quality 

and reproducibility

Identifying immunotherapy biomarkers



Baseline

On-
treatment

Post-
treatment

Relapse

Multiscale, dynamic atlas of immune changes



Interpreting the complex data generated using computational tools

Obtaining adequate biospecimens to explore markers

at the tumor site and in the periphery 

Assembling a multidisciplinary team for molecular, genetic,

microbial, and cellular signatures

Except adoptive transfer, most immunotherapies directly target the immune system

rather than the tumor itself: how to find a good biomarker when targeting a network?

Correlating disparate data sets with clinical outcome

Ensuring reproducibility and robustness while fostering innovation

Challenges of immune monitoring



Some lead biomarkers in immune checkpoint blockade

• Tumor immune infiltration

• Tumor mutation burden

• Stratifying biomarkers (inclusion/exclusion): driver alterations (EGFR/ALK in NSCLC)

• MSI-H/dMMR (FDA approved general indications)

• PD-L1 tissue expression (FDA companion/complementary test)

• Gut microbiota composition and metabolites

• Peripheral blood markers

• Soluble: cytokine, protein analytes, antibody

• Cellular: activation/suppression markers, cell populations (pre-exhausted T cells), 

tumor antigen specificity, T cell repertoire

• Stromal markers and tissue-resident immune cells

• ctDNA/cfDNA/CTC

Promising other candidates



PD-L1 expression matters…

Kowanetz et al. Proc Natl Acad Sci U S A. 2018;115:E10119–E10126.

Independent predictive value of PD-L1 on immune 

cells and tumor cells (n=4549 NSCLC treated with 

atezolizumab, using SP263 IHC assay)

TC: tumor cell PD-L1 score

IC: immune cell PD-L1 score

• PD-L1 staining as the only approved companion or 

complementary test for immunotherapy

• PD-L1hi tumors respond better to PD-1/PD-L1 blockade

But:

• Three tests are approved with only partial overlap in 

interpretation of their results

• Dynamic changes upon treatment and heterogeneity 

are difficult to capture

• Some patients experiencing benefit in PD-L1 low 

tumors, and many patients have no response despite 

PD-L1 high tumors.

NSCLC Cervical

Cancer

Urothelial

Carcinoma

From Agilent.com

Pembrolizumab’s FDA companion test 22C3 IHC



Tumor mutation burden (TMB) as biomarker

• Multitude of studies indicating high TMB correlates 

with better response to immune checkpoint blockade 

(cutoff for high TMB typically at ≥ 10 mut/mb)
• CheckMate-227 trial

• CheckMate-568 trial – independently of PD-L1 expression

• Meta-analysis in NSCLC treated with anti-PD-1/PD-L1 

(n=1290) showed TMB ≥ 20 mut/mb associated with 

increased OS and clinical benefit (JAMA. 

2019;321:1391-1399)

• Rationale based on higher likelihood of creating 

neoepitopes for T cell-mediated tumor rejection

• Trials have been proposed based on high TMB as a 

biomarker

• However, recent withdrawal of TMB ≥10 mut/mb as a 

supplemental biologics license FDA application for 

frontline combination ipilimumab/nivolumab in NSCLC
Rizvi et al. Science. 2015. 348-124

DCB = durable clinical benefit

NDB = no durable clinical benefit

TMB correlates with response to PD-1 

blockade in NSCLC

DCB 

DCB 

NCB 

NCB 

High burden

of mutations

Low burden

of mutations

High predicted

neoantigens

Low predicted

neoantigens



PD-L1 IHC and mutational load as independent biomarkers
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Hellman, …, Wolchok. Cancer Cell. 2018;33:843-852

Meta-analysis in various tumor types (n=9887)
Combined predictors of best clinical 

benefit in NSCLC (n=75)

Chan et al. Annals Oncol. 2019:30;44–56,
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Density and localization of immune infiltrate matters…

High T cells in 

both stroma 

and tumor

High 

peritumoral T 

cell infiltration

Metastatic urothelial carcinoma 

(n=214) treated with nivolumab

Best response 

in CD8 high 

stroma low

Independently 

of PD-L1 IHC

Wang, …, Galsky. Nat Commun. 2018;9:3503.PC Tumeh et al. Nature 515, 568-71 (2014)

CD8 T cell infiltration before and during 

pembrolizumab in advanced melanoma.

Responders (n=22)

Progressors (n=24)

Tumor Invasive margin

Tumor Invasive margin
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Routy al. Science. 2018

Cancer patients treated with PD-1 blockade, sequenced

for gut bacteria by 16S or shotgun metagenomics

Lavin, Rahman, Gnjatic, Merad, Cell 2017;169:750-765

Signature of tumor macrophages by scRNAseq

associated with poor outcome in early NSCLC

Emerging biomarkers with novel methods may matter…

Matson, V. et al. Science 359, 104–108 (2018).

Gopalakrishnan, V. et al. Science 359, 97–103 (2018).



T cell states, exhaustion, and metabolism

Wei et al. Cancer Discov. 2018

TOX, TOX2, and NR4A cooperate and contribute to 

T cell exhaustion (but also TCF1, PTPN2, CD226…)

Khan…Wherry, Nature 2019; Seo…Rao, PNAS 2019; 

Alfei et al, Nature 2019; Scott et al, Nature 2019, 

Manguso et al, Nature 2017

Chamoto, PNAS, 2019https://www.cancerresearch.org/blog/september-2019/cicon19-day-2-t-cell-exhaustion-tumor-microenviron

Mann & Kaech, Nature 2019



Cancer Immune Monitoring and Analysis Centers and  

Cancer Immunologic Data Commons  

The CIMAC-CIDC Network: A Cancer Moonshot Initiative (U24)

The CIMAC-CIDC network will provide a standing infrastructure of bioassays and data commons for correlative 

studies in NCI-funded trials involving immunotherapy ($50M+)

4 CIMACs for scientific expertise and a wide range of highly specialized services using state-of-the-art equipment

One CIDC for centralized bioinformatics resources for data collection and integration across trials and clinical databases

Scope of work

Support correlative studies in early (phase 1 / 2) immunotherapy trials in the CTEP Trial Networks and Grant-supported trials 

500 patients / multiple timepoints / year for comprehensive profiling

Many additional patients from industry and non-NCI trials through Partnership for Accelerating Clinical Trials (PACT, $220M)

AbbVie, Amgen, Boehringer Ingelheim, 

Bristol-Meyers Squibb, Celgene, 

Genentech, Gilead Sciences, 

GlaxoSmithKline, Janssen, Novartis, Pfizer 
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CIMAC 1
Ignacio Wistuba

Chant. Bernatchez

Gheath Al-Atrash

CIDC
Shirley Liu, Ethan Cerami

COG 

Ped-CITN 

PBTC

ABTC

NCTN
• SWOG

• ECOG-

ACRIN

ETCTN

CIMAC 3
Cathy Wu

Steve Hodi

CITN

CIMAC 4
Holden Maecker

Sean Bendall

CIMAC 2
Sacha Gnjatic

Laboratory Coordinating Committee (LCC)

Each CIMAC will contribute to specific assays or trials across the networks 

NCTN
• NRG

• Alliance

CIMACs-CIDC Network Structure 
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CIMACs-CIDC Network Structure 



•Joint primary 

analysis 

•Secondary 

analysis

Designated 
CIMAC X

Biomarker 
plan

CTEP 
approval Specimen 

accession
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Data to 
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database

Trial PI and 
groups 

New trials or 
existing trials

Clinical 

data

Sample 

tracking 

and ID*

Biomarker 

Data

Specimen 

Collection

Data to 

clinical team

Workflow with the clinical networks

Clinical Trial 

Coordination 

Working 

Group

Assay 

Platforms 

Working 

Group

Biobank 

Working 

Group

Software 

Database 

Working 

Group

Bioinformatics 

Biostatistics 

Working 

Group

Collaborative 

effort between 

study PI, CIMAC, 

biobank, and NCI



/ mIHC

Biomarker discovery strategy



Assays and platforms for CIMACs



• accuracy

• precision

• analytical sensitivity

• analytical specificity including interfering substances

• reference intervals (normal values) with controls and calibrators

• standardization, harmonization, reproducibility and ruggedness 

• establishment of appropriate quality control and improvement procedures

• any other performance characteristics required for assay performance 

Sharing and comparing SOPs

Specimen collection umbrella protocols with QC parameters

Harmonizing instrument, assay, and analytical procedures

Proficiency panels – sending around samples for testing and analysis

Agreeing on interpretation even when platforms differ (multiplex IHC…)

Precise Accurate Both

Analytical validation procedure and data



Courtesy: DFCI Tissue Biomarker Laboratory

MDACC: Michael Tetzlaff, Edwin Parra, Jack Lee

DFCI: Evisa Gjini, Ana Lako, Donna Neuberg, Scott Rodig

Mt Sinai: Guray Akturk, Sacha Gnjatic

Harmonization and proficiency panels

Phase 0: Harmonization of algorithms and of scanning for 

singlet IHC
• DFCI shared pre-stained H&E slides from human tissues, scanned 

centrally and redistributed for local scanning: Normal tonsil (n=3), 

Melanoma (n=3), Colorectal adenocarcinoma (n=3), Head and Neck 

Squamous cell carcinoma (n=3), with KI67, CD68, CD3.

Phase I: Harmonization of algorithms for scoring mIF
• Two samples of head and neck SCC (HN-SCC) stained at one site (DFCI) 

and only ROI-Tiffs were scored in a multi-site manner using identically 

stained and scanned images, with CD3, CD8, PD-1, PD-L1, CytoK

Phase II: Harmonization of staining and algorithms for scoring 

mIF and mIHC
• Sequential unstained slides from the above 2 HN-SCCs were distributed 

to all sites

• Staining was performed for CD3, CD8, PD-1, PD-L1, CytoK at all sites, 

with site-specific protocols, site-specific platforms and site-specific 

antibody clones

• Image scoring was performed on ROI-Tiffs generated in each of the sites

Phase III: Expanded Harmonization of Staining and 

Algorithms for scoring mIF and mIHC
• Same as above with unstained serial slides from TMAs (n=27 tissues)



Challenge: harmonizing different methods of staining and quantification

Multiplex immunohistochemistry (mIHC) 

chromogen staining on a single slide (MICSSS)

Multispectral immunofluorescence 

(mIF) staining with TSA dyes

PD-L1

CD8

CD3

PanCK

Fibronectin

CD68

FAP

DC-LAMP

CD11b

Red: Tumor

Orange: Normal Pancreas

Green: Stroma

Purple: Immune Cells / TLS

InForm

software

QuPath

software

KI67



DFCI MDACC Mt Sinai

Platform Leica Bond Leica Bond Leica Bond

Scanner Vectra Vectra Hamamatsu

Image analysis Inform 2.4.2 PE Inform 2.4.2 PE QuPath 0.1.3

CD3 A0452 Dako A0452 Dako 2GV6 Ventana

CD8 C8/144b Dako C8/144b Thermoscientific C8/144b Dako

PD-1 EH33 Cell Signaling EPR48772 Abcam NAT105 ABCAM

PD-L1 405.9A11 Cell Signaling E1L3N Cell Signaling E1L3N Cell Signaling

Keratin AE1/AE3 Dako AE1/AE3 Dako AE1/AE3 Dako

Multiplex IF and multiplex IHC

Different geographic regions 

of the same tumor change 

the values – even when 

carefully selecting the ROI.

1. Different antibody clones

2. Different IHC/IF protocols

3. Multiplex panels uniquely built at 

each institution

4. Different platforms for staining, 

scanning and/or quantification

5. Different geographic regions of the 

tissue stained 

Challenges: Different antibody clones, platforms, and visualization

DFCI MDACC SINAI

Select same regions of interest (ROIs) from a 

tissue microarray (TMA) to harmonize

Disease Patients analyzed

Bladder 4

HNSCC 4

Lung 6

Melanoma 6

Renal 8

Total 28

Strategy:



DFCI MDACC SINAI

CD3 staining: 

Bladder_Patient 3

CD3 staining: 

Lung_Patient 1

Comparing CD3 in multiplex IHC/IF



Harmonization results from TMA multiplex IHC/IF

Spearman r

Correlation (>0.7)
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Challenges for combination biomarkers

• Infrastructure required to perform and implement various assays

• Harmonization of multiple assays more difficult to achieve

• Should each assay be considered independently or sequentially?

• Cost of complex assays

• Degree of required personalization – cost/benefit analysis

• SOPs collected for all assays, to be posted on CIMAC website for larger 

scientific community

• Validation reports generated for most assays by each CIMAC

• Multiple rounds of harmonization and reports – unprecedented concordance

• Umbrella guidelines for specimen collection, to be posted on CIMAC website

Deliverables



Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-Seq)
Stoeckius et al. Nature Methods 14, 865–868 (2017)

Multiplexed quantification of proteins and transcripts in single cells (REAP-Seq)
Peterson et al., Nat Biotechnol. (2017)

Do you 

want to 

study 

proteins?

…or do you 

want to 

study RNA?

Next: Combing single cell protein and RNA detection



Upcoming methods
Slide-seq: near-single cell transcriptomics directly on tissues at 10µm definition

Science 2019:363(6434);1463-1467



Validation and harmonization efforts should help push biomarker discovery forward

Importance of validation and harmonization to reliably define baseline characteristics

and mechanisms of response or resistance to various immuno-oncology drugs 

Single cell data analyses and data mining with deep learning are the next frontiers

for discoveries in immunotherapy

It is unlikely that a single predictive biomarker will be found for immuno-oncology

Era of personalized combined biomarkers

Take home message
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