Ambivalent effects of 5-Fluorouracil on Anticancer Immune Responses

Lionel Apetoh
INSERM UMR866, Dijon, France
SITC annual meeting, National Harbor, November 8th 2013
(No relevant disclosures to the presentation)

Myeloid-derived Suppressor cells

- Myeloid-derived Suppressor cells (MDSC):
 - ➤ are characterized by the expression of the CD11b and Gr-1 (Ly-6G/C) markers (Gabrilovich et al., Nat. Rev. Immunol., 2009)
 - ➤ have been shown to accumulate during tumor progression and to compromise antitumor immunity

Regulatory pathways of MDSC expansion and activation

5-Fluorouracil (5-FU) has a superior efficacy to deplete MDSC *in vivo*

Determination of splenic and tumor-infiltrating MDSC frequency

No significant effects of 5-FU on T, B NK or dendritic cells

5-FU kills MDSC in vitro

5-Fluorouracil antitumor effect relies on MDSC

Gated on CD8⁺ TILs after *in vitro* reactivation

Can we identify additional mechanisms responsible for tumor resistance to 5-FU treatment?

- 5-FU has cytotoxic effects on cancer cells
- 5-FU selectively kills MDSC

However, the anticancer effects of 5-FU are not long-lasting

Objective: search for additional mediators contributing to tumor resistance to 5-FU to enhance its antiancer efficacy *in vivo*

Caspase 1 is activated in MDSC by 5-FU and Gemcitabine (Gem) *in vitro*

Caspase 1 is activated in MDSC by 5-FU and Gem in vivo

5-FU induces IL-1β release from MDSC in a caspase-1 dependent manner

Inflammasomes are macromolecular complexes leading to caspase-1 activation

Lamkanfi M, Dixit VM. 2012. Annu. Rev. Cell Dev. Biol. 28:137–61

5-Fluorouracil caspase-1 activation is dependent on NLRP3

Mechanisms of NLRP3 inflammasome activation

- ATP-P2rX7
- Reactive Oxygen Species
- Release of lysosomal content

Schroder and Tschopp, Cell, 2010

5FU activated inflammasome via lysosome permeabilization

Assessment of caspase-1 activation and lysosome permeabilization

Subsequent events triggered by 5-FU-driven lysosome permealization

NLRP3 interacts with cathepsin B

A: Immunoprecipitation

B: Surface plasmon resonance assay

NLRP3 LRR domain is involved in NLRP3 interaction with Cathepsin B

5-FU induces NLRP3-cathepsin B interaction

In vivo relevance of 5-FU mediated activation of inflammasome on tumor growth

The protumor effect of IL-1 is dependent on the host

Differential effects of IL-1β on CD4 and CD8 T cells

- Both CD4 and CD8 T cells express IL-1R1
- IL-1 β can induce secretion of IFN γ from CD8 T cells and of IL-17 from CD4 T cells

Low doses of IL-1 β favor Th17 differentiation without inducing IFN γ secretion from CD8 T cells

5-FU-driven IL-1β release from MDSC affects CD4 T cell differentiation

In the tumor bed, the inflammasome controls Th17 generation and IL-17 dependent angiogenesis

The antitumor effect of 5FU is improved in the absence of IL-17

Human relevance of 5-Fu-induced caspase 1 activation and IL-17 production in colorectal cancer

Anakinra reverses resistance to 5FU

Proposed model accounting for the immunological effects of 5-FU

Acknowledgments

<u>INSERM UMR866</u>

Julie Vincent
Mélanie Bruchard
Fanny Chalmin
Grégoire Mignot
Cédric Rébé
François Ghiringhelli

Collaborators:

- Pr. Laurence Zitvogel (Villejuif, France)
- Dr. Christophe Borg (Besançon, France)
- Dr. Wilfried Boireau (Besançon, France)
- Dr. Bernhard Ryffel (Orléans, France)

Financial support

