

IMMUNOTHERAPY™

### What's Next for Cancer Immunotherapy?

### Christian Capitini, MD

Assistant Professor of Pediatrics

Hematology, Oncology and Bone Marrow Transplant

University of Wisconsin







Society for Immunotherapy of Cancer



### Disclosures

- Nektar Therapeutics Advisory Board; Honorarium
- By virtue of discussing the future, I will be discussing non-FDA approved indications during my presentation.

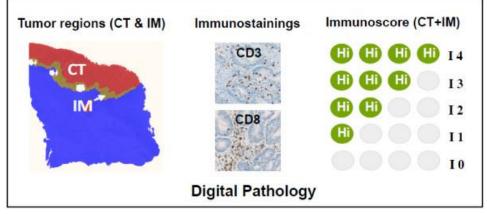






### Improvements in Staging and Immunotherapy Biomarkers

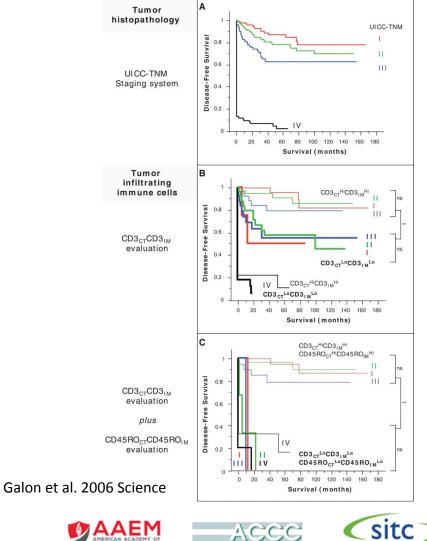
### • Immunoscore


- CD3, CD8, memory markers
- PD-L1, PD-L2 and other checkpoint ligands
- Next generation sequencing
  - MSI-high, MMR defects, etc.
- Gut microbiome
- Tumor microenvironment/metabolomics








Immunoscore will become part of standard pathologic reports for all tumors, used as a biomarkers for responses and correlate with survival

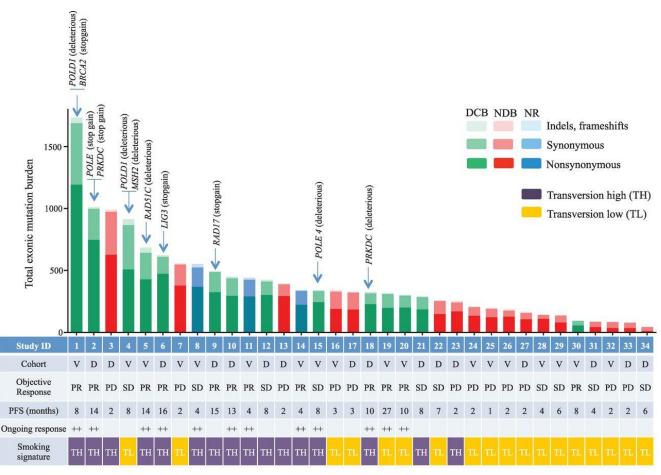


CT = center of tumor; IM = invasive margin; Galon et al. 2012 J Transl Med

#### Cancers where immunoscore correlates with outcome

| Adult tumors               | Hepatocellular carcinoma |
|----------------------------|--------------------------|
| Colorectal cancer          | Breast cancer            |
| Melanoma                   | Ovarian cancer           |
| Renal cell carcinoma       | Spinal chordoma          |
| Non-small cell lung cancer | Pediatric tumors         |
| Head and neck cancer       | Neuroblastoma            |
| Gastric cancer             | Osteosarcoma             |

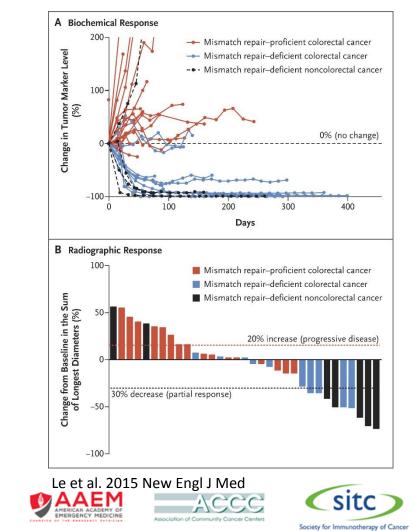


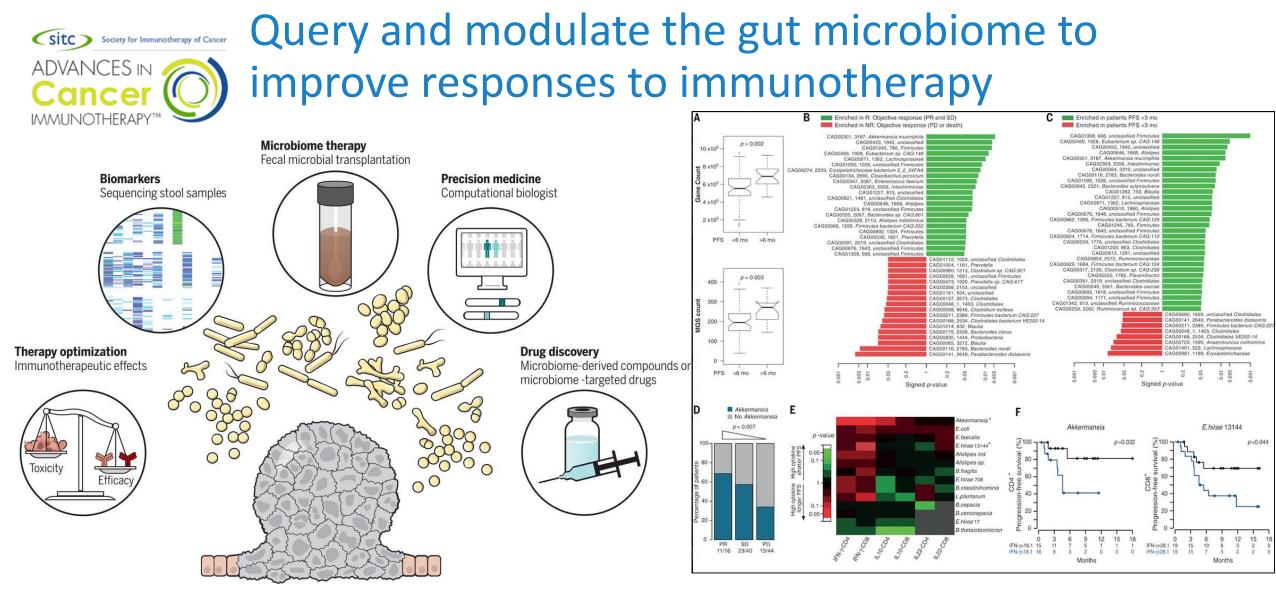

Association of Community Cancer Center

Society for Immunotherapy of Cancer



# Better intersection of next generation sequencing with predicting immunotherapy responses


#### **Tumor mutational burden**




#### Rizvi et al. 2016 Science

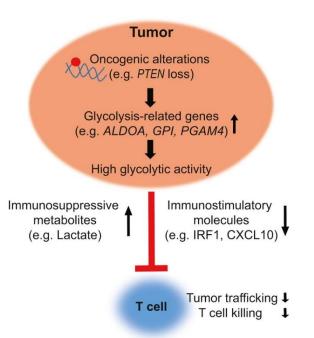
© 2018–2019 Society for Immunotherapy of Cancer

#### Mismatch repair defects





Zitvogel et al. 2018 Science


Routy et al. 2018 Science



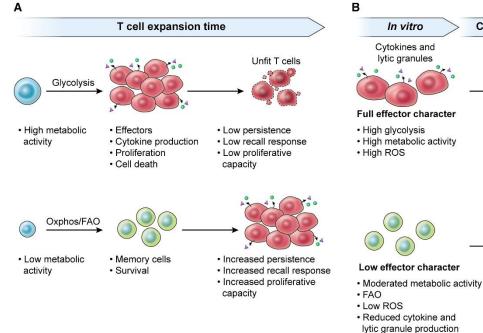




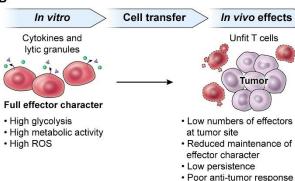
## Target the tumor metabolic environment to enhance immunotherapy responses

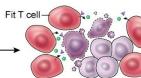


| GENE  | FC (N/R) | P value  | В                                                |                   |          | С                                            |          |                          |            |
|-------|----------|----------|--------------------------------------------------|-------------------|----------|----------------------------------------------|----------|--------------------------|------------|
| ALDOA | 1.697746 | 0.136385 |                                                  |                   |          |                                              | 1        |                          |            |
| ALDOC | 1.758665 | 0.186307 | <sup>50</sup> ]                                  | P=0.011           |          | _ 800                                        | Aerobic  | T                        | Energetic  |
| ENO2  | 1.257908 | 0.685237 | ъ <sup>40</sup> -                                |                   |          | ation                                        |          |                          |            |
| ENO3  | 2.365525 | 0.205193 |                                                  |                   | <u> </u> | spire                                        |          | YUN I                    |            |
| GAPDH | 1.733471 | 0.143722 | c ger<br>c ger                                   |                   |          | ol/n                                         |          |                          |            |
| GPI   | 1.700951 | 0.015443 | erall expression<br>glycolytic genes             | r <del>st</del> n | ••       | drial Respira<br>(pmol/min)                  |          |                          |            |
| LDHA  | 1.429014 | 0.302088 | Overall expression<br>glycolytic genes<br>0 0 00 |                   |          | Mitrochondrial Respiration<br>OCR (pmol/min) |          |                          |            |
| LDHB  | 1.511258 | 0.152462 | Ó                                                |                   | '        | C                                            |          |                          |            |
| PFKM  | 1.152264 | 0.57808  | 0 +                                              | CR/PR             | SD/PD    | 200                                          |          |                          |            |
| PFKP  | 1.232823 | 0.463708 |                                                  |                   |          | 0-                                           | Quiescen | 3-                       | Glycolytic |
| PGAM1 | 1.421356 | 0.108866 |                                                  |                   |          | C                                            | 5        | 10 1                     | 5 20       |
| PGAM4 | 1.5305   | 0.033143 |                                                  |                   |          |                                              |          | R (mpH/min)<br>Iycolysis |            |
| PGK1  | 1.636341 | 0.087465 |                                                  |                   |          |                                              |          | , ,                      |            |


Cascone et al. 2018 Cell Metab






# Target T cell metabolism to enhance immunotherapy responses



Kishton et al. 2017 Cell Metab





Increased numbers of effectors at tumor site
Effector activity against tumor
Increased persistence
High anti-tumor activity

| Molecule            | Target      | Metabolic<br>outcome               | Clinical (C),<br>pre-clinical<br>(P) |
|---------------------|-------------|------------------------------------|--------------------------------------|
| 2-DG                | Hexokinase  | ↓Glycolysis                        | Ρ                                    |
| Mdivi-1             | Drp-1       | $\downarrow$ Mitochondrial fission | Ρ                                    |
| JQ1                 | c-Myc       | ↓Glycolysis                        | Р                                    |
| STF-31              | GLUT1       | ↓Glycolysis                        | Р                                    |
| WZB117              | GLUT1       | ↓Glycolysis                        | Р                                    |
| Rapamycin           | mTOR        | ↓Glutamine<br>metabolism           | С                                    |
| Metformin           | АМРК, ЕТС   | 个FAO, others                       | С                                    |
| Fenofibrate         | ΡΡΑRα       | 个Fatty acid catabolism             | Ρ                                    |
| ugnani et al 2017 ( | ancer l ett |                                    |                                      |

Dugnani et al. 2017 Cancer Lett

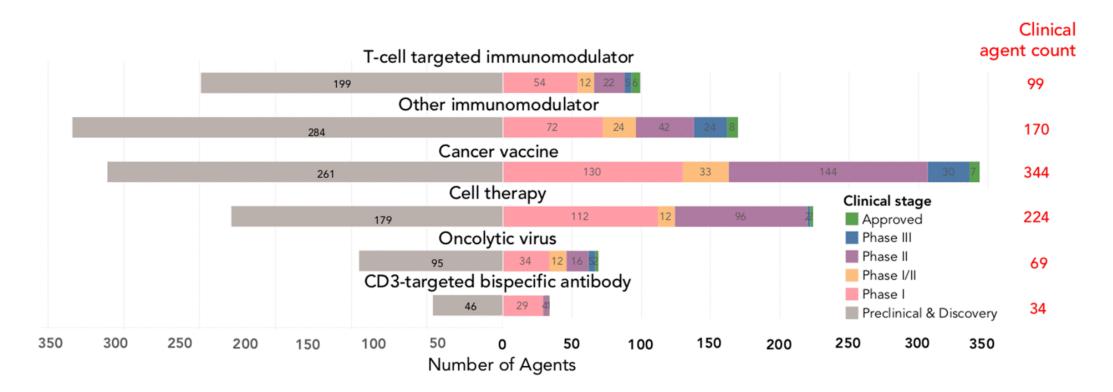






## Expansion of immunotherapy therapeutics

- Antibody therapy
  - Checkpoint agonists/inhibitors
  - Antibody-drug conjugates
  - Bispecifics
- Oncolytic viral therapy
- Radiotherapy/Immunotherapy


- Cellular therapy
  - CAR T cells and CAR NK cells
    - Bispecific
    - Bicistronic
    - Armored
  - TCR transduced T cells



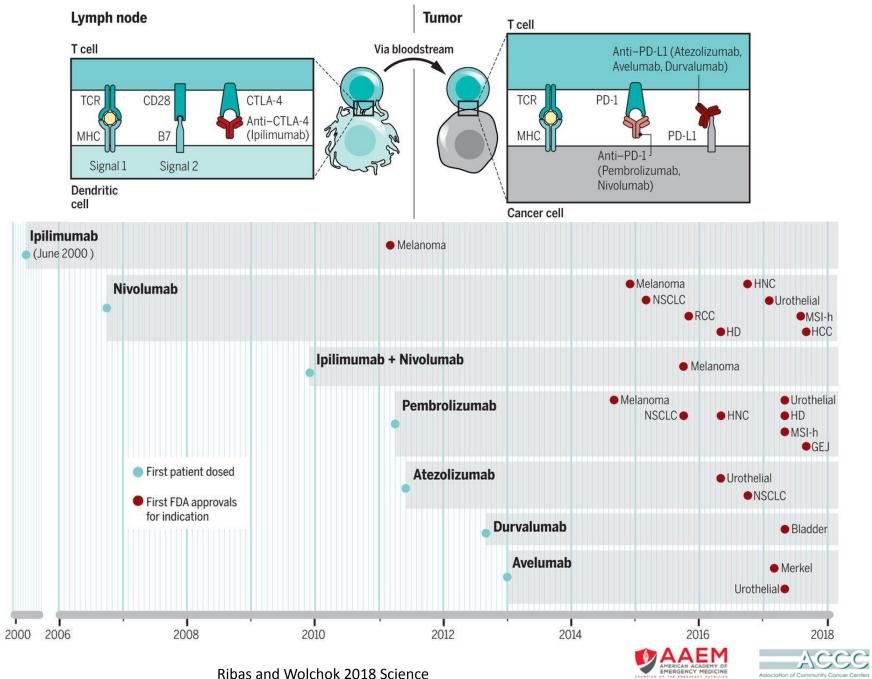


### 2,004 IO AGENTS IN DEVELOPMENT

#### 940 AGENTS ARE IN CLINICAL STAGES, AND 1,064 IN PRECLINICAL





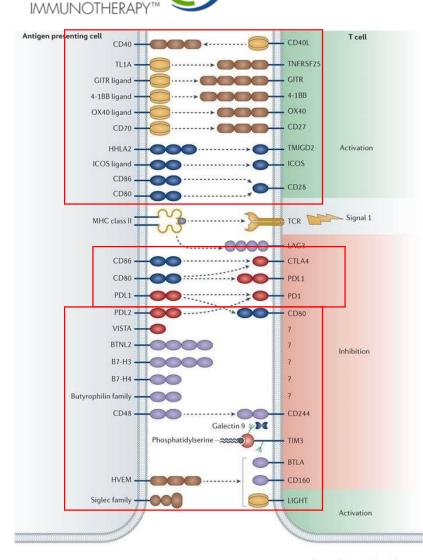

Page 4














Association of Community Cancer Centers

© 2018–2019 Society for Immunotherapy of Cancer

### Checkpoint agonists and antagonists will expand Society for Immunotherapy of Cancer and be used in combination



Appendix: Immune checkpoint modulators in combination clinical trials (August 2017



| Checkpoint modulator<br>name | Target  | Checkpoint modulator<br>name | Target | Checkpoint modulator<br>name | Target |
|------------------------------|---------|------------------------------|--------|------------------------------|--------|
| PF-05082566 / Utomilumab     | 4-1BB   | GWN323                       | GITR   | MOXR0916                     | OX-40  |
| Urelumab                     | 4-1BB   | INCAGN01876                  | GITR   | PF-04518600                  | OX-40  |
| AZD4635                      | ADORA2A | MK-1248                      | GITR   | AMP-224                      | PD-1   |
| CPI-444                      | ADORA2A | MK-4166                      | GITR   | BGB-A317                     | PD-1   |
| NIR178                       | ADORA2A | GSK3359609                   | ICOS   | IBI308                       | PD-1   |
| PBF-509                      | ADORA2A | JTX-2011                     | ICOS   | JS001                        | PD-1   |
| Preladenant / MK-3814 /      | 4000434 | Epacadostat                  | IDO    | MED10680                     | PD-1   |
| SCH420814                    | ADORA2A | Indoximod                    | IDO    | Nivolumab                    | PD-1   |
| Enoblituzumab                | B7-H3   | KHK2455                      | IDO    | PDR001                       | PD-1   |
| Varlilumab                   | CD27    | NLG919 / GDC-0919            | IDO    | Pembrolizumab                | PD-1   |
| APX005M                      | CD40    | BMS-986205                   | IDO    | PF-06801591                  | PD-1   |
| CP-870,893 / RO7009789       | CD40    | Lirilumab                    | KIR    | REGN2810                     | PD-1   |
| Dacetuzumab                  | CD40    | BMS-986016                   | LAG-3  | SHR-1210                     | PD-1   |
| Lucatumumab                  | CD40    | LAG525                       | LAG-3  | Atezolizumab                 | PD-L1  |
| SEA-CD40                     | CD40    | MK-4280                      | LAG-3  | Avelumab                     | PD-L1  |
| ISF35 / rAd-CD40L            | CD40    | REGN3767                     | LAG-3  | Durvalumab                   | PD-L1  |
| MEDI5083                     | CD-40L  | IMP321                       | MHC II | FAZ053                       | PD-L1  |
| ARGX-110                     | CD70    | Monalizumab                  | NKG2A  | LY3300054                    | PD-L1  |
| Galiximab                    | CD80    | ABBV-368                     | OX-40  | CX-072                       | PD-L1  |
| BMS-986218                   | CTLA-4  | BMS-986178                   | OX-40  | BMS-986207                   | TIGIT  |
| Ipilimumab                   | CTLA-4  | GSK3174998                   | OX-40  | MTIG7192A                    | TIGIT  |
| MK-1308                      | CTLA-4  | MEDI0562                     | OX-40  | LY3321367                    | TIM-3  |
| Tremelimumab                 | CTLA-4  | MEDI6383                     | OX-40  | MBG453                       | TIM-3  |
| BMS-986156                   | GITR    | MEDI6469                     | OX-40  | TSR-022                      | TIM-3  |

Copyright: Hanson Wade, August 2017

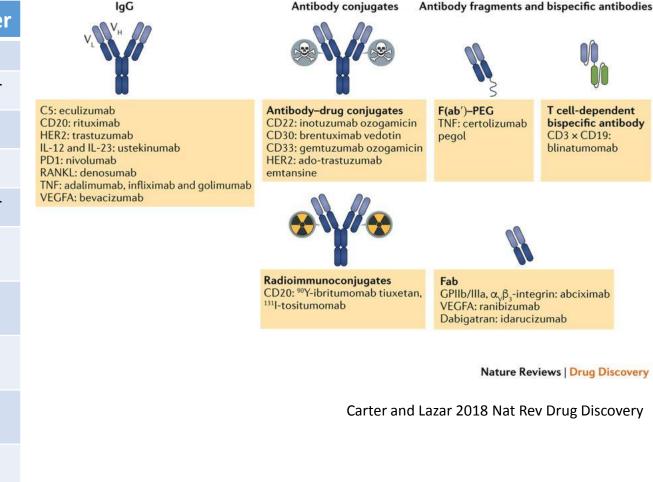
Association of Community Cancer Center



12

Nature Reviews | Drug Discovery

Mahoney KM et al. 2015 Nat Rev Drug Discovery


© 2018–2019 Society for Immunotherapy of Cancer

ADVANCES IN /



# More development and potential approvals of antibody conjugates vs. cancer

| Emerging antibody-drug conjugates | Target cancer             |
|-----------------------------------|---------------------------|
| Sacituzumab govitecan             | Breast cancer             |
| Mirvetuximab canavanine           | Ovarian cancer            |
| Rovalpituzumab tesirine           | Lung cancer               |
| Depatuxizumab mafodotin           | Glioblastoma              |
| Oportuzumab monatox               | Bladder cancer            |
| Denintuzumab mafodotin            | B cell<br>malignancies    |
| Indatuximab ravtansine            | Multiple<br>myeloma       |
| Lorvotuzumab mertansine           | Small cell lung<br>cancer |
| Moxetumomab pasudotox             | B cell<br>malignancies    |
| Pinatuzumab vedotin               | B cell<br>malignancies    |
| Polatuzumab vedotin               | B cell<br>malignancies    |



AAEM AMERICAN ACADEMY OF EMERGENCY MEDICINE

Association of Community Cancer Center

Society for Immunotherapy of Cancer

© 2018–2019 Society for Immunotherapy of Cancer

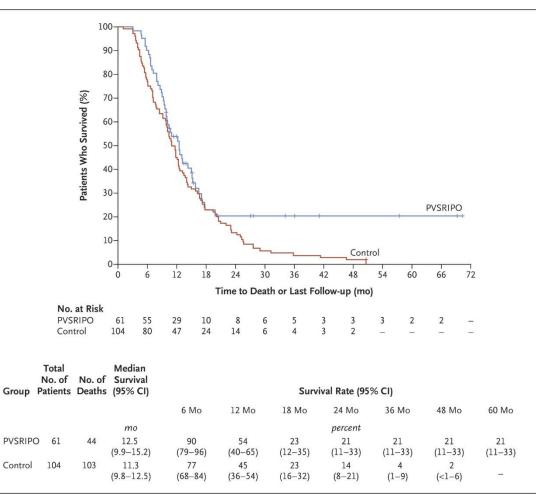


# Oncolytic viral therapy will continue to expand viral agents, biologics, and target tumors

|                         | Adenovirus <sup>a</sup> | Herpes simplex<br>virus <sup>b</sup> | Pox virus                             | Coxsackie virus                                        | Maraba virus                                         | Poliovirus                           | Measles virus      | Newcastle<br>Disease virus                              |
|-------------------------|-------------------------|--------------------------------------|---------------------------------------|--------------------------------------------------------|------------------------------------------------------|--------------------------------------|--------------------|---------------------------------------------------------|
| Genome                  | dsDNA                   | dsDNA                                | dsDNA                                 | ssRNA                                                  | ss (–) RNA                                           | ss (+) RNA                           | ss (–) RNA         | ss (–) RNA                                              |
| Genome size             | Moderate (32 kb)        | Large (152 kb)                       | Large (130–<br>375 kb)                | Small (~8 kb)                                          | Small (11–<br>15 kb)                                 | Small (7.5 kb)                       | Small (~16 kb)     | Small (~15 Kb)                                          |
| Cell entry<br>mechanism | Endocytosis             | Endocytosis;<br>penetration          | Membrane<br>penetration<br>and fusion | Micropinocytos<br>is via epithelial<br>tight junctions | Endocytosis;<br>pH-dependent<br>fusion<br>activation | Receptor-<br>mediated<br>endocytosis | Membrane<br>fusion | Endocytosis;<br>pH-<br>independent<br>direct fusion     |
| Cell entry<br>receptors | hCAR; VCAM1;<br>CD46    | HVEM; nectin<br>1; nectin 2          | GAGs; EFC                             | CAR; DAF                                               | Unknown                                              | CD155                                | CD46; SLAM         | Neuraminidase<br>receptor;<br>sialoglyco-<br>conjugates |

<sup>a</sup>E1B-55 K/E3B-deleted adenovirus in combination with chemotherapy was approved for the treatment of late-stage refractory nasopharyngeal cancer by the Chinese State Food and Drug Administration in 2005. <sup>b</sup>Herpes simplex virus type 1 (HSV-1) with ICP34.5 deletion and encoding granulocyte–macrophage colony-stimulating factor (GM-CSF) was approved for stage III–IV melanoma treatment by the US Food and Drug Administration in 2015 and by Australia and the European Medicines Agency (EMA) in 2016.

Adapted from Bommareddy et al. 2018 Nat Rev Immunol








# Oncolytic viral therapy will continue to expand viral agents, biologics, and target tumors

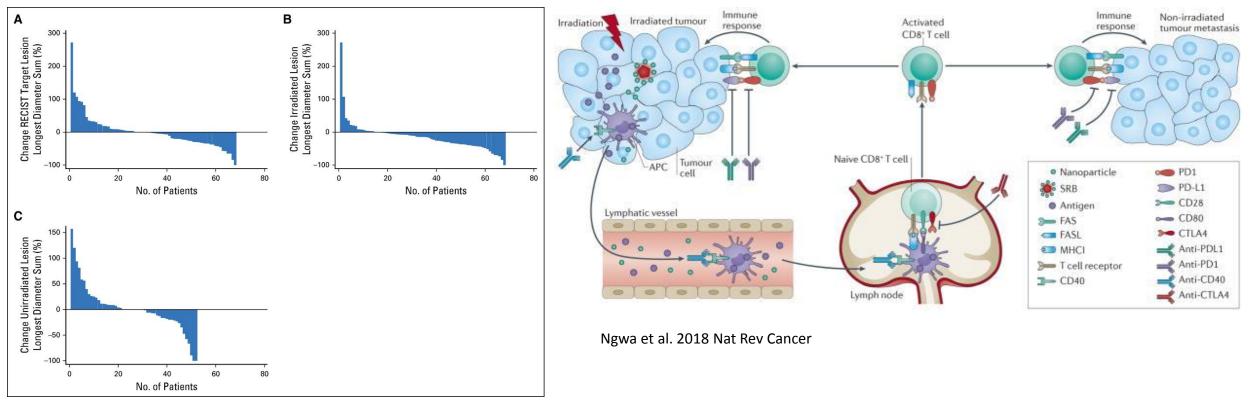
### **PVSRIPO** for Glioblastoma multiforme



Desjardins et al. 2018 New Eng J Med

A Study of Intratumoral CAVATAK<sup>™</sup> in Patients With Stage IIIc and Stage IV Malignant Melanoma (VLA-007 CALM) NCT01227551

| Outcome                                                                                                | Result                 |
|--------------------------------------------------------------------------------------------------------|------------------------|
| Percentage of Participants With<br>Immune-related Progression-<br>Free Survival (irPFS) at 6<br>Months | 38.6<br>(26.0 to 52.4) |
| Percentage of Participants With<br>Durable Response Rate of 6<br>months or more                        | 21.1                   |






© 2018–2019 Society for Immunotherapy of Cancer



## Radiation therapy will be increasingly used as a means of enhancing immunotherapy



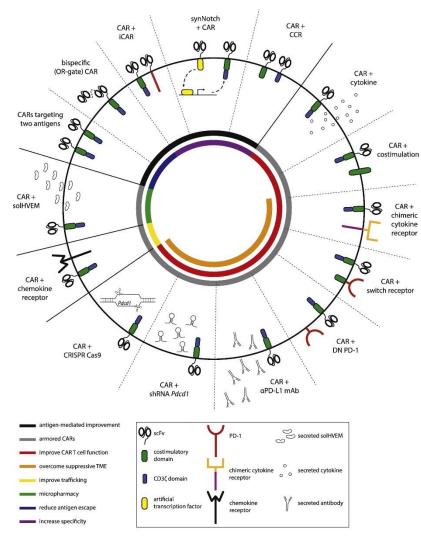
Luke et al. 2018 J Clin Oncol



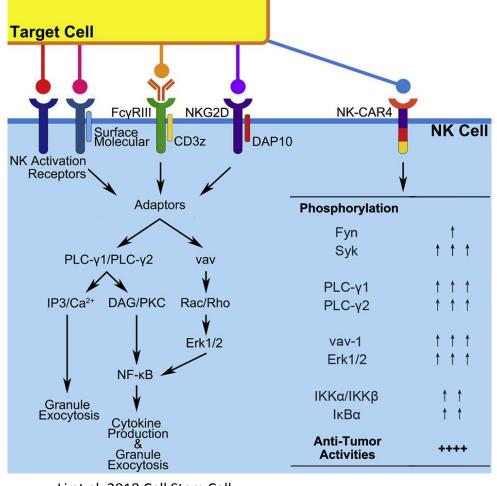




# Radiation therapy can be safely combined with immunotherapy


| Primary site                               | n                                                                  | Radiotherapy                                                                                          | Immunotherapy                                                                                                                                                                                                         | Schedule                                                                                                                                                                                                                                                                                                          | Nonirradia<br>CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ted lesions<br>PR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Grade 3+ toxicities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Melanoma                                   | 22                                                                 | <ul> <li>6 Gy × 2–3 or 8 Gy × 2–3</li> <li>1 site</li> </ul>                                          | Ipilimumab 3 mg/kg<br>every 3 weeks × 4                                                                                                                                                                               | First ipilimumab<br>3–5 days after<br>RT                                                                                                                                                                                                                                                                          | 0/22 (0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4/22 (18%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/22 (18%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Number of patients with any grade 3 toxicity not reported</li> <li>Grade 3 anemia (4/22; 18%) most common</li> <li>No grade 4–5</li> <li>No DLT</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Melanoma                                   | 22                                                                 | <ul> <li>Multiple dose-fx regimens</li> <li>(BED10 range 28.0–112.5 Gy)</li> <li>1–2 sites</li> </ul> | Ipilimumab 3 mg/kg<br>every 3 weeks × 4                                                                                                                                                                               | RT within 5 days<br>of first<br>ipilimumab                                                                                                                                                                                                                                                                        | 3/22 (14%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3/22 (14%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5/22 (23%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>2/22 (9%) grade 3</li> <li>1/22 (5%) grade 4</li> <li>No grade 5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| NSCLC, CRC,<br>sarcoma, RCC, and<br>others | 35                                                                 | <ul> <li>50 Gy/4 fx or 60 Gy/10 fx</li> <li>1 site</li> </ul>                                         | Ipilimumab 3 mg/kg<br>every 3 weeks × 4                                                                                                                                                                               | RT 1 day after<br>first ipilimumab<br>or 1 week after<br>second<br>ipilimumab                                                                                                                                                                                                                                     | 0/31 (0%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 3/31 (10%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4/31 (13%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>12/35 (34%) grade 3</li> <li>No grade 4–5</li> <li>2/35 (6%) with DLT</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                            | Melanoma<br>Melanoma<br>NSCLC, CRC,<br>sarcoma, RCC, and<br>others | Melanoma 22<br>Melanoma 22<br>NSCLC, CRC, sarcoma, RCC, and 35                                        | Melanoma226 Gy × 2–3 or 8 Gy × 2–3<br>• 1 siteMelanoma22• Multiple dose-fx regimens<br>(BED10 range 28.0–112.5 Gy)<br>• 1–2 sitesNSCLC, CRC,<br>sarcoma, RCC, and 35<br>others• 50 Gy/4 fx or 60 Gy/10 fx<br>• 1 site | Melanoma22•6 Gy × 2–3 or 8 Gy × 2–3<br>•Ipilimumab 3 mg/kg<br>every 3 weeks × 4Melanoma22•Multiple dose-fx regimens<br>(BED10 range 28.0–112.5 Gy)<br>•Ipilimumab 3 mg/kg<br>every 3 weeks × 4NSCLC, CRC,<br>sarcoma, RCC, and 35<br>others•50 Gy/4 fx or 60 Gy/10 fx<br>•Ipilimumab 3 mg/kg<br>every 3 weeks × 4 | Melanoma226 Gy × 2–3 or 8 Gy × 2–3<br>1 siteIpilimumab 3 mg/kg<br>every 3 weeks × 4First ipilimumab<br>3–5 days after<br>RTMelanoma22• Multiple dose-fx regimens<br>(BED10 range 28.0–112.5 Gy)<br>• 1–2 sitesIpilimumab 3 mg/kg<br>every 3 weeks × 4RT within 5 days<br>of first<br>ipilimumabNSCLC, CRC,<br>sarcoma, RCC, and 35<br>others• 50 Gy/4 fx or 60 Gy/10 fx<br>• 1 siteIpilimumab 3 mg/kg<br>every 3 weeks × 4RT 1 day after<br>first ipilimumab<br>or 1 week after<br>second<br>ipilimumab | Primary sitenRadiotherapyImmunotherapyScheduleCRMelanoma22 $\begin{array}{c} 6 \ Gy \times 2 - 3 \ or \ 8 \ Gy \times 2 - 3 \ 1 \ siteIpilimumab 3 mg/kgevery 3 weeks \times 4First ipilimumab3 - 5 days afterRT0/22 (0%)Melanoma22\begin{array}{c} Multiple \ dose \ fx \ regimens \ (BED10 \ range 28.0 - 112.5 \ Gy) \ 1 - 2 \ sitesIpilimumab 3 mg/kg \ of \ first \ ipilimumabof \ first \ ipilimumab3/22 (14%)NSCLC, CRC, sarcoma, RCC, and others35\begin{array}{c} 50 \ Gy/4 \ fx \ or \ 60 \ Gy/10 \ fx \ 1 \ siteIpilimumab 3 mg/kg \ every 3 weeks \times 4RT 1 \ day after first \ ipilimumab or 1 \ week \ after \ second \ ipilimumab0/31 (0%)$ | Primary sitenRadiotherapyImmunotherapyScheduleCRPRMelanoma226 Gy × 2-3 or 8 Gy × 2-3<br>1 siteIpilimumab 3 mg/kg<br>every 3 weeks × 4First ipilimumab<br>3-5 days after<br>RT0/22 (0%)4/22 (18%)Melanoma22CMultiple dose-fx regimens<br>(BED10 range 28.0-112.5 Gy)<br>1 -2 sitesIpilimumab 3 mg/kg<br>every 3 weeks × 4RT within 5 days<br>of first<br>ipilimumab3/22 (14%)3/22 (14%)NSCLC, CRC,<br>sarcoma, RCC, and<br>others3550 Gy/4 fx or 60 Gy/10 fx<br>1 siteIpilimumab 3 mg/kg<br>every 3 weeks × 4RT 1 day after<br>first ipilimumab<br>or 1 week after<br>or 1 week aft | Melanoma22• 6 Gy × 2-3 or 8 Gy × 2-3<br>• 1 siteIpilimumab 3 mg/kg<br>every 3 weeks × 4First ipilimumab<br>3-5 days after<br>RT0/22 (0%)4/22 (18%)4/22 (18%)Melanoma22• Multiple dose-fx regimens<br>(BED10 range 28.0-112.5 Gy)<br>• 1-2 sitesIpilimumab 3 mg/kg<br>every 3 weeks × 4RT within 5 days<br>of first<br>ipilimumab3/22 (14%)3/22 (14%)5/22 (23%)NSCLC, CRC,<br>sarcoma, RCC, and 35<br>others• 50 Gy/4 fx or 60 Gy/10 fx<br>• 1 siteIpilimumab 3 mg/kg<br>every 3 weeks × 4RT 1 day after<br>first ipilimumab<br>or 1 week after<br>second<br>ipilimumab0/31 (0%)3/31 (10%)4/31 (13%) |

Ko and Formenti 2018 Ther Adv Med Oncl






### Enhanced engineering of CAR T and CAR NK cells may Society for Immunotherapy of Cancer help reduce side effects while improving efficacy



Jaspers and Brentjens 2017 Pharmacol Ther

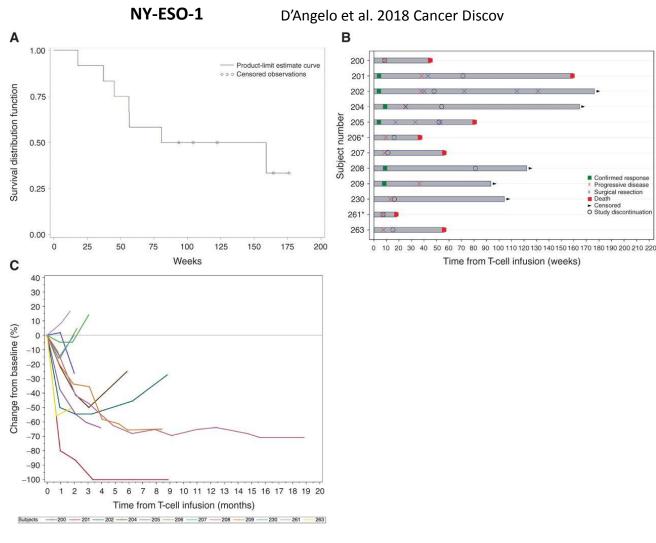


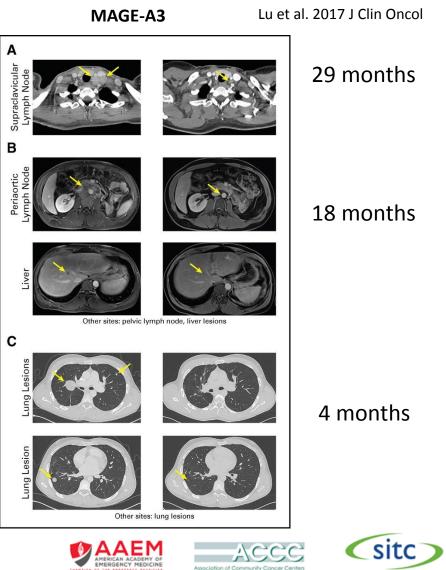
Li et al. 2018 Cell Stem Cell








© 2018–2019 Society for Immunotherapy of Cancer


**ADVANCES** IN

IMMUNOTHERAPY™



## TCR transduced T cells will provide durable responses in solid tumors





Society for Immunotherapy of Cancer



## Conclusions

- The future of cancer immunotherapy is bright, with advances occurring in both diagnostics and therapeutics at a rapid pace
- We will see improvements in our ability to distinguish immunologically "hot" vs. "cold" tumors, and potentially be able to convert "cold" into "hot" tumors
- Advances in genetic engineering and biomanufacturing will permit development of "next generation" antibodies, viruses, targeted radiotherapies and cellular therapies for cancer.

