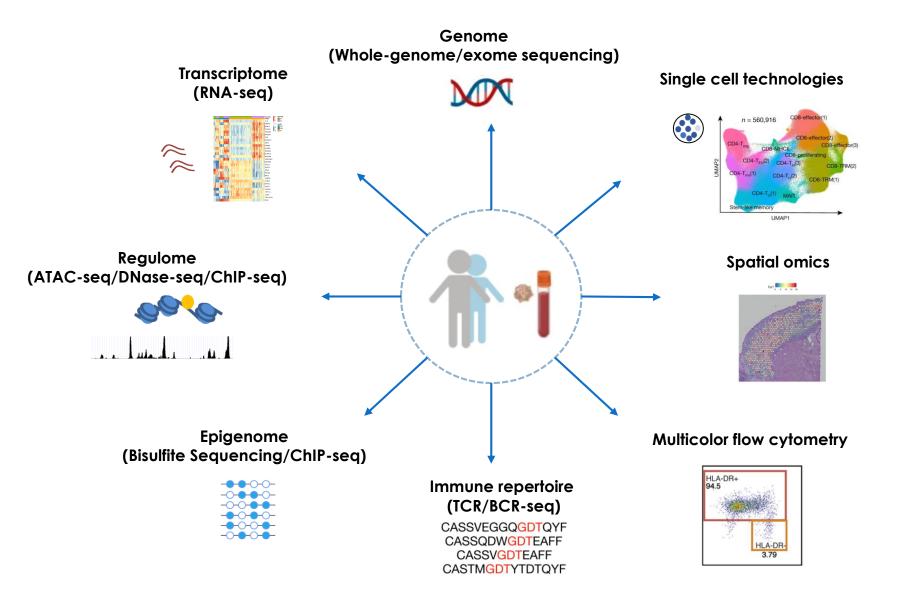
Identifying and Preventing Artifacts in High Dimensional Data: Computational Science in Immuno-Oncology

Hongkai Ji Department of Biostatistics Johns Hopkins Bloomberg School of Public Health Email: <u>hji@jhu.edu</u>

Background



Background

 Artifacts are common in data generated by highthroughput technologies

- Why do we care?
 - Identifying and preventing artifacts will help better discover true signals

Goal

 It is not our objective to provide an exhaustive list of all possible artifacts

Instead, we will

- Discuss common sources of artifacts
- Discuss some general principles and methods for identifying and preventing artifacts

Common sources of artifacts

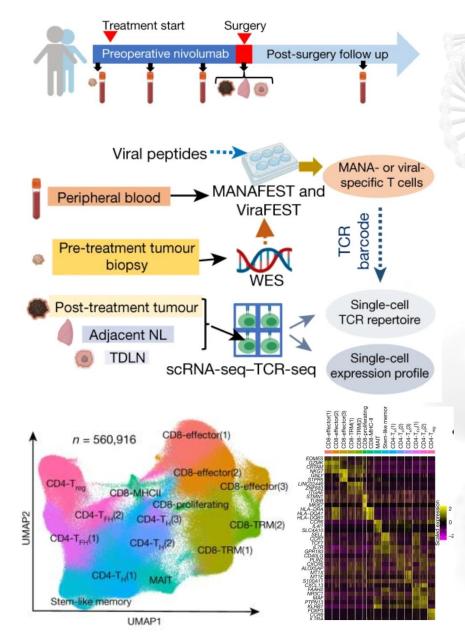


Image from Caushi et al. Nature. 596: 126-132, 2021

Study design

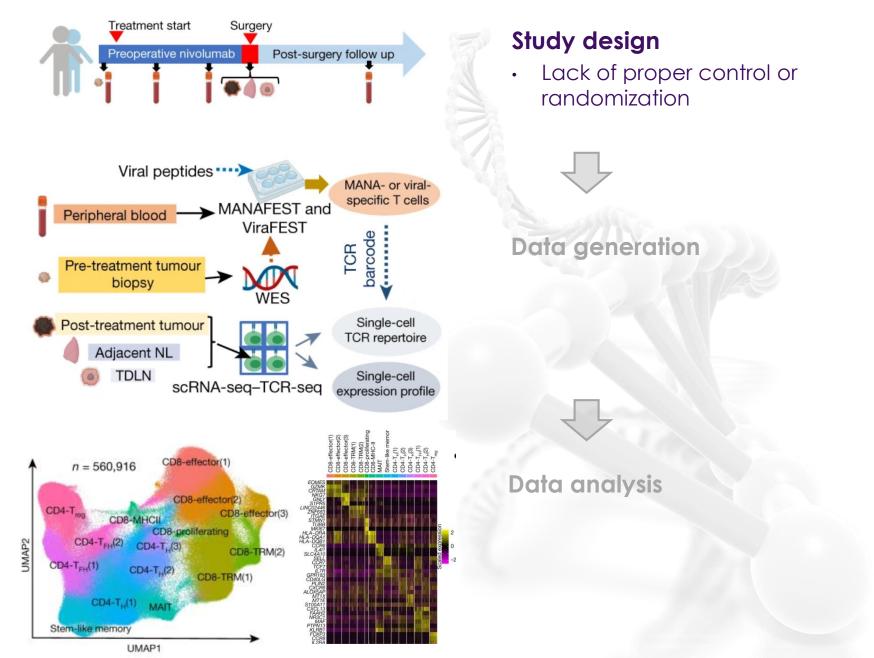
 Lack of proper control or randomization

- Bias and noise in technology
- Bias in experimental procedure

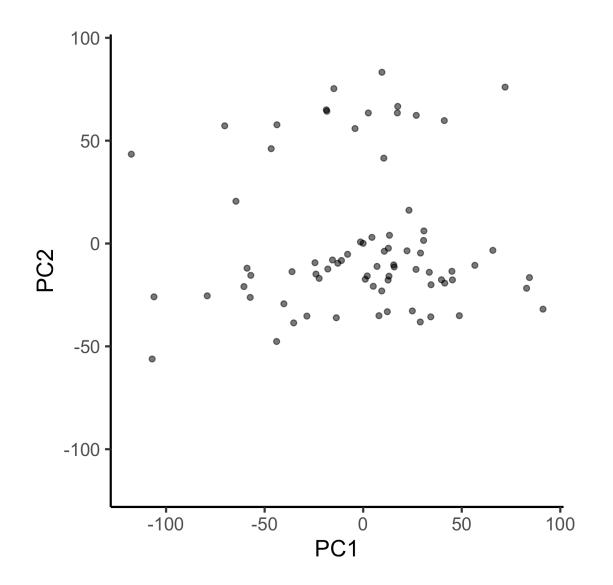
Data analysis

- Improper normalization
- Failure to control confounders
- Wrong models, assumptions or methods

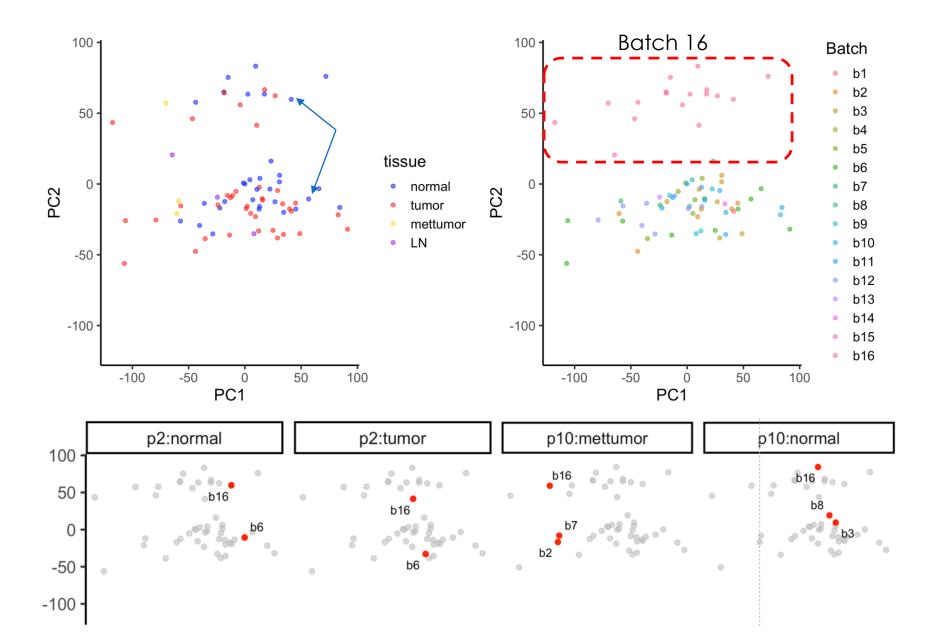
Artifacts due to study design



Example: Batch effects

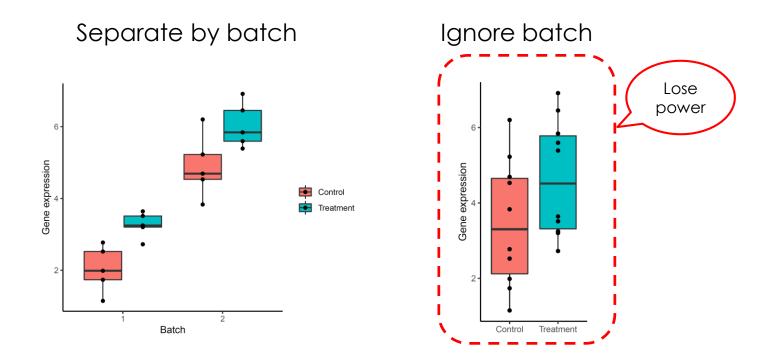


Example: Batch effects



Batch effects: differential expression

A differential gene

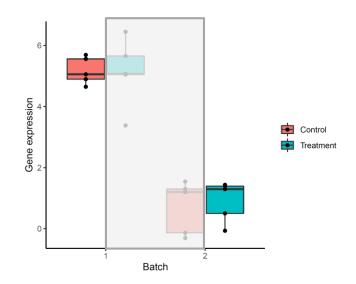


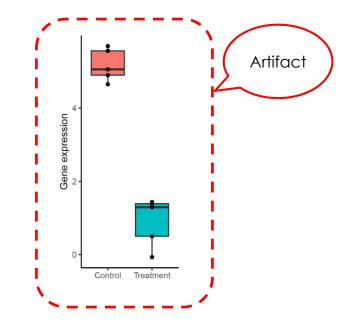
Batch effects: differential expression

A non-differential gene

Separate by batch

Treatment confounded with batch





Batch effects

ARTICLES V FRONT MATTER AUTHORS V TOPICS +

LETTER | BIOLOGICAL SCIENCES | FREE ACCESS

Clarifying the effect of library batch on extracellular RNA sequencing

Christopher Hartl and Yuan Gao ᅝ 🏼 Authors Info & Affiliations

January 21, 2020 117(4)1849-1850 <u>https://doi.org/10.1073/pnas.1916312117</u>

Reanalysis of the raw data demonstrated a perfect confound between read length and cancer status (50 base pairs [bp] for both cancer cohorts, 75 bp for normal). Raw expression principal components PC1 and PC2, which separate cancer from normal samples, highly correlate to alignment metrics (Fig. 1 *A* and *B*). Following in silico read-length trimming, normal samples still exhibited perfect or near-perfect separation along a number of purely technical variables: mismatch rate, intronic rate, exonic rate, ribosomal RNA (rRNA) rate, and others (Fig. 1 *C* and *D*). Based on these observations, it seems that serum from individuals with cancer was processed separately from serum from individuals without cancer, creating a perfect confound between library batch, sequencing batch, and status. Since many standard RNA sequencing

How to prevent artifacts due to batches?

Proper control and randomization

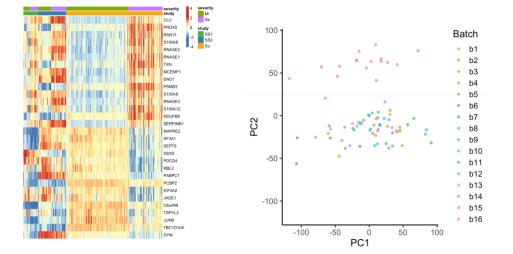
	T1	T2	C1	C2		T1	T2	C1	C2
Batch1	\checkmark	\checkmark			Batch1	\checkmark		\checkmark	
Batch2			\checkmark	\checkmark	Batch2		\checkmark		\checkmark

- For those who run experiments
 - Team up with a statistician or experiment design expert before your study
 - Make sure everyone is on the same page
- For those who analyze data

Talk to your wet lab collaborators before they generate data

How to identify batch artifacts?

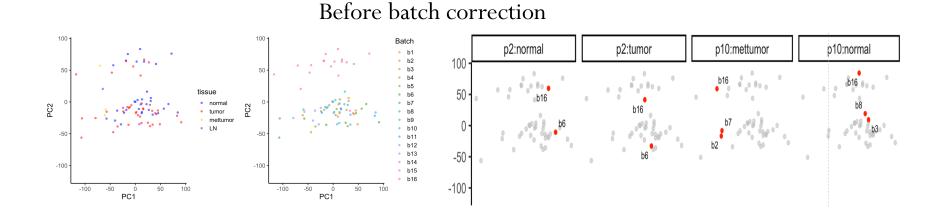
- Review the study design
- Exploratory plots



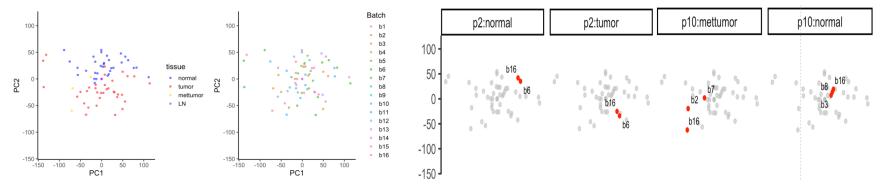
Compare results from orthogonal datasets

How to correct for batch effects?

• With proper design: regress out confounders



After batch correction



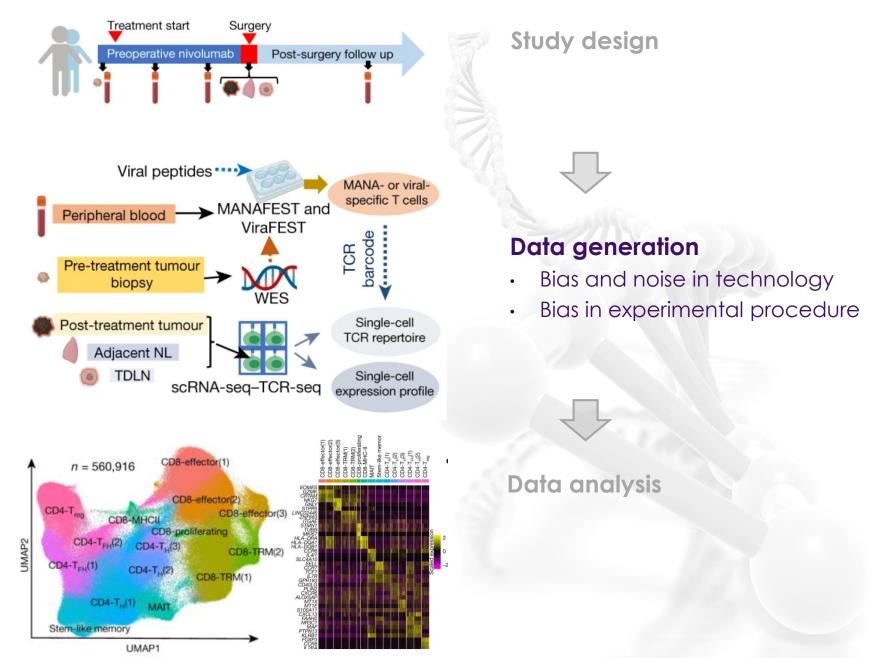
How to correct for batch effects?

- With proper design: regress out confounders
 - ComBat (Johnson et al. Biostatistics, 8:118-127, 2007)
 - Surrogate variable analysis (Leek & Storey, PLoS Genet. 3:e161, 2007)
 - Remove unwanted variation (Gagnon-Bartsch & Speed, Biostatistics, 13:539-52, 2012)
 - A good review (Leek et al. Nat Rev Genet. 11: 733-739, 2010)
- With perfect confounding: profile new samples
 - Include samples to be compared in the same batch
 - Generate multiple batches to estimate batch variance

Remarks

- Batch effect is just one example of unwanted variation that may cause artifacts
- Other confounders may also create artifacts
- They often can be dealt with by following the same principles

Artifacts created during data generation



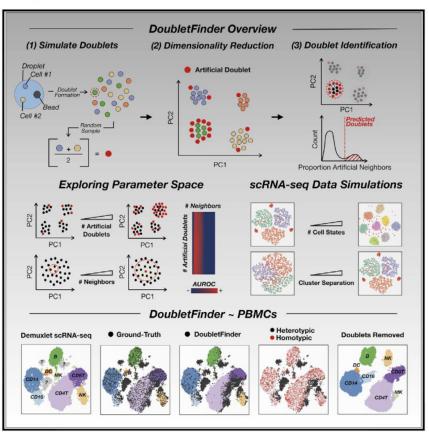
Example 1: Doublets in single-cell RNA-seq

Brief Report

Cell Systems

DoubletFinder: Doublet Detection in Single-Cell RNA Sequencing Data Using Artificial Nearest Neighbors

Graphical Abstract



Authors

Christopher S. McGinnis, Lyndsay M. Murrow, Zev J. Gartner

Correspondence

zev.gartner@ucsf.edu

In Brief

scRNA-seq data interpretation is confounded by technical artifacts known as doublets—single-cell transcriptome data representing more than one cell. Moreover, scRNA-seq cellular throughput is purposefully limited to minimize doublet formation rates. By identifying cells sharing expression features with simulated doublets, DoubletFinder detects many real doublets and mitigates these two limitations.

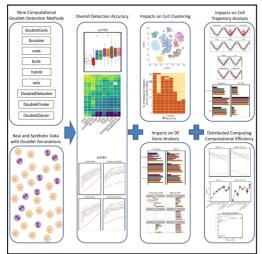
McGinnis et al. Cell Systems. 8: 329–337, 2019

Example 1: Doublets in single-cell RNA-seq

Cell Systems

Benchmarking Computational Doublet-Detection Methods for Single-Cell RNA Sequencing Data

Graphical Abstract



Authors

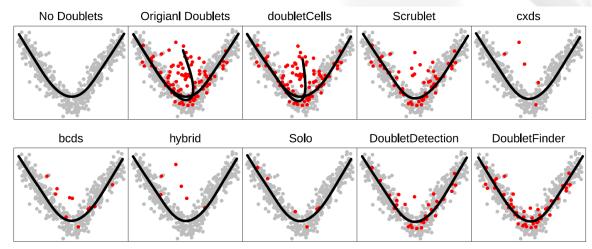
Nan Miles Xi, Jingyi Jessica Li

Correspondence

jli@stat.ucla.edu

In Brief

We conduct a systematic benchmark study of nine cutting-edge computational doublet-detection methods. We evaluate the methods' detection accuracy, impacts on downstream analyses, and computational efficiency, using a comprehensive set of real and synthetic data. Although no method dominates in all aspects, the DoubletFinder and cxds methods have the best detection accuracy and computational efficiency, respectively.



Xi & Li. Cell Systems. 12: 176–194, 2021

Article

nature methods

Explore content Y About the journal Y Publish with us Y

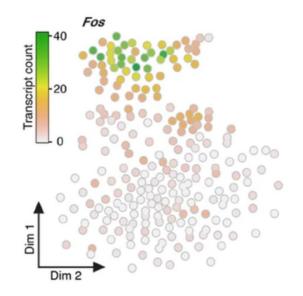
<u>nature</u> > <u>nature methods</u> > <u>correspondence</u> > article

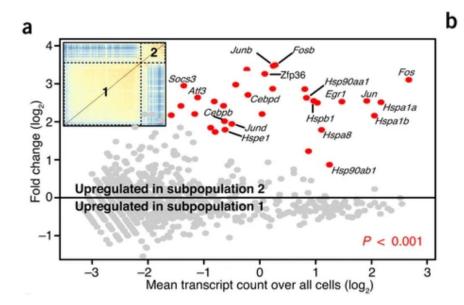
Published: 29 September 2017

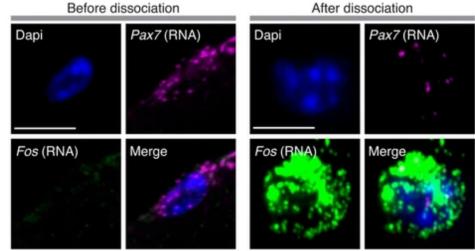
Single-cell sequencing reveals dissociation-induced gene expression in tissue subpopulations

Susanne C van den Brink, Fanny Sage, Ábel Vértesy, Bastiaan Spanjaard, Josi Peterson-Maduro, Chloé S Baron, Catherine Robin & Alexander van Oudenaarden ⊠

Nature Methods 14, 935–936 (2017) Cite this article 23k Accesses 364 Citations 240 Altmetric Metrics







O'Flanagan et al. Genome Biology (2019) 20:210 https://doi.org/10.1186/s13059-019-1830-0

Genome Biology

Open Access

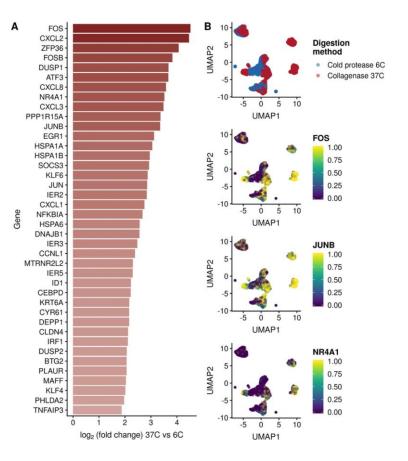
Check for

RESEARCH

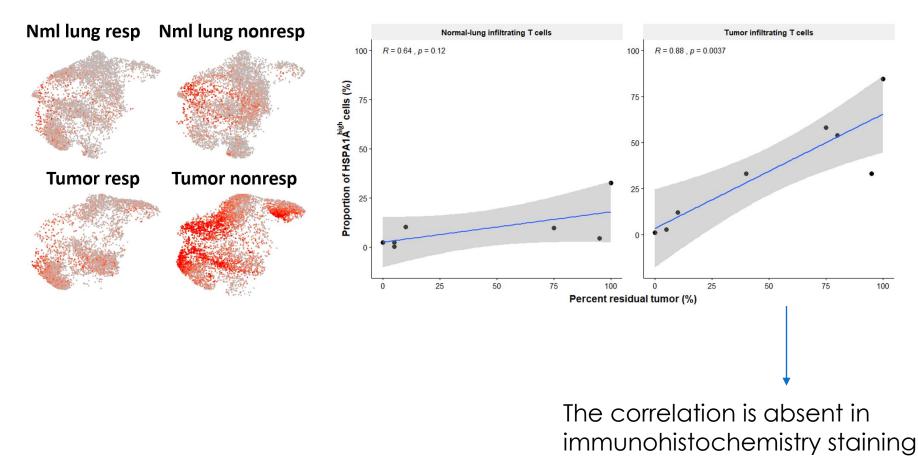
Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenaseassociated stress responses

Ciara H. O'Flanagan¹⁺, Kieran R. Campbell^{1,2,3†}, Allen W. Zhang^{1,4,5†}, Farhia Kabeer^{1,6†}, Jamie L. P. Lim⁷, Justina Biele¹, Peter Eirew¹, Daniel Lai¹, Andrew McPherson^{1,7}, Esther Kong¹, Cherie Bates¹, Kelly Borkowski¹, Matt Wiens¹, Brittany Hewitson¹, James Hopkins¹, Jenifer Pham¹, Nicholas Ceglia⁴, Richard Moore⁸, Andrew J. Mungall⁸, Jessica N. McAlpine⁹, The CRUK IMAXT Grand Challenge Team¹, Sohrab P. Shah^{1,6,7*} and Samuel Aparicio^{1,3*}

Dissociation using collagenase at 37°C results in a stress response as compared to dissociation using a cold active protease at 6°C.

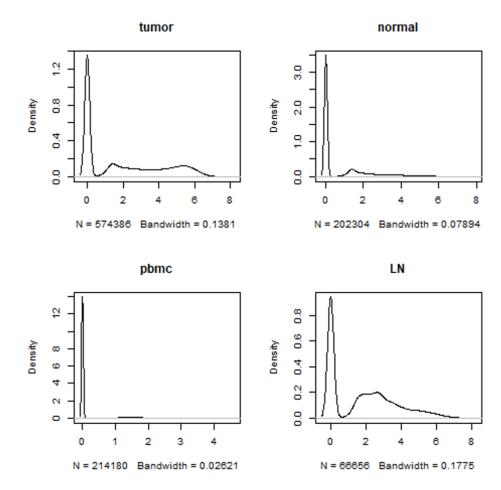


HSPA1A expression



Zhang, Caushi, Pardoll, Smith, et al.

HSPA1A only expresses in solid tissue samples but not in PBMC (PBMC is handled without using dissociation enzyme)



Zhang, Caushi, Pardoll, Smith, et al.

How to deal with artifacts due to data generation?

Build knowledge

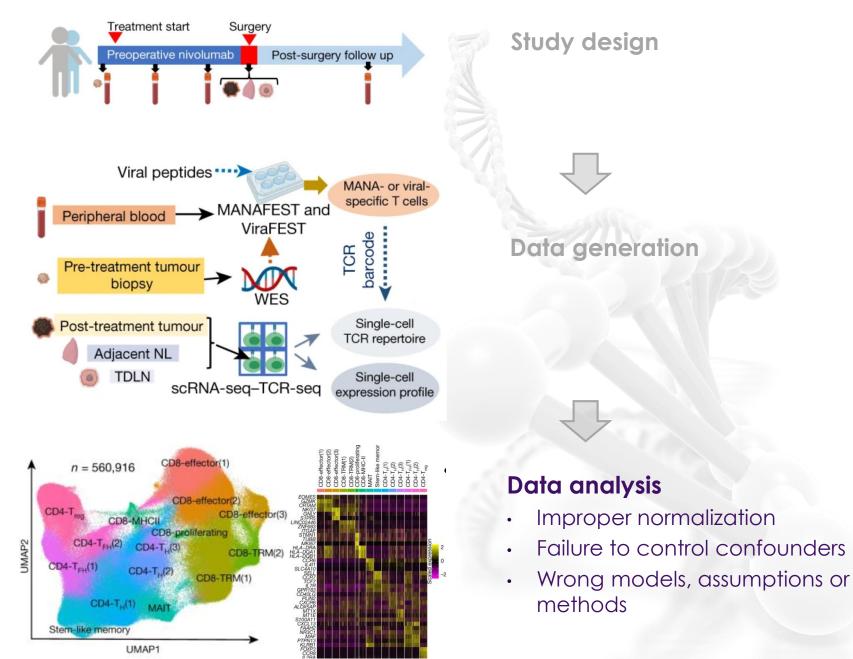
- Understand the data generation process
- Compare results from orthogonal data
- Analyze many datasets and find recurring patterns

Develop solution

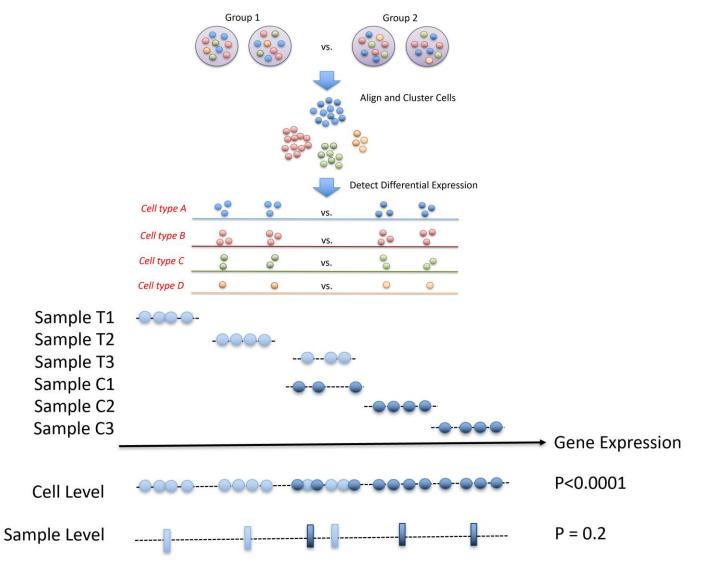
- Improve experimental technologies
- Develop computational algorithms for artifact detection and removal
- Spike-in experiments for benchmark

Importantly, wet lab and dry lab investigators need to closely work together!

Artifacts due to data analysis

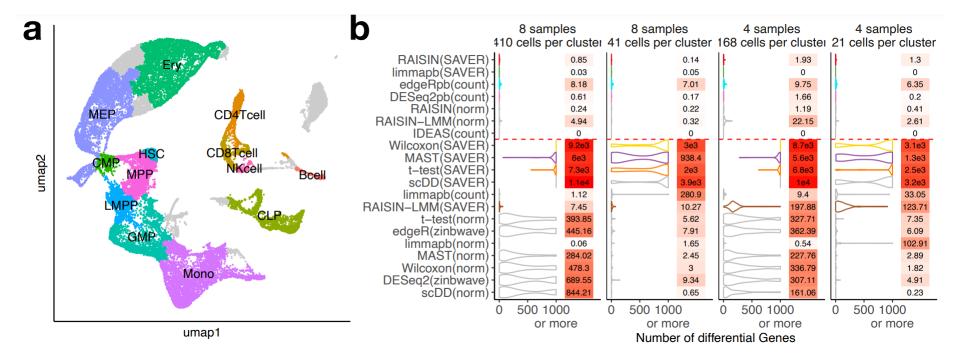


Example 1: scRNA-seq differential expression

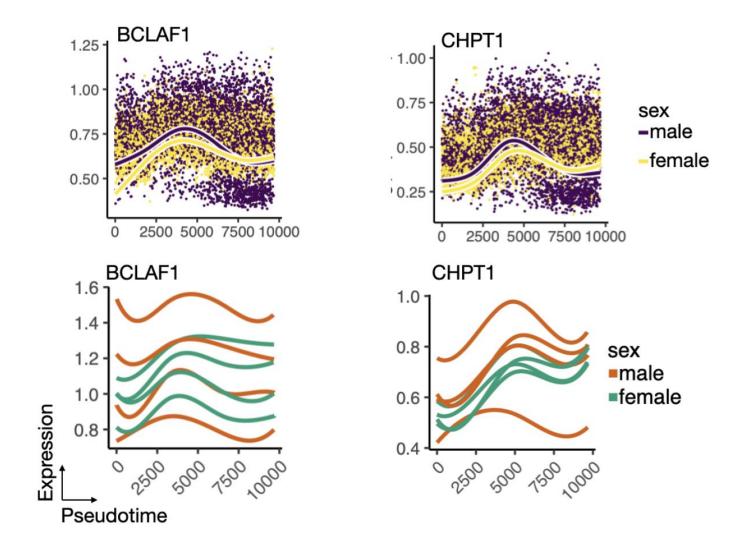


Wilcoxon test ignores sample variability. When there are multiple samples, it will create false discoveries.

Example 1: scRNA-seq differential expression

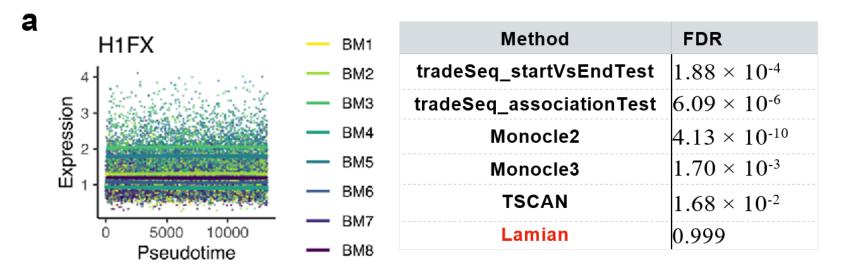


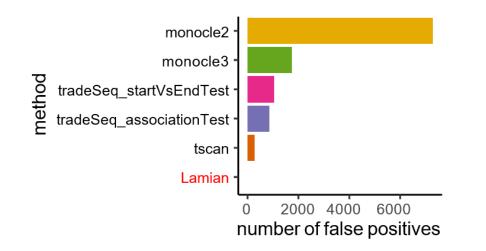
Example 1: scRNA-seq differential pseudotemporal expression



Hou et al. bioRxiv preprint, https://doi.org/10.1101/2021.07.10.451910

Example 1: scRNA-seq differential pseudotemporal expression

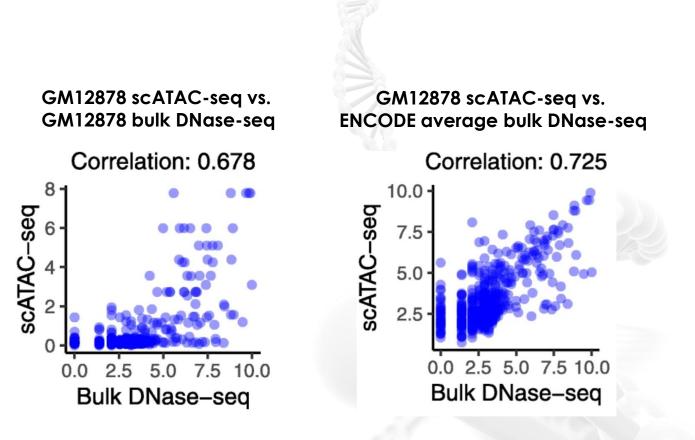




b

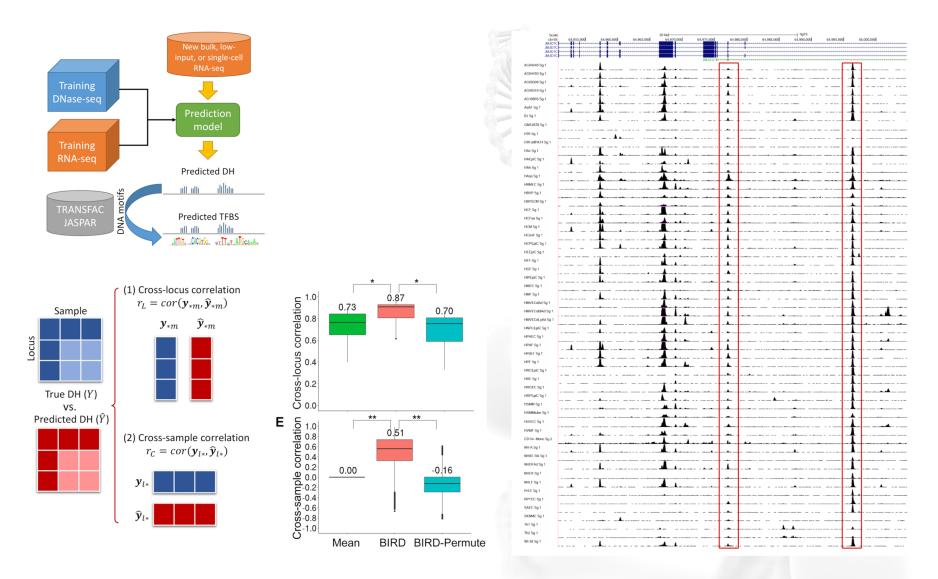
Hou et al. bioRxiv preprint, https://doi.org/10.1101/2021.07.10.451910

Example 2: Chromatin accessibility locus effects



Ji et al. Genome Biology. 21: 161, 2020

Example 2: Chromatin accessibility locus effects

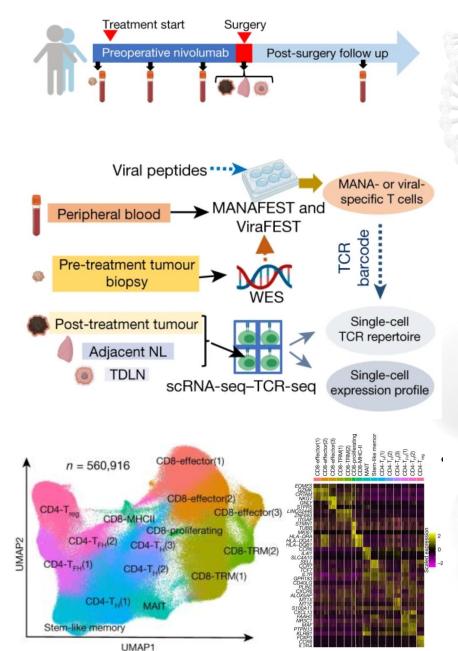


Zhou et al. Nature Communications. 8: 1038, 2017 Zhou et al. Nucleic Acids Res. 47: e121, 2019

How to prevent and identify artifacts due to data analysis?

- Build good understanding of your data
- Choose appropriate models and assumptions
- Use proper controls
- Learn from analyzing many datasets
- Compare results from orthogonal data
- Benchmark using spike-in experiments
- Again, wet lab and dry lab investigators should work closely together

Summary: common sources of artifacts



Study design

 Lack of proper control or randomization

Data generation

- Bias and noise in technology
- Bias in experimental procedure

Data analysis

- Improper normalization
- Failure to control confounders
- Wrong models, assumptions or methods

General principles and common methods for preventing, identifying and removing artifacts

- Wet lab and dry lab investigators work closely together from day one
- Use proper control and randomization
- Validate findings using orthogonal data
- Learn from analyzing many datasets
- Use appropriate models, assumptions, and analysis methods
- Benchmark using spike-ins

Acknowledgment

<u>The Johns Hopkins Bloomberg</u> <u>School of Public Health</u>

Boyang Zhang Weiqiang Zhou Ruzhang Zhao Wenpin Hou Stephanie Hicks

The Johns Hopkins School of Medicine

Jiajia Zhang Justina X. Caushi Arbor G. Dykema Srinivasan Yegnasubramanian Drew M. Pardoll Kellie N. Smith

Duke University School of <u>Medicine</u> Zhicheng Ji

<u>Funding</u> NIH R01HG009518, R01HG010889 Johns Hopkins IDIES Seed Fund

How to Submit Questions

- Click the "Q&A" icon located on at the bottom of your Zoom control panel
- Type your question in the Q&A box, then click "Send"
- Questions will be answered in the Question & Answer session at the end of the webinar (as time permits)

Raise Hand

Chat

Leave Mee

Audio Settings

000	Q	&A			
You asked: What happens wh		18:03			
Molly Parker and I can take you o				18:04	
Please input your o	question				
Send Anonymou	ısly			Send	
			Immunc	omputatio o-oncolog iar series	