

Modulating the Tumor Microenvironment to Enhance Antitumor Immunity

Antigen-encoding poxvirus vectors overcome immune escape

Edmund C. Lattime, Ph.D. The Cancer Institute of New Jersey

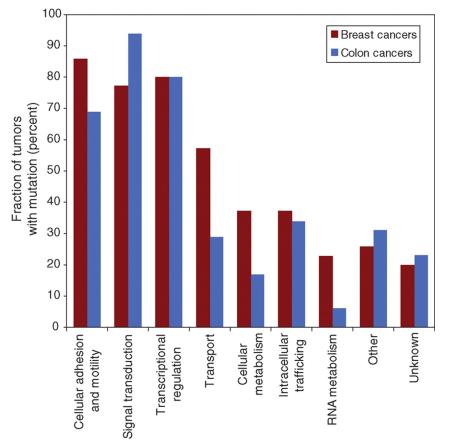
The patented use of Recombinant Vaccinia virus encoding GMCSF has been licensed to Jennerex Biotherapeutics.

As an inventor on the patent, I have a royalty position.

Poxvirus Vector Platform for Immunotherapy

- Localized gene transfer for immune modulation of tumor microenvironment
 - Cytokine gene transfection for cell recruitment
 - Costimulatory molecules for enhanced T activation
 - Modulation of tumor associated suppressive milieu
- Antigen-encoding viral based vaccines
 - Defined tumor antigens (CEA, PSA)
 - Infectivity in tumor microenvironment
 - Cytokine/Costimulatory molecules as "adjuvants"

Cancer Institute


inging research to life

VACCINIA VIRUS

- Large DNA pox virus
- 25 kb insert without compromise
- Highly infective and lytic in epithelial cells
- Replicates in cytoplasm without chromosomal integration

and the second
AN AN ANALYSIA ANALYS
INQUIRY
INTO
THE CAUSES AND EFFECTS
or
THE VARIOLÆ VACCINÆ,
A DISEASE
DISCOVERED IN SOME OF THE WESTERN COUNTIES OF ENGLAND,
PARTICULARLY
GLOUCESTERSHIRE,
AND KNOWN BY THE NAME OF
THE COW POX.
BY EDWARD JENNER, M.D. F.R.S. &c.
BUID XOBIS CERTICS (MIS
SENSIBUS RESE POTRY, GUO VERA AC PALSA NOTEMUS.
ICCRETIUS.
Lenbox: PRINTED, FOR THE AUTHOR,
BY SAMPSON LOW, Nº, 7, BERWICK STREET, SONO:
AND SOLD BY LAW, AVE-MARIA LANS, AND NURRAY AND RIGHLEY, FLEET STREET.
Nor.
3798.

Multiple Potential Antigens (colon and breast) for Immune Recognition

- 13,023 genes in 11 breast and 11 colorectal tumors
- ~ 90 mutations per tumor
- Subset involved in neoplastic process
- Any could be recognized as tumor antigens presented appropriately

Sjoblom, T. et. Al. Science 314:268, 2006

Advances	in Brief
Intraves	cal Gene Therapy: In Vivo Gene Transfer Using Recombinant
Vaccinia	Virus Vectors ¹
Sharon S. I	ee, Laurence C. Eisenlohr, Peter A. McCue, Michael J. Mastrangelo, and Edmund C. Lattime ²
Division of Neop	ee, Laurence C. Elschnort, Peter A. McCue, Michael J. Mastrangers, and Lonnord C. Laurence assic Diseaser, Departments of Medicine JS. S. E., M. J. M., E. C. Lj and Pathology (P. A. M.) and humanology Program JS. S. L., L. C. E., E. C. University, Philadelphia, Parasylvania 19167

- Vaccinia recombinants infect/transfect a variety of murine tumors in-vitro
- Intravesical vaccinia infects/transfects bladder tumor cells
- Immunity to vaccinia does not prevent tumor infection/ transfection

Cancer Institute

ringing research to life

VACCINE RESEARCH Volume 4, Number 2, 1995 Mary Ann Liebert, Inc.	
	udy Demonstrating the Feasibility of umoral Vaccinia Injections as a Vector
to the electronic or receiver incoment of localized cytolo will instantity and down-re-	for Gene Transfer
SHARON S. LEI	ANGELO, ¹ HENRY C. MAGUIRE, JR., ^{1,4} PETER McCUE ^{2,1,5} ARCHIE ALEXANDER, ³ LEVON N. NAZARIAN, ³ EISENLOHR, ⁵ FAITH NATHAN, ¹ DAVID BERD, ^{1,5} and • EDMUND C. LATTIME ^{1,5}

- Intralesional vaccinia virus can be given safely to patients with melanoma
- Vaccinia virus infects human melanoma cells after intralesional injection

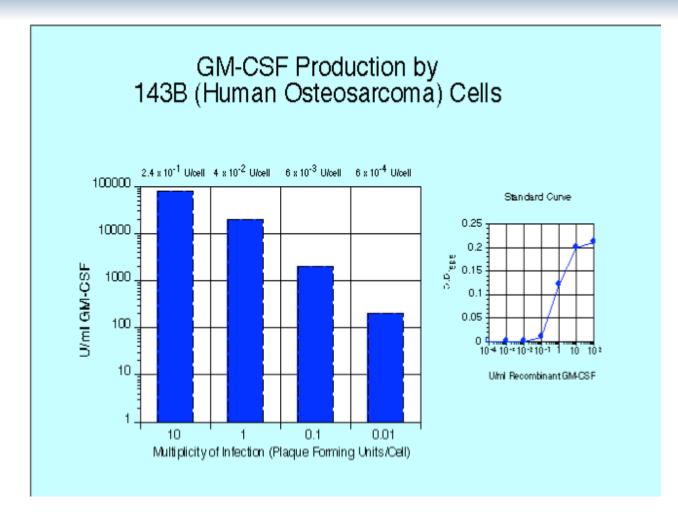
ancer Institute

Bringing research to life

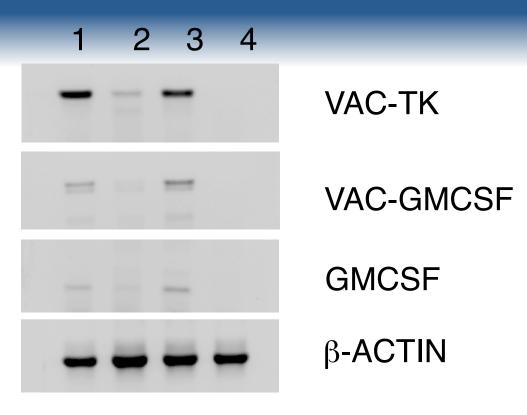
- Anti-vaccinia immunity does not prevent tumor infection
- Melanoma cells express viral gene products

Intratumoral recombinant GM-CSF-encoding virus as gene therapy in patients with cutaneous melanoma

Michael J. Mastrangelo,¹ Henry C. Maguire Jr.,¹ Laurence C. Eisenlohr,² Carol E. Laughlin,² Claude E. Monken,¹ Peter A. McCue,³ Albert J. Kovatich,³ and Edmund C. Lattime^{1,2}


Departments of ¹Medicine, ²Microbiology and Immunology, and ³Pathology, Anatomy, and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, Pennsylvania 19107.

- Intralesional injection of Vac-GMCSF in recurrent superficial melanoma
- Patients failing all conventional therapy
- Escalating doses of Vac-GMCSF given 2X weekly


he Cancer Institute f New Jersev[®]

Bringing research to life.

Recombinant GM-CSF encoding vaccinia

mRNA in VAC-GMCSF Injected Lesions

(Patient 3)

1 - 18 hr. biopsy (chronic injections)

The Cancer Institute

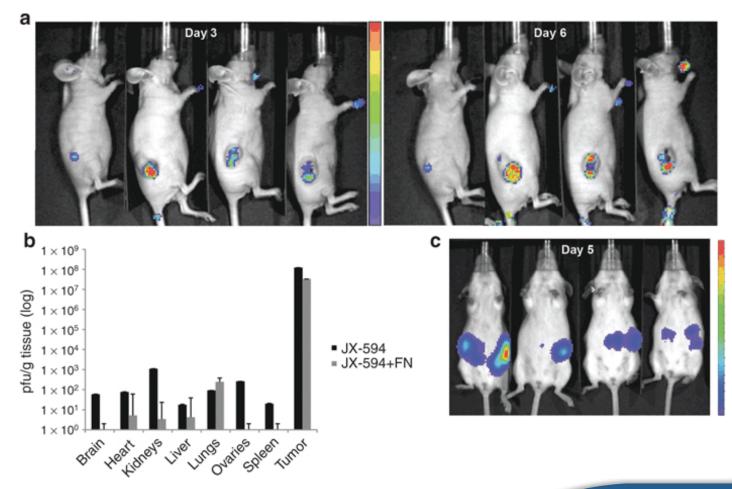
of New Jersey[®] Bringing research to life.

- 2 18 hr. biopsy (single injection)
- 3 18 hr. biopsy (single injection)
- 4 Uninjected lesion

Intralesional VAC-GMCSF Injected and Local Uninjected Lesions

Figure 9. Patient 3, a 32-year-old female with extensive dermal metastases of the left thigh: anterior aspect before treatment (a), on day 81 (b), and on day 600, 150 days posttreatment (c).

Intralesional VAC-GMCSF Distant Uninjected Lesions


Results: Intralesional VV-GMCSF

- Local infectivity: Occurs consistently at 10⁷ PFU per injection
- Reporter gene: 7 of 7 patients made IgG antibodies to β -gal
- Recombinant GM-CSF gene:
 - VAC-GM-CSF mRNA measured in 18 hr. biopsies early and late in course of treatment
 - Eosinophilia was seen at treatment sites
- Injected lesions regressed in 5/7 patients
- Uninjected lesions regressed in 4/7 patients

The Oncolytic Poxvirus JX-594 Selectively Replicates in and Destroys Cancer Cells Driven by Genetic Pathways Commonly Activated in Cancers

Kelley A Parato¹, Caroline J Breitbach², Fabrice Le Boeuf¹, Jiahu Wang^{1,2}, Chris Storbeck^{1,2}, Carolina Ilkow¹, Jean-Simon Diallo¹, Theresa Falls¹, Joseph Burns¹, Vanessa Garcia¹, Femina Kanji¹, Laura Evgin^{1,3}, Kang Hu^{1,2}, Francois Paradis¹, Shane Knowles¹, Tae-Ho Hwang⁴, Barbara C Vanderhyden^{1,5}, Rebecca Auer^{1,3}, David H Kirn² and John C Bell^{1–3}

RESEARCH NEWS & VIEWS

LETTER

CANCER

Tumour-fighting virus homes in

An early clinical trial demonstrates the delivery and replication of a cancer – killing virus in metastasized tumour tissue. These promising results could provide a foundation for systemic virotherapy for patients with cancer. SEE LETTER P.99

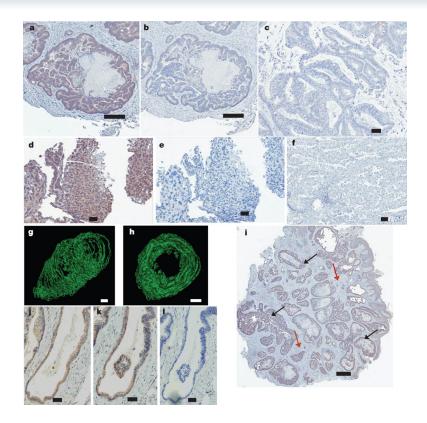
injection; these were all well tolerated. The maximum feasible dose was 3×10^7 plaque-forming units (PFU) per kilogram of body weight (corresponding to a total dose of about 2×10^7 PFU). This dosage is in line with doses of other oncolytic viruses that can safely be given intravenously, including adenovirus, reovirus, paramyxovirus (Newcastle disease virus and measles) and Seneca Valley virus.

Breitbach et al. demonstrated such dosedependent delivery of the virus (at 8–10 days after intravenous administration) to metastatic tumour deposits from a variety of tumour types, including leionwasarcoma, meatheliama, and

doi:10.1038/nature10358

The Cancer Institute

of New Jersey[®] Bringing research to life.


Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans

Caroline J. Breitbach¹, James Burke²↑, Derek Jonker^{1,4}, Joe Stephenson⁵, Andrew R. Haas⁶, Laura Q. M. Chow^{3,4}, Jorge Nieva², Tae-Ho Hwang⁷, Anne Moon¹, Richard Patt⁸, Adina Pelusio¹, Fabrice Le Boeuf³, Joe Burns^{3,4}, Laura Evgin^{3,4}, Naomi De Silva^{3,4}, Sara Cvancic^{1,4}, Terri Robertson¹, Ji-Eun Je⁷, Yeon-Sook Lee⁷, Kelley Parato³, Jean-Simon Diallo³, Aaron Fenster⁹, Manijeh Daneshmand^{3,4}, John C. Bel^{3,4}& David H. Kirn¹*

- Vac-GM (JX-594)
 - Cancer selective after i.v. administration
 - In-vitro explants
 - In-vivo Phase I

Nature 477, 1 September, 2011

IHC reveals infection and β-gal expression in a colorectal tumor from Phase I study of intravenous JX-594.

CJ Breitbach et al. Nature 477, 99-102 (2011) doi:10.1038/nature10358

nature

he Cancer Institute

Bringing research to life.

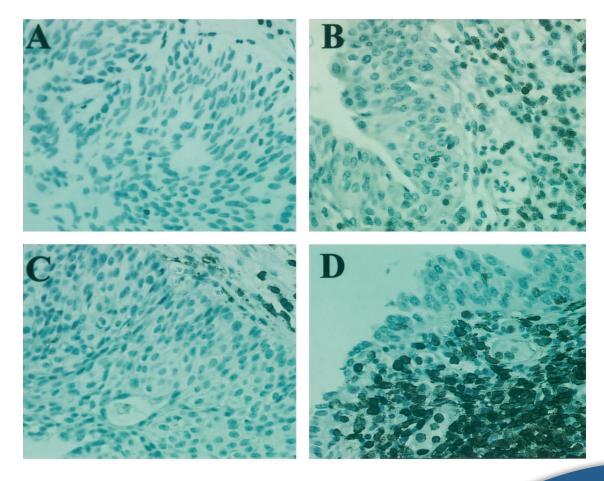
0022-5347/01/1664-1291/0 THE JOURNAL OF UROLOGY[®] Copyright © 2001 by American Urological Association, Inc.[®]

Vol. 166, 1291–1295, October 2001 Printed in U.S.A.

> he Cancer Institute f New Jersev[®]

Bringing research to life.

PHASE I STUDY OF INTRAVESICAL VACCINIA VIRUS AS A VECTOR FOR GENE THERAPY OF BLADDER CANCER


LEONARD G. GOMELLA, MICHAEL J. MASTRANGELO, PETER A. McCUE, HENRY C. MAGUIRE, JR., S. GRANT MULHOLLAND* AND EDMUND C. LATTIME†

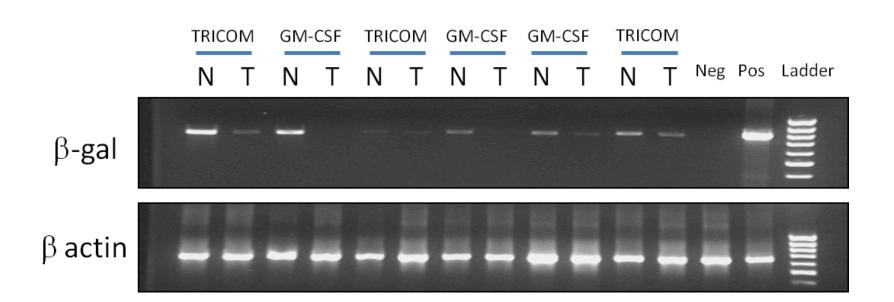
From the Departments of Urology, Pathology and Medicine (Division of Medical Oncology), Jefferson Medical College and the Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania

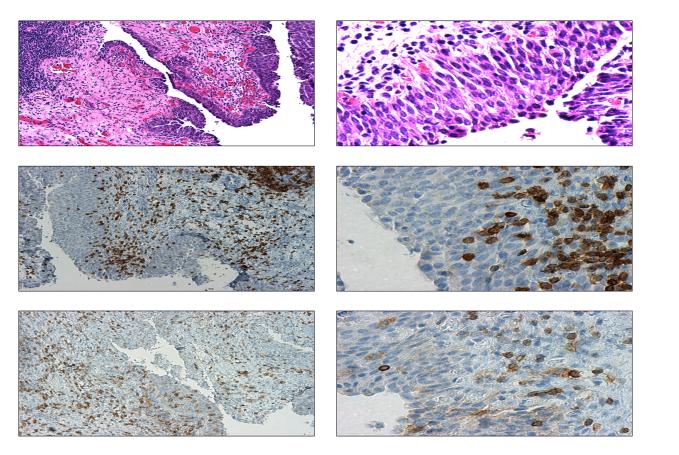
- Intravesical Vaccinia can be given without toxicity
- Intravesical Vaccinia infects bladder mucosa
- Intravesical vaccinia results in the recruitment of CD3⁺, CD45RO⁺ T cells to the bladder mucosa

Intravesical Vaccinia Recruits CD3⁺, CD45RO⁺ T Cells to Bladder Mucosa

Pretreatment Post treatment (24 hrs post dose 3)

CD3

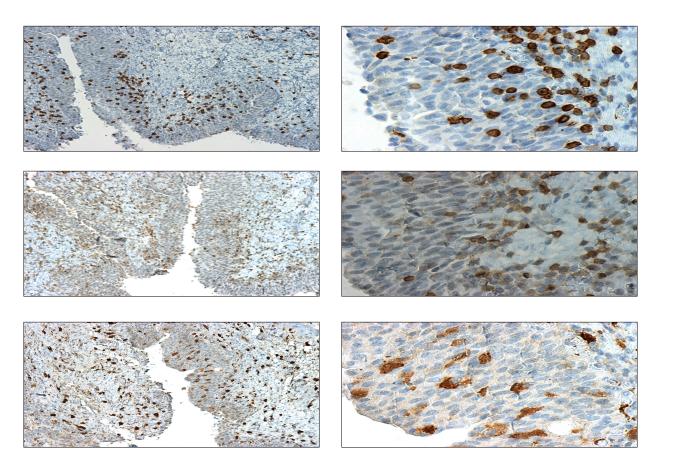

CD45RO


Phase I Study of Intravesical Fowlpox-GMCSF, TRICOM (NCT00072137)

- Hypothesis
 - GM-CSF will recruit and activate APC
 - TRICOM (LFA3, ICAM-1, B7.1) will allow antigen presentation by tumor cells
- Antigen provided by tumor cell
- Assess the safety of intravesical fowlpox virus encoding GM-CSF and/or TRICOM
- Determining the kinetics of viral infection and gene function
- Determine the host immune response to vector and tumor antigen (epitope spreading)

Expression of Lac-Z. gene in the tumor and NAT, post cystectomy, by RT-PCR

Immunohistochemistry Pt. 3 rF-GMCSF (7 X 10⁷ PFU)



H&E

CD3 (T)

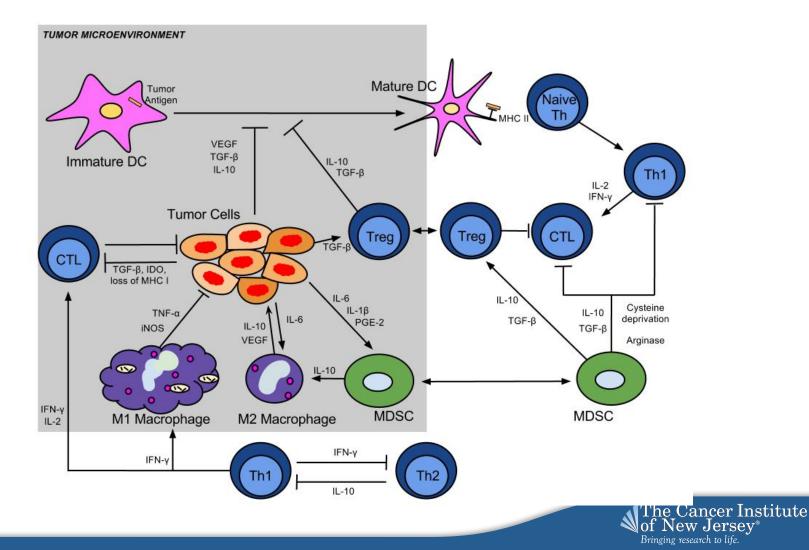
 $CD4 (T_h)$

Immunohistochemistry Pt. 3 rF-GMCSF (7 X 10⁷ PFU)

CD8 (T_c)

CD45RO (T_{act})

Factor XIII (DC)



Poxvirus Vector Platform for Immunotherapy

- Localized gene transfer for immune modulation of tumor microenvironment
 - Cytokine gene transfection for cell recruitment
 - Costimulatory molecules for enhanced T activation
 - Modulation of tumor associated suppressive milieu
- Antigen-encoding viral based vaccines
 - Defined tumor antigens (CEA, PSA)
 - Infectivity in tumor microenvironment
 - Cytokine/Costimulatory molecules as "adjuvants"

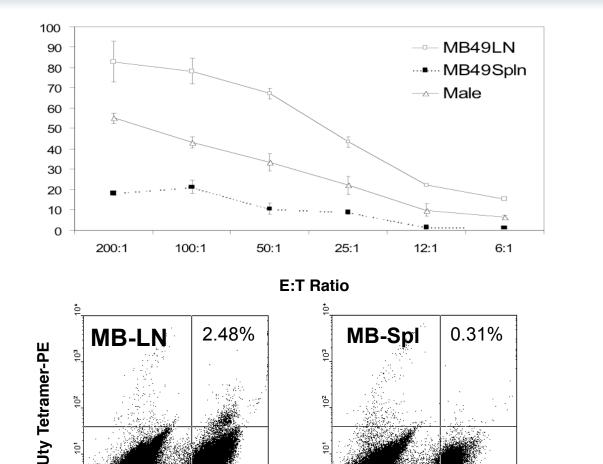
Immune escape and the tumor microenvironment

The MB49 Model

- C57BL/6J <u>male</u> urothelium treated in-vitro with DMBA (lan Summerhayes)
- Grows progressively in male and female B6 intravesically and subcutaneously
- Expresses male (HY) antigen complex
 - Male-primed female B6 reject tumor inoculum
 - HY-specific CTL lyse MB49 in ⁵¹Cr assays
 - MHC Class I⁺, II⁻ (IFN-γ upregulates Class II)
- Presents soluble antigen to CD4⁺ T cells

[CANCER RESEARCH 63, 000-000, October 15, 2005]

Intratumoral Vaccination with Vaccinia-Expressed Tumor Antigen and Granulocyte Macrophage Colony-Stimulating Factor Overcomes Immunological Ignorance to Tumor Antigen¹


Arvin S. Yang, Claude E. Monken, and Edmund C. Lattime²

Departments of Sargery and Malecular Genetics, Microbiology, and Immanology, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School and The Cancer Institute of New Jersey, New Bennwick, New Jersey (08901

- Develop recombinant vaccinia-HY vaccine vector
- Evaluate vaccine stimulated T cell (CD8) responses
- Assess tumor induced immunity/ignorance
- Evaluate effects of systemic vs intratumor immunization

Antitumor Responsiveness in LN (local) but not Splenic (systemic)

원<mark>.</mark> 10°

101

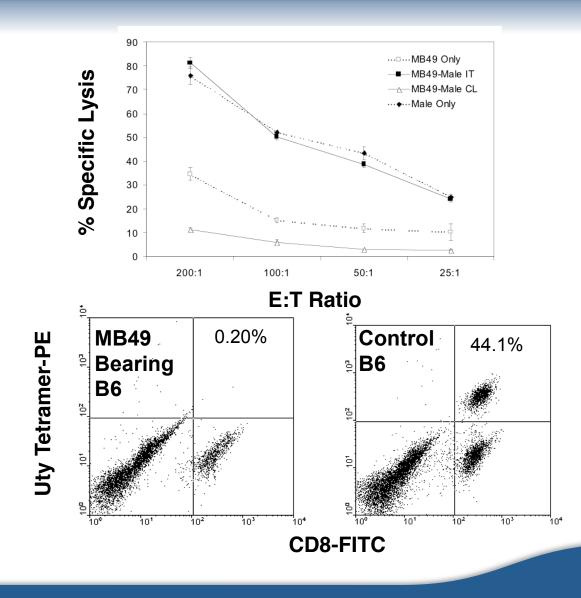
10²

CD8-FITC

103

10⁴

10°


10

CD8-FITC

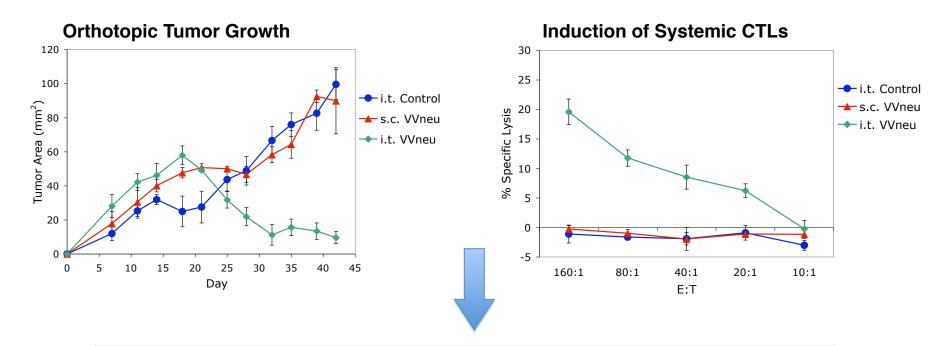
103

104

MB49 Bearing Mice are Systemically Anergic to HY

Suppressive pathway commitment is an early event in MB49

- Naïve mice can be systemically immunized
- Tumor inoculation "sets" suppressive phenotype (before palpable)
- Suppression is tumor specific
 - Induction of T regulatory cells
 - Tumor-bearing mice can be immunized to unrelated antigen
- MB49 stimulates LN (local) but not Splenic (systemic) CTL activity
- MB49-bearing mice are anergic to systemic immunization
- Suppression inhibits Antigen Presentation


NBT1: orthotopic breast cancer model

- NBT1 is a rat HER2/neu-overexpressing mouse mammary carcinoma derived by our group from FVB/neuT transgenic mice. In experiments involving tumor-bearing mice, female FVB/N (n=5) mice were injected into the mammary fatpad with 2x10⁶ NBT1 cells
- VVneu is a recombinant vaccinia virus expressing rat HER2/ neu. VVGMCSF is a recombinant vaccinia virus expressing GM-CSF. VVBGal is a vaccinia control. Mice received 1x10⁶ pfu dose of each indicated virus (2x10⁶ pfu total).

ne Cancer Institute

ing research to life

Intratumoral but not systemic immunization induces Neu-specific CTL and eliminates tumor

CTEP-7606: A Phase 1 Study of Intra-tumoral Injection of Antigen Encoding Pox Virus Vaccine in Patients with Locally Advanced Pancreas Cancer

Intrapancreatic PanVac Phase I Trial (NCTC00669734)

Tumor Antigen Gene Co-stimulatory molecule genes	
Image: Contract of the second seco	Induction of Tumor specific immune responses (T-cells)

Schedule of immunizations

day	schema
1-5	D1 PANVAC-F IT via EUS; d2 PANVAC-V+GMCSF; D3-5 GMCSF
15-9	D15 PANVAC-F IT via EUS; d16 PANVAC-F +GMCSF; D3-5 GMCSF
29-32	D29 PANVAC-F+ D29-32 GMCSF
35	(Pts may start standard of care chemo or chemoRT)
43	D43 PANVAC-F+ D43-46 GMCSF
71	D71 PANVAC-F + D71-74 GMCSF

Clinical results

pt	stage	IT/SC inj	f/u First Chemo	f/u RT	CA19-9	F/U	Progression to met
76/m	T4N0M0	2,4	gem	yes	133	30 mo+	No
78/m	T4N0M0*	2,5	no	no	19	Ex/862	No
70/f	T4N1M1	2,2	Sys-off	unk	218	Off study Ex/159	Metastases
81/f	T4N0M1*	2,5	gem	yes	205	Ex/177	No
74/f	T4N1M1*	2,5	gem	yes	815	Ex/566	No
75/f	T3N1M0	2,2	none	no	544	Ex/35	
69/f	T3N1M0	2,5	gem	no	12990	15 mo+	No
73/F	T3N1M1	2,5	gem	no	190	Ex/166	Metastases
47/M	T3NxM1	2,5	gem	No	20	10 mo+	Metastases
74/M	T4N1M0	1,2	gem/cap	No	9	Off study 9 mo+	No
45/M	T4N1M0	2,5	gem	none	950	8 mo+	No

Conclusions (Intrapancreatic Immunization)

- Intrapancreatic injection of 2 doses of Panvac-F together with a series of sc injections of Panvac-V and Panvac-F was well tolerated
- In the first 6 pts, 2 pts were removed due to progressive disease
- While local progression is noted, no patient (10/10) presenting without metastatic disease has developed distant metastases

Poxvirus Vector Platform for Immunotherapy

- Localized gene transfer for immune modulation of tumor microenvironment
 - Poxvirus (Vaccinia and Fowlpox) can be given safely and repeatedly via the intratumoral route.
 - Poxvirus productively infects tumor and non tumor cells following localized administration
 - Infection results in transfection the production of the gene product in-vivo
 - Infection modulates the cellular makeup of the tumor microenvironment
- Tumor antigen-encoding poxvirus
 - Effectively immunizes to tumor antigen
 - The intratumoral route of immunization can overcome significant immune escape associated with both Treg and MDSC phenotypes

e Cancer Institute

inging research to life

Acknowledgements

- Lattime lab:
 - Christiaan deVries
 - Emmanuel Gabriel
 - Amal Mansour
 - Claude Monken
 - Arvin Yang
- Clinical collaborators
 - David August
 - Tamir Ben-Menachem
 - Robert DiPaola
 - Elizabeth Poplin
 - Joe Shih
 - Mark Stein
 - Robert Weiss

- Thomas Jefferson
 - Laurence Eisenlohr
 - Michael Mastrangelo
- National Cancer Institute
 - James Gulley
 - Jeff Schlom
 - Howard Streicher
- Supported by:
 - R01CA42908, R21CA121589
 - CTEP U01CA07031
 - CINJ Shared Resources
 - P30CA72720
 - The CINJ Foundation