

Immunotherapy for the Treatment of Lung Cancer Jose Pacheco MD Assistant Professor Thoracic Oncology/Phase I

Society for Immunotherapy of Cancer

© 2018–2019 Society for Immunotherapy of Cancer

Disclosures

- Research funding from Pfizer
- Honorarium from Takeda
- Consulting fees from AstraZeneca and Novartis
- I will be discussing non-FDA approved indications during my presentation.

Immunotherapy for the Treatment of Lung Cancer Checkpoint Inhibitors: PD-1 and PD-L1

- PD-1 acts as an "off-switch" for T cells when interacting with PD-L1
- Tumor PD-L1 expression allowing cancer cells to evade immune attack
- Antibodies against PD-1 and PD-L1 boost the immune response against cancer cells

Gong J, Journal for ImmunoTherapy of Cancer, 2018

Combination Immune Checkpoint Blockade

- CTLA-4 acts as an "off-switch" for T cells when interacting with B7
- Combination strategies combine both CTLA-4 and PD-1/PD-L1 blockade

Ribas A, NEJM, 2012

FDA-approved Checkpoint Inhibitors in NSCLC

CA209-003: Nivolumab in Heavily-pretreated Advanced NSCLC (NCT00730639) Phase 1, 5-Year Update

5-Year Survival

- First report of long-term survival rate in patients with metastatic NSCLC treated with an immune checkpoint inhibitor
- According to the National Cancer Institute's SEER data, 5-year survival rate for patients with advanced NSCLC is 4.9%

Gettinger et al. JCO 2018 Brahmer et al, AACR 2017 NCI SEER data, Lung and Bronchus Cancer, 2014

Treatment Naïve Regimens: Competing Strategies

- KEYNOTE 024 Pembrolizumab vs. Chemotherapy in PD-L1 > 50%
- KEYNOTE 042 Pembrolizumab vs. Chemotherapy in PD-L1 > 1%
- KEYNOTE 189 Pembrolizumab + Chemotherapy vs. Chemotherapy alone in patients with advanced non-squamous NSCLC
- IMPOWER 150 Atezolizumab + Chemotherapy (Bev) vs.
 Chemotherapy (Bev) in patients in advanced non-squamous NSCLC
- KEYNOTE 407 Pembrolizumab + Chemotherapy vs. Chemotherapy in advanced squamous cell lung cancer
- Checkmate 227 Ipilimumab + Nivolumab vs. Chemotherapy in advanced NSCLC with high TMB

KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 Positive (>50%) NSCLS Study Design (NCT021427389)

Reck M et al, ESMO 2016, NEJM 2016

KEYNOTE-024: Pembrolizumab vs. Chemotherapy for PD-L1 >50% NSCLC Overall Survival

1) Brahmer J et al, IASLC World Lung 2017. 2) Reck M et al. JCO 2019

KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 > <u>1%</u> NSCLC

^aPemetrexed maintenance therapy was optional but strongly encouraged for patients with nonsquamous histology.

Lopes et al, ASCO 2018

Society for Immunotherapy of Cance

KEYNOTE-042: Pembrolizumab vs. Chemotherapy for PD-L1 > 1% NSCLC Overall Survival

Survival benefit seemed to be driven by the TPS > 50% subset with little benefit witnessed in the subset TPS > 1-49%

Lopes et al, ASCO 2018

KEYNOTE-189: Pembrolizumab/Carboplatin /Pemetrexed vs Chemotherapy for Advanced Non-squamous NSCLC

sitc

Society for Immunotherapy of Cancel

- Untreated stage IV nonsquamous NSCLC
- No sensitizing EGFR or ALK alteration
- ECOG PS0 or 1
- Provision of a sample for PD-L1 assessment
- No symptomatic brain metastases
- No pneumonitis requiring systemic steroids

- PD-L1 expression (TPS^a <1% vs ≥1%)
- Platinum (cisplatin vs carboplatin)
- Smoking history (never vs former/current)

KEYNOTE-189: Pembrolizumab/Carboplatin /Pemetrexed vs Chemotherapy for Advanced Non-squamous NSCLC

<u>Pembrolizumab combination</u> Median overall survival –not reached 1-year overall survival 69.2% (95%CI, 64.1-73.8)

Placebo combination Median overall survival 11.3 months (95%Cl, 8.7-15.1) 1-year overall survival 49.4% ((95%Cl, 42.1-56.2)

KEYNOTE-407: Pembrolizumab/chemotherapy vs Chemotherapy for Advanced Squamous-cell NSCLC

Paz-Ares et al, ASCO 2018

Key Eligibility Criteria

- Untreated stage IV NSCLC
 with squamous histology
- ECOG PS 0 or 1
- Provision of a sample for PD-L1 assessment
- No symptomatic brain metastases
- No pneumonitis requiring systemic steroids

Stratification Factors

- PD-L1 expression (TPS^a <1% vs ≥1%)
- Choice of taxane (paclitaxel vs nab-paclitaxel)
- Geographic region (east Asia vs rest of world)

KEYNOTE-407: Pembrolizumab/chemotherapy vs Chemotherapy for Advanced Squamous-cell NSCLC

PFS (RECISTv1.1, BICR)

IMPOWER 150: Atezolizumab/Carboplatin/ Paclitaxel/Bevacizumab vs Carboplatin/Paclitaxel/ Bevacizumab in advanced non-squamous NSCLC

Socinski et al, NEJM 2018

IMPOWER 150: Atezolizumab/Carboplatin/ Paclitaxel/Bevacizumab vs Carboplatin/Paclitaxel/ Bevacizumab in advanced non-squamous NSCLC

Landmark OS, %	Arm B: atezo + bev + CP	Arm C: bev + CP	
12-month	67%	61%	
18-month	53%	41%	
24-month	43%	34%	

HR^a, 0.78 (95% CI: 0.64, 0.96) *P* = 0.0164 Median follow-up: ~20 mo

Socinski et al, NEJM 2018

Society for Immunotherapy of Cance

Tumor Mutational Burden (TMB) may Determine Sensitivity to PD-1 Blockade in NSCLC

 In two independent cohorts, higher nonsynonymous tumor mutational burden (TMB) was associated with improved objective response, durable clinical benefit, and PFS.

*Partial or stable response lasting > 6 mo

Rizvi N et al, Science, 2015

Hellman et al, NEJM, 2018

sitc

Society for Immunotherapy of Cancer

FDA approval for first-line use of nivolumab + ipilimumab in patients with high TMB is no longer being pursued due to overall survival not being statistically significantly increased vs chemotherapy.

Hellman et al, NEJM, 2018

PD-L1 Expression of $\geq 1\%$ **PD-L1** Expression of <1% 100-4 Hazard ratio for disease progression or death, 100-Hazard ratio for disease progression or death, Patients with Progression-free Survival (%) 0.62 (95% CI, 0.44-0.88) 0.48 (95% CI, 0.27-0.85) 90-90 80-80-70-70-60-60-Nivolumab+ Nivolumab+ 50-50-145 ipilimumab ipilimumab 40-40-0000 30-30-Chemotherapy 20-20-16 Chemotherapy 8 2 10-10-0 0-15 21 12 15 18 21 24 12 18 24 0 3 9 0 3 6 9 Months Months

Hellman et al, NEJM, 2018

PD1/PD-L1 Inhibitors Increase Overall Survival in 2L Advanced NSCLC

1-Yr Overall Survival

% of patients (95% CI)

42 (34-50)

24 (17-31)

No. of

Deaths

86

113

CHECKMATE 017
(nivolumab)

CHECKMATE 057
(nivolumab)

	Nivolumab (n = 292)	Docetaxel (n = 290)			
mOS, mo	12.2	9.4			
HR = 0.73 (96% CI: 0.59, 0.89); <i>P</i> = 0.0015					

Median Overall Survival

mo (95% CI)

9.2 (7.3-13.3)

6.0 (5.1-7.3)

KEYNOTE 010 (TPS ≥ 1%) (pembrolizumab)

> OAK (atezolizumab)

 Treatment Arm
 Median (95% Cl), mo
 HR* (95% Cl)
 P

 Pembro 2 mg/kg
 14.9 (10.4-NR)
 0.54 (0.38-0.77)
 0.0002

 Pembro 10 mg/kg
 17.3 (11.8-NR)
 0.50 (0.36-0.70)
 <0.0001</td>

 Docetaxel
 8.2 (6.4-10.7)
 - -

HR, 0.73^a (95% Cl, 0.62, 0.87) *P* = 0.0003

Nivolumab (N-135)

Docetaxel (N-137)

Minimum follow up = 19 months

PACIFIC (NCT02125461): Durvalumab after Chemoradiotherapy in Stage III NSCLC

In House Data, AstraZeneca Pharmaceuticals LP. PACIFIC Protocol. 2014.
 NIH 2015 NCT02125461, http://clinicaltrials.gov/ct2/show/NCT02125461.
 Creelan B, Iannotti NO, Salamat MA, et al. 2016. (PHRR150325-000989)
 Ann Oncol. 2015;26 (supplement 1): i24-i28, abstract 95TiP.

PACIFIC (NCT02125461): Durvalumab after Chemoradiotherapy in Stage III NSCLC

© 2018–2019 Society for Immunotherapy of Cancer

PACIFIC (NCT02125461): Durvalumab after Chemoradiotherapy in Stage III NSCLC

Antonia et al. NEJM 2018

Checkpoint Inhibitors in Metastatic EGFR-Mutated NSCLC Meta-Analysis: CM-057, KN-010, POPLAR

Association of Community Concer Center

Society for Immunotherapy of Cancer

Single-agent Toxicities in 2/3L Randomized Trials

	Atezolizumab OAK	Nivolumab SQ: CM 017 (updated OS; 2L)	Nivolumab NSQ:CM 057 (updated OS; 2/3L)	Pembrolizumab Keynote 010
Related Grade 3- 5 AEs	15%	8%	11%	13-16%
Discontinuation due to related AEs	5%	6%	6%	4-5%
Pneumonitis AEs	1%	5%	3%	4-5%

Rittmeyer, et al., *Lancet*Brahmer, et al., *NEJM*Borghaei, et al., *NEJM*Herbst, et al., *Lancet*

KEYNOTE-189: Pembrolizumab/Carboplatin /Pemetrexed vs Chemotherapy for Advanced **Non-squamous NSCLC**

Ghandi et al, NEJM 2018

ACCC

KEYNOTE-407: Pembrolizumab/chemotherapy vs Chemotherapy for Advanced Squamous-cell NSCLC

	Nivolumab + ipilimumab (n = 576)		Chemotherapy (n = 570)		
TRAE,ª %	Any grade	Grade 3–4	Any grade	Grade 3–4	
Any TRAE	75	31	81	36	
TRAE leading to discontinuation ^b	17	12	9	5	
Most frequent TRAEs (≥15%)					
Rash	17	2	5	0	
Diarrhea	16	2	10	1	
Fatigue	13	1	18	1	
Decreased appetite	13	<1	19	1	
Nausea	10	<1	36	2	
Constipation	4	0	15	<1	
Anemia	4	2	32	11	
Neutropenia	<1	0	17	9	
Treatment-related deaths ^c	1		1		

Hellman et al, NEJM, 2018

Summary of Frontline Strategies in Advanced NSCLC

Clinical Trial	Drug	PFS (Months)	OS (Months)	PFS HR in PD-L1 neg	Toxicities Grade 3 - 5
KEYNOTE-024 PD-L1 ≥ 50%	Pembro	10.3	30		31% vs 53%
	Plat/Pem or Gem or Pacli	6	14.2	NA	
KEYNOTE-042 PD-L1 ≥ 1%	Pembro	5.4	16.7	NA	18% vs 41%
	Plat/Pem or Pacli	6.5	12.1		
IMpower150 Non-squamous	Atezo + Beva + Carbo/Pacli	8.3	19.2	0.77	60 vs 51%
	Beva + Carbo/Pacli	6.8	14.7		
KEYNOTE-189 Non-squamous	Pembro + Plat/Pem	8.8	NR	0.75	67% vs 66%
	Plat/Pem	4.9	11.3	0.75	
KEYNOTE-407 Squamous	Pembro + Carbo/Pacli or NabPacli	6.4	15.9	0.69	70% vs 68%
	Carbo/Pacli or NabPacli	4.8	11.3	0.08	
CheckMate 227 TMB≥10mut/Mb	Nivo + Ipi	7.2	23	0.49	31% vs 36%
	Plat/Pem or Gem	5.4	16.7	0.48	

Adapted from Solange Peters, 2018 ASCO Annual Meeting * This is for illustration purposes only and comparing different trials is challenging as populations, indications, and other characteristics vary.

Case Study 1

- A 63 year old female, heavy smoker, presented with trouble moving her left upper extremity.
- MRI brain showed five brain metastases, the largest of which was 2.0 centimeters
- CT chest/abdomen/pelvis showed a large right upper lobe mass, pathologic mediastinal lymphadenopathy, supraclavicular lymphadenopathy and bilateral adrenal metastases.
- Resection of right frontal brain metastasis was performed
- Path metastatic adenocarcinoma of lung origin, KRAS G12R mutation, PD-L1 80% on tumor cells by the 22C3 assay

Case Study 1

- What is the treatment with the best chance of long-term survival in this patient?
 - A) Carboplatin + Pemetrexed followed by Pemetrexed maintenance
 - B) Nivolumab
 - C) Carboplatin + Paclitaxel
 - D) Pembrolizumab

D) Pembrolizumab has a median OS of 30 months for first line treatment of patients with NSCLC and PD-L1 \ge 50%

[Pembrolizumab had superior OS when compared to platinum based doublets in patients with PD-L1 \geq 50%, nivolumab did not have superior OS when compared to platinum based doublets in a similar patient population]

Case Study 2

- A 60 year old male with metastatic NSCLC was treated with nivolumab + ipilimumab.
- After being on this treatment for 6 months he began to complain of significant fatigue. Recent CT scan showed a continued partial response to therapy.
- He stated the fatigue was so severe he could not get up nor do normal activities. He stated the fatigue was as bad as his cancer.
- Associated symptoms included headache and diplopia
- MRI brain showed no brain metastasis

- What is the best next step?
 - A) Lumbar puncture
 - B) Evaluate ACTH, cortisol, testosterone, FSH, LH
 - C) Ophthalmology consult
 - D) Endocrinology consult

• B) Evaluate ACTH, cortisol, testosterone, FSH, LH

[pan-hypopituitarism can occur with immune checkpoint inhibition, the incidence is higher with combination of PD-1 axis + CTLA-4 inhibition. Symptoms may include headache and severe fatigue. To diagnosis radiographic one do a pituitary protocol MRI; however, this particular image does not always show pituitary pathology in such cases.]

- ACTH was 6 (normal range 7-39). 3 months earlier it was 34
- Cortisol was 4
- Testosterone was 18 (normal range 87-780)
- FSH and LH were very low
- The patient was referred to endocrinology where he was started on testosterone replacement and steroids

Jose Pacheco Assistant Professor Thoracic Oncology/Phase I

Email: jose.m.Pacheco@ucdenver.edu

© 2018–2019 Society for Immunotherapy of Cancer

