

Multiple Myeloma: BiTE therapy and New Immunotherapy on The Horizon

Nina Shah, MD

Professor of Clinical Medicine

Multiple Myeloma Translational Initiative

Division of Hematology-Oncology

University of California San Francisco

Disclosures

- Consulting Fees: GSK, Amgen, Indapta Therapeutics, Sanofi, BMS, CareDx, Kite, Karyopharm
- Contracted Research: Celgene/BMS, Janssen, Bluebird Bio, Sutro Biopharma, Teneobio, Poseida, Nektar
- I will be discussing non-FDA approved indications during my presentation

Bispecific T cell engagers

Bispecific T cell engagers

BCMA: B cell maturation antigen

- Member of TNFR (TNFRS17)
- Regulate B cell proliferation and survival, maturation to plasma cells
- Expression/ activation associated with myeloma cell growth/ survival
- Exclusively expressed on the surface of plasmablasts and differentiated PCs

Updated Results From MajesTEC-1: Phase 1/2 Study of Teclistamab, a B-Cell Maturation Antigen x CD3 Bispecific Antibody, in Relapsed/ Refractory Multiple Myeloma

Philippe Moreau^{1*}, Saad Z Usmani², Alfred Garfall³, Niels WCJ van de Donk⁴, Hareth Nahi⁵, Jesús F San-Miguel⁶, Albert Oriol⁷, Ajay Nooka⁸, Thomas Martin⁹, Laura Rosinol¹⁰, Ajai Chari¹¹, Lionel Karlin¹², Lotfi Benboubker¹³, Maria-Victoria Mateos¹⁴, Nizar Bahlis¹⁵, Rakesh Popat¹⁶, Britta Besemer¹⁷, Joaquín Martínez-López¹⁸, Surbhi Sidana¹⁹, Lixia Pei²⁰, Danielle Trancucci²⁰, Raluca Verona²¹, Suzette Girgis²¹, Yunsi Olyslager²², Mindy Jaffe²⁰, Clarissa Uhlar²¹, Tara Stephenson²¹, Rian Van Rampelbergh²², Arnob Banerjee²¹, Jenna D Goldberg²⁰, Rachel Kobos²⁰, Amrita Krishnan²³

¹Clinical Hematology, University Hospital Hôtel-Dieu, Nantes, France; ²Levine Cancer Institute, Charlotte, NC, USA; ³Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ⁴Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; ⁵Karolinska University Hospital at Huddinge, Stockholm, Sweden; ⁶University of Navarra, Pamplona, Spain; ⁷Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ⁸Winship Cancer Institute, Emory University, Atlanta, GA, USA; ⁹UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ¹⁰Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain; ¹¹Mount Sinai School of Medicine, New York, NY, USA; ¹²Centre Hospitalier Lyon Sud, Pierre-Bénite, France; ¹³Hôpital Bretonneau, Centre Hospitalier Régional Universitaire, Tours, France; ¹⁴University Hospital of Salamanca/IBSAL/CIC/CIBERONC, Salamanca, Spain; ¹⁵Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; ¹⁶University College London Hospitals, NHS Foundation Trust, London, UK; ¹⁷University of Tuebingen, Tuebingen, Germany; ¹⁸Hematología Hospital 12 de Octubre, Madrid, Spain; ¹⁹Stanford University School of Medicine, Stanford, CA, USA; ²⁰Janssen Research & Development, Raritan, NJ, USA; ²¹Janssen Research & Development, Spring House, PA, USA; ²²Janssen Research & Development, Beerse, Belgium; ²³City of Hope Comprehensive Cancer Center, Duarte, CA, USA

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

Additional information can be viewed by scanning the QR code or accessing this link: https://www.oncologysciencehub.com/ ASH2021/Teclistamab/PhilippeMoreau/ The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way

Teclistamab: A Novel BCMA × CD3 T-Cell Redirecting Bispecific Antibody

- Despite newly approved therapies for triple-class exposed patients with RRMM, unmet medical need remains high¹⁻²
- Teclistamab (JNJ-64007957) is an off-the-shelf, T-cell redirecting, bispecific antibody that binds to CD3 on T cells and BCMA on plasma cells to mediate T-cell activation and subsequent lysis of BCMA-expressing MM cells
- The phase 1 portion of the MajesTEC-1 study identified the RP2D for teclistamab monotherapy: 1.5 mg/kg subcutaneous (SC) QW with step-up doses of 0.06 and 0.3 mg/kg³
- Here we present pivotal phase 1/2 data from the 1.5 mg/kg dose of MajesTEC-1 (NCT03145181; NCT04557098)

BCMA, B-cell maturation antigen; IFN, interferon; IL, interleukin; MM, multiple myeloma; QW, once weekly; RP2D, recommended phase 2 dose; RRMM, relapsed/refractory multiple myeloma; TNF, tumor necrosis factor 1. Mateos MV, et al. J Clin Oncol 2021; 39 (suppl): 8041. 2. Costa L et al. J Clin Oncol 2021; 39 (suppl): 8030. 3. Usmani SZ, et al. Lancet 2021; 398(10301): 665-74.

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

MajesTEC-1: Overall Response Rate for Teclistamab Monotherapy

ORR^a

- At a median follow-up of 7.8 months (range: 0.5+–18):
 - ORR of 62.0% (95% CI: 53.7–69.8) represents a substantial benefit for patients with triple-class exposed disease
- Median time to first response: 1.2 months (range: 0.2–5.5)
- MRD negativity rate^b
 - 24.7% (37/150; 95% CI: 18.0–32.4) at a threshold of 10⁻⁵
 - 16.7% (25/150; 95% CI: 11.1–23.6) at a threshold of 10^{-6,c}
- In patients who achieved ≥CR, the MRD-negativity rate was 41.9%

Dose: SC weekly Med prior lines = 5 CRS 72%, neurotox= 13%

^aPR or better, IRC assessed; ORR was assessed in efficacy analysis population, which includes all patients who received their first dose on or before March 18, 2021 (n=150); ^b Baseline clones were obtained for all patients All MRD assessments were done by next-generation sequencing; ^cPatients who were not negative at the 10⁻⁶ threshold were indeterminate.

CR, complete response; IRC, independent review committee; MRD, minimal residual disease; ORR, overall response rate; PR, partial response; sCR, stringent complete response; VGPR, very good partial response

A Phase 1 First-in-Human Study of TNB-383B, a BCMA × CD3 Bispecific T-Cell Redirecting Antibody, in Patients with Relapsed/Refractory Multiple Myeloma

Shaji Kumar, MD¹, Anita D'Souza, MD, MS²⁻⁴, Nina Shah, MD^{3,4}, Cesar Rodriguez, MD⁵, Peter M. Voorhees, MD⁶, Orlando F. Bueno, MD, PhD⁷, Ben Buelow, MD, PhD⁸, Kevin J. Freise, PhD, MS⁷, Susan Yue, MD⁷, Rajvineeth Kumar Pothacamury, MD⁷, Akshanth R. Polepally, PhD⁷ and Ravi Vij, MD, MBA⁹

¹Department of Hematology, Mayo Clinic, Rochester, MN; ²Division of Hematology/Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; ³University of California San Francisco, San Francisco, CA; ⁴Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA; ⁵Medical Oncology and Hematology, Wake Forest University School of Medicine, Winston-Salem, NC; ⁶Plasma Cell Disorders Section, Department of Hematologic Oncology & Blood Disorders, Levine Cancer Center, Charlotte, NC; ⁷AbbVie, Inc., North Chicago, IL; ⁸TeneoBio, Inc., Newark, CA; ⁹Washington University School of Medicine, Ballwin, MO

ABBV-383 in RRMM: Background

- ABBV-383, formerly known as TNB-383B, is a BCMA × CD3 T-cell–engaging bispecific monoclonal IgG4 antibody^{1,2}
 - -Specifically designed to evade systemic T-cell activation and minimize CRS
 - Recruits CD3+ cells to BCMA+ myeloma cells and induces tumor cell death in cell lines and mouse xenograft models
- Promising results have been demonstrated in an ongoing first-in-human phase 1 study (NCT03933735) in patients with RRMM³

• Herein, updated safety and efficacy outcomes of this phase 1 study are reported

BCMA, B-cell maturation antigen; CRS, cytokine release syndrome; IgG, immunoglobulin G; MM, multiple myeloma; RRMM, relapsed/refractory multiple myeloma. 1. Buelow B, et al. *J Clin Oncol.* 2018;36(15 suppl): abstract 8034. 2. Buelow B, et al. *Blood.* 2017;130(suppl 1): abstract 501. 3. Rodriguez C, et al. *Blood.* 2020;136(suppl 1):43-44.

ORR 81%^a

100%

Response Rates by IMWG Criteria

CR VGPR PR

Dose: IV, q 3 week Med prior lines = 5 CRS 54 -69%

Duration of Follow-up, mo	≥40 mg ESC n = 26	≥40 mg ESC + EXP n = 60
Median	8.0	4.3
Range	0.8–12.8	0.6–12.8

Data cutoff date: Aug 9, 2021.

Modified efficacy-evaluable population includes patients who have received ≥ 1 dose of ABBV-383 and have ≥ 1 postdose disease assessment and/or discontinued treatment for any reason by data cutoff date. ^aTotal values due to rounding. ^bRefractory to an immunomodulatory drug, a proteasome inhibitor, and anti-CD38 antibody; programmatically derived confirmed or unconfirmed response (IMWG 2016).

CR, complete response; ESC, dose escalation; EXP, dose expansion; IMWG, International Myeloma Working Group; ORR, objective response rate; PR, partial response; VGPR, very good partial response; ≥VGPR, VGPR or better.

Confirmed/Unconfirmed (IMWG); ≥40-mg Dose

Data cutoff date: Aug 9, 2021.

Total patients at risk are from ≥40-mg dose-escalation/dose-expansion cohorts. Median follow-up: ≥40-mg dose ESC, 8.0 months; ≥40-mg dose ESC and EXP, 4.3 months. ESC, dose escalation; EXP, dose expansion; IMWG, International Myeloma Working Group; KM, Kaplan-Meier; NR, not reached.

Drug	Target	Med prior lines	Dosing	ORR	CRS %	Neurotox %	Notes
Teclistamab (n=150)	BCMA	6 (5@RP2D)	SC weekly for RP2D	62% @RP2D)	72%	13%	SC dosing, SC dosing, 9 month PFS 58.5% *
Teneobio TNB- 383B (n=60)	BCMA	5	Q3 weeks	60-80% @ <u>></u> 40 mg dose, n=60	54-69%	2%	IV Q 3 week, allowed for CrCl 30*
REGN-5458 (n=24)	BCMA	5	Q2 week after W 16	75% @ 200-800 mg doses, n=24	38%	4%	* IV
AMG-701 (n=85, 6)	BCMA	6	weekly	83% @highest does, n=6	64% (9% G3)	3.8%	
Elrantamab (n=55)	BCMA	6	SC weekly or Q2W (can do @ 6mo tx)	69% @ 1000 ug/kg QW dose	87% (↓ with priming & pre-meds)	20%	22% with prior BMCA tx→ 70% ORR*
Talquetamab n=30 @ 405ug QW, 25 @ 800 ug Q2W	GPRC5D	6, 5	RP2D = 405ug QW or 800 ug Q2w	70%, 67%	77%, 72%	5%, (7% @RP2D) *from previoius congress data	27% and 16% with prior BCMA tx in 405 and 800 respectively SC dosing Dysguesia, 75% skin/nail AE's DOR 52% at 405 dose at 10 m *
Cevostamab (n=161)	FcRH5	6	IV Q3 weeks (C2)	57% in higher doses, (n=60) 40% in prior BCMA pts (in Q/A not slides)	81%	14%	mDOR 11.5 mo 34% with prior BCMA tx *

Updated Phase 1 Results From MonumenTAL-1: First-in-Human Study of Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D x CD3 Bispecific Antibody, in Patients With Relapsed/Refractory Multiple Myeloma

Amrita Krishnan^{1*}, Monique C. Minnema², Jesus G Berdeja³, Albert Oriol⁴, Niels WCJ van de Donk⁵, Paula Rodríguez-Otero⁶, Elham Askari⁷, María-Victoria Mateos⁸, Luciano J Costa⁹, Raluca Verona¹⁰, Joanne Ma¹⁰, Suzette Girgis¹⁰, Shiyi Yang¹⁰, Brandi W Hilder¹⁰, Jeffery Russell¹⁰, Jenna D Goldberg¹¹, Ajai Chari¹²

¹City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ²University Medical Center Utrecht, Utrecht, Netherlands; ³Sarah Cannon Research Institute, Nashville, TN, USA; ⁴Hospital Germans Trias I Pujol, Spain; ⁵Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; ⁶University of Navarra, Pamplona, Spain, Navarra, Spain; ⁷Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ⁸University Hospital of Salamanca/IBSAL/CIC/CIBERONC, Salamanca, Spain; ⁹University of Alabama at Birmingham, Birmingham, AL, USA; ¹⁰Janssen Research & Development, Spring House, PA, USA; ¹¹Janssen Research & Development, Raritan, NJ, USA; ¹²Mount Sinai School of Medicine, New York, NY, USA

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

Additional information can be viewed by scanning the QR code or accessing this link: https://www.oncologysciencehub.com/ASH202 <u>1/Talquetamab/Krishnan</u> The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way.

Talquetamab: A GPRC5D × CD3 Bispecific Antibody

- GPRC5D is highly expressed on MM plasma cells, making it a promising target for MM therapy¹⁻⁵
- Talquetamab (JNJ-64407564) is a first-in-class antibody that binds to GPRC5D and CD3 receptors, mediating T cell recruitment, activation and subsequent lysis of GPRC5D+ MM cells⁶
- In the ongoing, phase 1, first-in-human study of talquetamab in patients with RRMM (MonumenTAL-1; NCT03399799), the first RP2D was identified as a weekly SC dose of 405 µg/kg^{a,7-8}
- Here we present
 - Updated data from patients treated at the first RP2D^a
 - Initial results from patients treated at a second RP2D of 800 $\mu g/kg$ Q2W

aln phase 1, 405 µg/kg SC QW was the RP2D; 400 µg/kg SC QW was selected as final dosing concentration in phase 2 for operational convenience.

GPRC5D, G protein-coupled receptor family C group 5 member D; MM, multiple myeloma; RP2D, recommended phase 2 dose; Q2W, every other week; QW, weekly; RRMM, relapsed/refractory MM; SC, subcutaneous 1. Verkleij CPM, et al. *Blood Adv* 2021; 5:2196-215. 2. Smith EL, et al. *Sci Transl Med* 2019; 11:eaau7746. 3. Inoue S, et al. *J Invest Dermatol* 2004; 122:565-73. 4. Brauner-Osborne H, et al. *Biochim Biophys Acta* 2001; 1518:237-48. 5.Goldsmith, R et al. 18th International IMW Workshop 2021. Poster P095. 6. Pillarisetti K, et al. *Blood* 2020; 135:1232-43. 7. Chari A, et al. 62nd ASH Annual Meeting and Exposition 2020. Oral #290. 8. Berdeja J, et al. ASCO Annual Meeting 2021. Oral #8008.

MonumenTAL-1: Overall Response Rate

Med	prior lines = 5	
CRS	77%, 72%	

Response	405 µg/kg SC QW⁵ n=30	800 μg/kg SC Q2W ^b n=25
Median follow-up (months), median (range)	9.0 (0.9–17.1)	4.8 (0.4–11.1)
Response-evaluable patients, ^c n	30	21
ORR, n (%)	21 (70.0)	14 (66.7)
ORR in triple-class–refractory patients, n/N (%)	15/23 (65.2)	12/18 (66.7)
ORR in penta-drug–refractory patients, n/N (%)	5/6 (83.3)	5/6 (83.3)
Median time to first confirmed response (months), median (range)	0.9 (0.2–3.8)	1.2 (0.2–6.8)

ORR appears to be comparable across both RP2Ds

^aInvestigator assessment of evaluable patients per 2011 IMWG response criteria; includes unconfirmed responses; ^bWith 2–3 step-up doses; ^cPatients who had ≥1 dose of talquetamab and ≥1 postbaseline disease evaluation. CR, complete response; IMWG, International Myeloma Working Group; ORR, overall response rate; PR, partial response; Q2W, every other week; QW, weekly; SC, subcutaneous; sCR, stringent complete response; VGPR, very good partial response

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

Cevostamab monotherapy continues to show clinically meaningful activity and manageable safety in patients with heavily pre-treated relapsed/refractory multiple myeloma: updated results from an ongoing Phase I study

Suzanne Trudel,¹ Adam D Cohen,² Amrita Krishnan,³ Rafael Fonseca,⁴ Andrew Spencer,⁵ Jesus G Berdeja,⁶ Alexander Lesokhin,⁷ Peter A Forsberg,⁸ Jacob P Laubach,⁹ Luciano J Costa,¹⁰ Paula Rodriguez-Otero,¹¹ Rayan Kaedbey,¹² Joshua Richter,¹³ Maria-Victoria Mateos,¹⁴ Sheeba K Thomas,¹⁵ Chihunt Wong,¹⁶ Mengsong Li,¹⁶ Voleak Choeurng,¹⁶ Anjali Vaze,¹⁶ Divya Samineni,¹⁶ Teiko Sumiyoshi,¹⁶ James Cooper,¹⁶ Simon Harrison¹⁷

¹Princess Margaret Cancer Centre and University of Toronto, Toronto, ON, Canada; ²Abramson Cancer Center and University of Pennsylvania, Philadelphia, PA, USA; ³City of Hope, Duarte, CA, USA; ⁴Mayo Clinic in Arizona, Phoenix, AZ, USA; ⁵Alfred Health-Monash University, Melbourne, VIC, Australia; ⁶Sarah Cannon Research Institute, Nashville, TN, USA; ⁷Memorial Sloan Kettering Cancer Center, New York, NY, USA; ⁸University of Colorado School of Medicine, Aurora, CO, USA; ⁹Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁰O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA; ¹¹Clínica Universidad de Navarra, Pamplona, Spain; ¹²Jewish General Hospital, McGill University, Montreal, QC, Canada; ¹³Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ¹⁴Instituto de Investigación Biomédica de Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain; ¹⁵The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ¹⁶Genentech, Inc., South San Francisco, CA, USA; ¹⁷Peter MacCallum Cancer Centre, Sir Peter MacCallum Department of Oncology, Melbourne University, and The Royal Melbourne Hospital, Melbourne, VIC, Australia

Cevostamab: FcRH5xCD3 bispecific antibody

- Fc receptor-homolog 5 (FcRH5)
 - expressed exclusively in B-cell lineage (myeloma cells > normal B cells)¹
 - near ubiquitous expression on myeloma cells^{1,2}
- Cevostamab bispecific antibody
 - targets membrane-proximal domain of FcRH5 on myeloma cells and epsilon domain of CD3 on T cells¹
 - dual binding results in T-cell directed killing of myeloma cells¹
- Previously reported Phase I dose-finding experience (NCT03275103)³
 - promising activity in patients with heavily pre-treated RRMM
 - manageable safety, with C1 single step-up dosing providing effective CRS mitigation

Aims: (1) share updated Phase I dosing-finding results, and (2) evaluate the impact of C1 single step-up and C1 double step-up dosing on CRS

C, Cycle; CRS, cytokine release syndrome; Fab, fragment antibody binding; RRMM, relapsed/refractory multiple myeloma 1. Li et al. Cancer Cell 2017;31:383–95 2. Sumiyoshi et al. EHA 2021; 3. Cohen et al. ASH 2020

Response

Dose: IV, q 3 week Med prior lines = 6 CRS 81%; neurotox 14%

- Response observed at the 20mg target dose level and above (N=143 patients)
- ORR increases with target dose
 - ORR in C1 single step-up expansion (3.6/90mg):
 29.0%
 - ORR in C1 double step-up expansion (0.3/3.6/160mg):
 54.8%
- Response occurs early
 - median time to first response: 1.0 mo (range: 0.7–5.9)
- Response deepens over time
 - median time to best response: 2.1 mo (range: 0.7–11.4)
- MRD negativity by NGS (<10⁻⁵) detected in 7/10 evaluable patients with ≥VGPR

• Cevostamab was efficacious in patients with heavily pre-treated RRMM. ORR increased with target dose.

CR, complete response; MRD, minimal residual disease; NGS, next generation sequencing; ORR, objective response rate; PR, partial response; sCR, stringent complete response; VGPR, very good partial response

Duration of response

- Median follow-up in responders
 - C1 single step-up cohorts:14.3 months (range: 2.7–31.8)
 - C1 double step-up cohorts:6.5 months (range: 4.8–21.4)
- 6 patients in the C1 single step-up cohorts continued in response for ≥6 months after cessation of treatment

• Responses were durable. Responses were maintained after cessation of treatment.

Median duration of response among responders in the C1 single step-up cohorts

Bispecifics

Drug	Target	Med prior lines	Dosing	ORR	CRS %	Neurotox %	Notes
Teclistamab (n=150)	BCMA	6 (5@RP2D)	SC weekly for RP2D	62% @RP2D)	72%	13%	SC dosing, SC dosing, 9 month PFS 58.5% *
Teneobio TNB- 383B (n=60)	BCMA	5	Q3 weeks	60-80% @ <u>></u> 40 mg dose, n=60	54-69%	2%	IV Q 3 week, allowed for CrCl 30*
REGN-5458 (n=24)	BCMA	5	Q2 week after W 16	75% @ 200-800 mg doses, n=24	38%	4%	* IV
AMG-701 (n=85, 6)	BCMA	6	weekly	83% @highest does, n=6	64% (9% G3)	3.8%	
Elrantamab (n=55)	BCMA	6	SC weekly or Q2W (can do @ 6mo tx)	69% @ 1000 ug/kg QW dose	87% (↓ with priming & pre-meds)	20%	22% with prior BMCA tx→ 70% ORR*
Talquetamab n=30 @ 405ug QW, 25 @ 800 ug Q2W	GPRC5D	6, 5	RP2D = 405ug QW or 800 ug Q2w	70%, 67%	77%, 72%	5%, (7% @RP2D) *from previoius congress data	27% and 16% with prior BCMA tx in 405 and 800 respectively SC dosing Dysguesia, 75% skin/nail AE's DOR 52% at 405 dose at 10 m *
Cevostamab (n=161)	FcRH5	6	IV Q3 weeks (C2)	57% in higher doses, (n=60) 40% in prior BCMA pts (in Q/A, not slides)	81%	14%	mDOR 11.5 mo 34% with prior BCMA tx *

If this is so great... can we do better???

Phase 1b Results for Subcutaneous Talquetamab Plus Daratumumab in Patients With Relapsed/Refractory Multiple Myeloma

Ajai Chari^{1*}, Parameswaran Hari², Nizar Bahlis³, Maria-Victoria Mateos⁴, Niels WCJ van de Donk⁵, Bhagirathbhai Dholaria⁶, Alfred L Garfall⁷, Hartmut Goldschmidt⁸, K Martin Kortüm⁹, Amrita Krishnan¹⁰, Thomas Martin¹¹, Daniel Morillo¹², Albert Oriol¹³, Donna Reece¹⁴, Cesar Rodriguez¹⁵, Paula Rodríguez-Otero¹⁶, Jesús F San-Miguel¹⁶, Saad Z Usmani¹⁷, Raluca Verona¹⁸, Shun Xin Wang Lin¹⁸, Thomas J Prior¹⁸, Mark Wade¹⁸, Brendan Weiss¹⁸, Jenna D Goldberg¹⁹, Elham Askari¹²

¹Mount Sinai School of Medicine, New York, NY, USA; ²Medical College of Wisconsin, Milwaukee, WI, USA; ³Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada; ⁴University Hospital of Salamanca/IBSAL/CIC/CIBERONC, Salamanca, Spain; ⁵Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, Netherlands; ⁶Vanderbilt University Medical Center, Nashville, TN, USA; ⁷Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; ⁸University Hospital Heidelberg and National Center for Tumor Diseases, Heidelberg, Germany; ⁹University Hospital of Würzburg, Würzburg, Germany; ¹⁰City of Hope Comprehensive Cancer Center, Duarte, CA, USA; ¹¹UCSF Helen Diller Family Comprehensive Cancer Center, San Francisco, CA, USA; ¹²Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain; ¹³Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; ¹⁴Princess Margaret Cancer Centre, Toronto, ON, Canada; ¹⁵Wake Forest University School of Medicine, Winston-Salem, NC, USA; ¹⁶University of Navarra, Navarra, Spain; ¹⁷Levine Cancer Institute, Charlotte, NC, USA; ¹⁸Janssen Research & Development, Spring House, PA, USA; ¹⁹Janssen Research & Development, Raritan, NJ, USA

Additional information can be viewed by scanning the QR code or accessing this link: <u>https://www.oncologysciencehub.com/</u> <u>ASH2021/Talquetamab/Chari.</u> The QR code is intended to provide scientific information for individual reference, and the information should not be altered or reproduced in any way

Talquetamab and Daratumumab: Rational Combination Partners

- Daratumumab (dara) is a human IgG1κ mAb targeting CD38 with a direct on-tumor and immunomodulatory mechanism of action¹
 - Dara monotherapy leads to T cell expansion and enhanced T cell cytotoxic potential²
 - Talquetamab (tal; JNJ-64407564) is a novel, first-in-class antibody that binds to GPRC5D and CD3 receptors, mediating T cell recruitment, activation, and subsequent lysis of GPRC5D+ MM cells³
- The combination of tal and dara has the potential to yield synergistic clinical efficacy
 - Preclinical studies showed the addition of dara enhanced tal-mediated lysis of MM cells⁴

0740

TRIMM-2: Talquetamab and Daratumumab Study Design

Here we present data for RRMM patients who received tal in combination with dara in a phase 1b, open-label, multicenter, multicohort trial (TRIMM-2; NCT04108195); data cut-off September 7, 2021

Key Study Eligibility Criteria

- Adults with documented diagnosis of MM per IMWG criteria
- ≥3 prior lines of therapy^a or double refractory to a PI and an IMiD
- Treatment with anti-CD38 therapy >90 days prior allowed, including patients who were refractory to anti-CD38 therapy

Key Study Objectives

- Part 1: Identify RP2D(s) for each treatment combination
- Part 2: Characterize safety of each treatment combination at the selected RP2D(s)
- Antitumor activity, PK/PD

^aIncluding a PI and IMiD; ^b1-3 step-up doses given within 1 week before a full dose; ^cGlucocorticoid, antihistamine, and antipyretic. Dara, daratumumab; IMiD, immunomodulatory drug; IMWG, International Myeloma Working Group; MM, multiple myeloma; PD, pharmacodynamic; PI, proteasome inhibitor; PK, pharmacokinetic; QW, weekly; Q2W, every 2 weeks; RP2D, recommended phase 2 dose; RRMM, relapsed/refractory multiple myeloma; SC, subcutaneous; Tal, talquetamab 1. DARZALEX FASPRO® (daratumumab and hyaluronidase-fihj) injection, for subcutaneous use [package insert].

Tal + Dara Dosing Cohorts (n=29)

Tal	Dara SC	Patients enrolled to date (n)
400 µg/kg SC Q2W	1800 mg SC Cycles 1-2: QW	5
400 µg/kg SC QW	Cycles 3-6: Q2W	9
800 µg/kg SC Q2W	Cycles 7+: monthly	15

- Step-up dosing was used for tal^b
- Dara was administered according to the approved SC schedule¹
- Premedications^c were limited to the step-up doses and first full dose of tal
- No steroid requirement for tal after the first full dose

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

TRIMM-2: Overall Response Rate

Med prior lines = 6 CRS 55%; Skin/nail events: 65%

	Evaluable patientsª, n (%)						
	Dara 1800 mg SC:						
	Cycle 1-2: QW, C	Cycles 3-6: Q2W; Cyc	les 7+: monthly				
Response	Tal 400 μg/kg SC Q2W	Tal 400 μg/kg SC QW	Tal 800 μg/kg SC Q2W				
Categories	(n=5)	(n=7)	(n=9)				
ORR ^b	4 (80.0)	6 (85.7)	7 (77.8)				
sCR/CR	1 (20.0)	2 (28.6)	1 (11.1)				
VGPR	2 (40.0)	3 (42.9)	5 (55.6)				
PR	1 (20.0)	1 (14.3)	1 (11.1)				
MR	0 (0)	0 (0)	0 (0)				
SD	0 (0)	1 (14.3)	2 (22.2)				
PD	1 (20.0)	0 (0)	0 (0)				

- Median follow-up was 4.2 months
- Median time to first confirmed response: 1.0 month (range: 0.9–2.4)
- ORR across all dose levels was improved compared to RP2Ds for tal monotherapy

^aPatients have received ≥1 study treatment and have ≥1 postbaseline response evaluation by investigator. Includes unconfirmed responses; ^bPR or better in response-evaluable patients; includes unconfirmed responses.

CR, complete response; Dara, daratumumab; MR, minimal response; ORR, overall response rate; PD, progressive disease; PR, partial response; QW, weekly; Q2W, every other week; RP2D, recommended phase 2 dose; SC, subcutaneous; sCR, stringent complete response; SD, stable disease; Tal, talquetamab; VGPR, very good partial response

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

TRIMM-2: Tal + Dara Leads to Peripheral T-Cell Activation and Induction of CD38+/CD8+ T cells

- Peripheral T cell activation was observed with tal + dara, as evidenced by upregulation of CD38+/CD8+ T cells
 - The proportion of CD38+/CD8+ T cells declined after initial dara dosing on C1D1, consistent with previous data
- Notably, tal administration led to induction of CD38+ T cells after C1D2 despite concurrent dara treatment
- Induction of pro-inflammatory cytokines was observed following tal dosing in presence of dara
- The pharmacokinetic profile of tal in the presence of dara was consistent with the profile observed in the phase 1 tal monotherapy (MonumenTAL-1)

Data cut-off Aug 6, 2021. C, cycle; D, day; Dara, daratumumab; Tal, talquetamab

Presented at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition; December 11-14, 2021; Atlanta, GA/Virtual.

American Society of Hematology Helping hematologists conquer blood diseases worldwide

DREAMM-5 Study: Investigating the Synergetic Effects of Belantamab Mafodotin plus Inducible T-cell Co-Stimulator Agonist (aICOS) Combination Therapy in Patients with Relapsed/Refractory Multiple Myeloma

Natalie S. Callander, MD¹, Vincent Ribrag, MD², Paul G. Richardson, MD³, Ajay K. Nooka, MD, MPH, FACP⁴, Kevin Song, MD, FRCPC⁵, Katarina Uttervall, MD, PhD⁶, Monique C. Minnema, MD, PhD⁷, Katja Weisel, MD⁸, Hang Quach, MD⁹, Chang-Ki Min, MD, PhD¹⁰, Marc S. Ballas, MD, MPH¹¹, Xiaofang Li¹¹, Nirav Ratia¹², Morrys Kaisermann, MD, PhD¹¹, Beata Holkova, MD¹¹, Suzanne Trudel, MD¹³

¹Carbone Cancer Center, University of Wisconsin, Madison, WI, USA; ²Institut Gustave Roussy, Villejuif, France; ³Dana-Farber Cancer Institute, Boston, MA, USA; ⁴Emory University, Winship Cancer Institute, Atlanta, GA, USA; ⁵Vancouver General Hospital, Vancouver, BC, Canada; ⁶Karolinska University Hospital, Stockholm, Sweden; ⁷University Medical Center Utrecht, Utrecht, Netherlands; ⁸University Medical Center Hamburg-Eppendorf, Hamburg, Germany; ⁹University of Melbourne, St. Vincent's Hospital Melbourne, Melbourne, VIC, Australia; ¹⁰Seoul St. Mary's Hospital, The Catholic University of Korea, Seoul, Korea; ¹¹GlaxoSmithKline, Upper Providence, PA, USA; ¹²GlaxoSmithKline, Brentford, Middlesex, United Kingdom; ¹³Princess Margaret Cancer Centre, Toronto, ON, Canada

Presentation No. 897 | Presented at the 63rd American Society of Hematology Annual Meeting and Exposition, Atlanta, Georgia | December 11–14, 2021

Complementary Mechanisms of Action

Combining belamaf and its ICD effects with immune response-enhancing agents such as feladilimab, an inducible co-stimulatory T-cell molecule (ICOS, CD278) agonist (aICOS), could offer enhanced antitumor activity due to complementary MoA targeting T-cells.

ADC, antibody-drug conjugate; ADCC/ADCP, antibody-dependent cellular cytotoxicity/phagocytosis; AE, adverse event; aICOS, inducible co-stimulatory T-cell molecule agonist; APC, antigen presenting cell; BCMA, B-cell maturation antigen; CDXX, cluster of differentiation XX; CTLA4, cytotoxic T-lymphocyte-associated antigen 4; CXCR5, C-X-C chemokine receptor type 5; Fc, fragment crystallizable; ICD, immune cell death; ICOS, inducible co-stimulatory T-cell molecule igand; IFA, interferon; MHC, major histocompatibility complex; MAA, mechanism of zell receptor. 1. Nooka A, et al. *future* Oncol. 2021:17:1987. Figures from Nooka et al. 2021: Belamation Adva reproduced with permissions Future Medicine Ltd.

DREAMM-5 Platform Trial Design

Phase 1/2 platform study that incorporates an efficient design into one master protocol evaluating multiple belamaf-containing combinations in separate substudies to identify efficacious combinations.¹

Each substudy begins with a dose-exploration (DE) phase; substudies with successful DE phases will subsequently move into a cohort-expansion (CE) phase to compare the combination with a shared single-agent belamaf control arm.¹

AE, adverse event; belamaf, belantamab mafodotin; CD38, cluster of differentiation 38; DLT, dose-limiting toxicities; ECOG; Eastern Cooperative Oncology Group; GSI, gamma secretase inhibitor; ICOS, inducible co-stimulatory T-cell molecule; ORR, overall response rate; PD, pharmacodynamics; PD-1, programmed cell death protein 1; PK, pharmacokinetics; RP2D, recommended phase 2 dose. 1. Nooka A, et al. *Future Oncol.* 2021;17:1987. Figure adapted from Nooka et al.

Preliminary Efficacy Outcomes

The preliminary overall response rate (ORR) for the total population was 52% (n=13; 95% CI: 31.3–72.2).

A very good partial response or better (≥VGPR) was achieved for 32% of patients (n=8), or 57% of responders (8/14).

Overview of Efficacy [*] , n (%)	Cohort A Belamaf 1.9 mg/kg + alCOS 8 mg N=9	Cohort B Belamaf 2.5 mg/kg + alCOS 8 mg N=10	Cohort C Belamaf 2.5 mg/kg + alCOS 24 mg N=6	Total Population N=25
Stringent complete response	0	1 (10)	0	1 (4)
Complete response	1 (11)	0	0	1 (4)
Very good partial response	2 (22)	1 (10)	3 (50)	6 (24)
Partial response	1 (11)	3 (30)	1 (17)	5 (20)
Minimal response	0	0	1 (17)	1 (4)
Stable disease	4 (44)	2 (20)	1 (17)	7 (28)
Progressive disease	1 (11)	1 (10)	0	2 (8)
Not evaluable	0	2 (20)	0	2 (8)
Overall response rate (%; 95% Cl ⁺) sCR+CR+VGPR+PR	4 (44; 13.7–78.8)	5 (50; 18.7–81.3)	4 (67; 22.3–95.7)	13 (52; 31.3–72.2)
Clinical benefit rate (%; 95% Cl) sCR+CR+VGPR+PR+MR	4 (44; 13.7–78.8)	5 (50; 18.7–81.3)	5 (83; 35.9–99.6)	14 (56; 34.9–75.6)

alCOS, inducible T-cell costimulatory agonist; CI, confidence interval; CR, complete response; MR, minimal response; PR, partial response; sCR, stringent complete response; VGPR, very good partial response. *Investigator-assessed best confirmed response. [†]Confidence intervals are based on the exact method.

Preliminary Safety: AE of Special Interest

	Cohort A	Cohort B	Cohort C	
AFSIs n (%)	Belamaf 1.9 mg/kg	Belamaf 2.5 mg/kg	Belamaf 2.5 mg/kg	Total Population
AL313, II (70)	+ alCOS 8 mg	+ alCOS 8 mg	+ alCOS 24 mg	N=25
	N=9	N=10	N=6	
Any Event	5 (56)	8 (80)	5 (83)	18 (72)
Grade 3 or 4 ⁺	2 (22)	5 (50)	2 (33)	9 (36)
Corneal events [*]	3 (33)	7 (70)	5 (83)	15 (60)
Keratopathy	3 (33)	6 (60)	2 (33)	11 (44)
Grade 3 or 4 ⁺	1 (11)	2 (20)	2 (33)	5 (20)
Dry eye	1 (11)	3 (30)	4 (67)	8 (32)
Grade 3 or 4 ⁺	0	1 (10)	0	1 (4)
Photophobia	-	2 (20)	-	2 (8)
Grade 3 or 4 ⁺	-	0	-	0
Asthenopia	-	1 (10)	-	1 (4)
Grade 3 or 4 ⁺	-	0	-	0
Corneal opacity	-	1 (10)	-	1 (4)
Grade 3 or 4 ⁺	-	0	-	0
Xerophthalmia	-	1 (10)	1 (17)	2 (8)
Grade 3 or 4 ⁺	-	0	0	0
IRRs	4 (44)	3 (30)	1 (17)	8 (32)
Grade 3 or 4 ⁺	1 (11)	0	0	1 (4)
Thrombocytopenia	1 (11)	3 (30)	2 (33)	6 (24)
Grade 3 or 4 ⁺	1 (11)	2 (20)	0	3 (12)

AE, adverse event; AESIs, adverse events of special interest; aICOS, inducible T-cell co-stimulator agonist; belamaf, belantamab mafodotin; IRRs, infusion-related reactions; SAE, serious AE.

*Grading determined using the Common Term Criteria for Adverse Events v 5.0 and changes in best corrected visual acuity. ¹No patients experienced a Grade 5 AESI; If a subject has more than one AE in a given category, only the highest grade is counted in each row.

Conclusions

- Yesterday's immunotherapies
- Exciting therapies on the horizon
 - Off the shelf, combo off the shelf
 - Maybe steroid-free one day...?
- But no cures yet!
- The future is immunotherapy bright
 - I suspect 2nd line by 2023
 - No worries always room for new CELMoDs, alkylating agents and Selinexor
 - Room for personalization
- Now have to consider: cost, quality of life, accessibility, referral patterns, logistics

THANK YOU! @ninashah33 #myelennial

