

Non-Small Cell Lung Cancer Webinar

Thursday, September 13, 2018 1–2 p.m. EDT

Brahmer et al. Journal for ImmunoTherapy of Cancer (2018) 6:75 https://doi.org/10.1186/s40425-018-0382-2

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Julie R. Brahmer¹, Ramaswamy Govindan², Robert A. Anders³, Scott J. Antonia⁴, Sarah Sagorsky⁵, Marianne J. Davies⁶, Steven M. Dubinett⁷, Andrea Ferris⁸, Leena Gandhi⁹, Edward B. Garon¹⁰, Matthew D. Hellmann¹¹, Fred R. Hirsch¹², Shakuntala Malik¹³, Joel W. Neal¹⁴, Vassiliki A. Papadimitrakopoulou¹⁵, David L. Rimm¹⁶, Lawrence H. Schwartz¹⁷, Boris Sepesi¹⁸, Beow Yong Yeap¹⁹, Naiyer A. Rizvi²⁰ and Roy S. Herbst^{21*}

Webinar Faculty

Julie R. Brahmer, MD Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins

Patrick Forde, MD

Johns Hopkins

University

Scott N. Gettinger, MD *Yale Cancer Center*

Roy S. Herbst, MD, PhD *Yale Cancer Center*

Webinar Agenda

1:00–1:05 p.m. EDT Welcome and Introductions

1:05–1:40 p.m. EDT Review of SITC Cancer Immunotherapy

Guideline – NSCLC

1:40–1:55 p.m. EDT Question and Answer Session

1:55–2:00 p.m. EDT Closing Remarks

To Submit a Question

Computer

Mobile Phone

FDA-approved Checkpoint Inhibitors in NSCLC

2017

Pembrolizumab + Pemetrexed and Carboplatin approved for 1st line NSCLC

Durvalumab approved for Stage III NSCLC after chemoradiation

<u> 2015</u>

Nivolumab approved for 2nd line sq NSCLC

Nivolumab approved for 2nd line non-sq NSCLC

Pembrolizumab approved for 2nd line NSCLC (PD-L1 ≥ 50%)

2016

Pembrolizumab approved for 1st line NSCLC (PD-L1 ≥ 50%)

Pembrolizumab approved for 2nd line NSCLC (PD-L1 ≥ 1%)

Atezolizumab approved for 2nd line NSCLC

Pembrolizumab + carboplatin/(nab-)paclitaxel for 1st line sq NSCLC

Atezolizumab/bevacizumab/ chemotherapy for non-sq NSCLC

Atezolizumab + chemotherapy for non-sq NSCLC

Nivolumab + ipilimumab for TMB-high non-sq NSCLC

<u>2008</u>

Nivolumab trials initiated

Pembrolizumab trials initiated

First-Line: Phase III KEYNOTE-024 Trial

60]	$\Delta 17\%$ $P = 0.0011$ 45%	CR 22 22 PR
≈ 50	1	
% 40 -	n = 6 n = 63	%
OKK, (95% CI) 30 - 30 - 10 -		n = 1
<u>ک</u> 20 -		n = 41
წ ₁₀ -		
0		
	Pembrolizumab Chemot	herapy

	Crossoverto Pembrolizumab N = 82
Objective Response, n	17
ORR, % (95% CI)	20.7 (12.6–31.1)
Median Timeto Response, mo (range)	2.0 (1.1–8.4)
Censored duration of response, n	12

First-Line: Phase III KEYNOTE-042 Trial Pembrolizumab vs Platinum Doublet Chemotherapy for PD-L1 ≥ 1% NSCLC (without EGFRm/ALKr)

Lopes et al. ASCO 2018

First-Line: Phase III KEYNOTE-042 Trial Pembrolizumab vs Platinum Doublet Chemotherapy for PD-L1 ≥ 1% NSCLC (without EGFRm/ALKr)

PD-L1 TPS	≥ 1%	<u>≥</u> 20%	<u>≥</u> 50%	1-49%
n (P/ Chemo)	637/637	413/415	299/300	338/ 337
OS HR (95% CI)	0.81 (0.71-0.93)	0.77 (0.64-0.92)	0.69 (0.56-0.85)	0.92 (0.77- 1.11)
OS (mos) Median (95% CI)	16.7-12.1 (13.9-19.7) (11.3-13.3)	17.7/ 13 (15.3-22.1) (11.6-15.3)	20.2/ 12.2 (15.4-24.9) (10.4-14.2)	13.4/ 12.1 (10.7-18.2) (11-14)
2yr OS %	39.3/ 28	40.5/ 29.6	44.7/ 30.1	34.6/ 26.5
PFS HR (95% CI)	1.07 (0.94- 1.21)	0.94 (0.8- 1.11)	0.81 (0.6799)	
PFS (mos) Median (95% CI)	5.4/ 6.5 (4.3-6.2) (6.3-7)	6.2/ 6.6 (5.1-7.8) (6.2-7.3)	7.1/ 6.4 (5.9-9) (6.1-6.9)	
1yr PFS %	28/ 26.6	32.4/ 28.8	37.4/ 27.3	
ORR	27.3/ 26.5	33.4/ 28.9	39.5/ 32	

Lopes et al. ASCO 2018

First-Line: Phase III KEYNOTE-189 Trial

Carboplatin/ Cisplatin with Pemetrexed +/Pembrolizumab for Advanced, Non-squamous NSCLC
(without EGFRm/ALKr)

Primary Endpoints: PFS & OS

By PD-L1 TPS

	<1%	1-49%	> 50%
OS HR (95% CI)	0.59 (0.38-0.92))	0.55 (0.34-0.90)	0.42 (0.26-0.68)
OS (mos) Median (95% CI)	15.2/ 12 (12.3- NE) (7.0-NE)	NR/ 12.9 (NE-NE) (8.7-NE)	NR/ 10 (NE-NE) (7.5-NE)
1yr OS %	61.7/ 52.2	71.5/ 50.9	73/ 48.1
PFS HR (95% CI)	0.75 (0.53- 1.05)	0.55 (0.37-0.81)	0.36 (0.25-0.52)
PFS (mos) Median (95% CI)	6.1/ 5.1 (4.9-7.6) (4.5-6.9)	9/ 4.9 (7.1-11.3)) (4.6-6.9)	9.4/ 4.7 (9-13.8) (3.1-6)
1yr PFS %	19.1/ 15.7	37.5/ 19.6	44.9/15.4
ORR	32.3/ 14.3	48.4/ 20.7	61.4/ 22.9

Gandhi et al. NEJM 2018

First-Line: Phase III KEYNOTE-407 Trial

Carboplatin with Paclitaxel/ (nab-)Paclitaxel +/-Pembrolizumab for Advanced, Squamous NSCLC

Primary Endpoints: PFS & OS

By PD-L1 TPS

	<1%	1-49%	> 50%
OS HR (95% CI)	0.61 (0.38- 0.98)	0.57 (0.36-0.90)	0.64 (0.37-1.10)
OS (mos) Median (95% CI)	15.9/ 10.2 (13.1- 6NE) (8.6-13.8)	14.0/ 11.6 (12.8-NE) (8.9-17.2)	NR/ NR (11.3-NE) (7.4-NE)
PFS HR (95% CI)	0.68 (0.47- 0.98)	0.56 (0.39-0.80)	0.37 (0.24-0.58)
PFS (mos) Median (95% CI)	6.3/ 5.3 (6.1- 6.5) (4.4-6.2)	7.2/ 5.2 (6- 11.4)) (4.2-6.2)	8/ 4.2 (6.1- 10.3) (2.8-4.6)

Paz Ares et al. ASCO 2018

Efficacy of Anti-PD-1/PD-L1 by EGFR/ALK & PD-L1 Status

Pembrolizumab (EGFRm and wt)

	TPS >50%		TPS 1-49%		1	TPS <1%		Total ^a	
ORR	n	ORR, % (95% CI)	n	ORR, % (95% CI)	n	ORR, % (95% CI)	N	ORR, % (95% CI)	
Overall	144	38.2 (30.2-46.7)	185	11.9 (7.6-17.4)	80	10.0 (4.4-18.8)	550	20.2 (16.9-23.8)	
EGFR wild type	113	39.8 (30.7-49.5)	156	12.2 (7.5-18.4)	63	12.7 (5.6-23.5)	450	21.6 (17.8-25.6)	
EGFR mutant	20	20.0 (5.7-43.7)	23	8.7 (1.1-28.0)	14	0.0 (0.0-23.2)	77	7.8 (2.9-16.2)	

Hellman et al, KEYNOTE 001 WCLC 2015

Hui et al, KEYNOTE 001 ASCO 2016

os		TPS ≥50%	TPS ≥1%			TPS <1%	
Subgroup	n/Nª	Median, months (95% CI)	n/Nª	Median, months (95% CI)	n/Na	Median, months (95% CI)	
EGFR mutation status	,						
Wild type	60/109	15.7 (11.1-NR)	152/245	13.2 (9.2-15.4)	51/71	9.1 (5.8-13.6)	
Mutant	17/19	6.5 (2.0-13.7)	37/45	6.5 (4.4-12.6)	11/17	5.7 (2.2-NR)	

Durvalumab (EGFRm/ALKr)

	PD-L1 high (≥25%)	PD-L1 low/negative (<25%)
·	n = 74	n = 28
ORR, 96 (95% CI)	12.2 (5.7, 21.8)	3.6 (0.1, 18.3)
DCR, % (95% CI)	20.3 (11.8, 31.2)	7.1 (0.9, 23.5)
mDoR, months (95% CI)	7.4 (5.4, 9.2)	NC
	n = 77	n = 30
mPFS, months (95% CI)	1.9 (1.8, 3.6)	1.9 (1.8, 1.9)
mOS, months (95% CI)	13.3 (8.1, NC)	9.9 (4.2, 13.0)
1-year OS, % (95% CI)	54.8 (41.5, 66.3)	40.0 (22.1, 57.4)
mFollow-up for OS, months	6.5	8.2

Note: 4 patients had PD-L1 expression unknown or missing.

^aFull analysis set - evaluable for response per independent central review (ICR).

DCR=disease control rate (complete response, partial response or stable disease ≥24 weeks); DoR=duration of response; m=median; NC=not calculated; ORR=objective response rate; OS=overall survival; PFS=progression-free survival

Garassino et al, ATLANTIC ESMO 2016

- Similar meta-analysis (4 studies) done by Huang et al. (Oncolmmunology, 2017)
 - OS HR 1.09 (95% CI: 0.84-1.41)
 - PFS HR 1.44 (95% CI: 1.05-1.98, p=0.02)

NR = not reached.

^bConfirmed response per ICR.

^cNot calculated due to small number of responders.

^dFull analysis set.

Efficacy of Anti-PD-1 in Advanced EGFRm NSCLC

Nivolumab + erlotinib in advanced TKI treated EGFRm NSCLC (TKI last Tx)*

Nivolumab + Ipilimumab in Advanced EGFRm NSCLC

Consensus Recommendations for Advanced NSCLC

Second-Line: Phase III Trials Improved OS with PD-1 Axis Inhibitors vs Docetaxel for Advanced NSCLC

CHECKMATE 017 (Brahmer et al, NEJM 2015)

CHECKMATE 057 (Borghaei et al, NEJM 2015)

KEYNOTE 010 (TPS ≥ 1%) (Herbst et al, Lancet 2016)

OAK (Rittmeyer et al, Lancet 2017)

Stage III NSCLC: Phase III PACIFIC Trial Durvalumab After Chemoradiotherapy

- OS primary endpoint met in May, 2018

Antonia et al. NEJM 2017

In Development: IMPOWER 131 Trial Carboplatin/(nab-)Paclitaxel +/- Atezolizumab in Advanced Squamous NSCLC

In Development: Atezolizumab/Carboplatin/nab-paclitaxel in advanced **non-squamous** NSCLC

- Phase III IMpower 130 met PFS & OS co-primary endpoints (May 2018)

In Development: IMPOWER 150 Trial

Carboplatin/Paclitaxel/Bevacizumab +/- Atezolizumab in Advanced Non-squamous NSCLC

Socinski et al. NEJM 2018

 Improved PFS and OS with addition of atezolizumab to carboplatin/paclitaxel/bevacizumab

Tumor Mutational Burden (TMB) may Determine Sensitivity to PD-1 Blockade in NSCLC

Patients whose tumors have higher numbers of mutations are more likely to benefit from PD-1 blockade

In Development: CheckMate 227 Trial

Ipilimumab + Nivolumab vs Chemotherapy in TMB-high NSCLC

Consensus Recommendations for Biomarker Testing in NSCLC

- Unanimous agreement that PD-L1 testing should be performed for all newly diagnosed patients with metastatic disease
 - Including those tested for EGFR/ALK/ROS1 mutations
 - 100% of Subcommittee members reported experience with PD-L1 testing of patients with newly diagnosed metastatic NSCLC
- 100% of Subcommittee members reported waiting for PD-L1 test results before initiating first-line treatment
- 72% of Subcommittee members did not retest PD-L1-negative patients after disease progression on first-line therapy
- The Subcommittee recognizes TMB testing may be necessary/appropriate for treatment decisions in the near future

Summary of First-line Immunotherapies for Advanced NSCLC

Trial		PFS / OS (months)	PFS HR in PD-L1 neg.	Toxicities Grade 3-5	ORR
KEYNOTE-024 PD-L1≥50%	Pembro Plat/Pem or Gem or Pacli	10.3 30	NA	27 VS 53%	44.8%
KEYNOTE-042 PD-L1≥1%	Pembro Plat/Pem or Pacli	5.4 16.7 6.5 12.1	NA (in 1-49%: 0.92, NS)	18 vs 41%	27.3%
IMPower150 Non-squamous	Atezo + Beva + Plat/Pacli Plat/Pacli	8.3 19.2 6.8 14.4	0.72	59 vs 50%	63.5%
KEYNOTE-189 Non-squamous	Pembro + Plat/Pem Plat/Pem	8.8 21.5 4.9 11.3	0.59	67 vs 65%	47.6%
KEYNOTE-407 Squamous	Pembro + Plat/Pacli or NabPacli Plat/Pacli or NabPacli	6.4 15.9 4.8 11.3	o.68	70 vs 68%	58.4%
CheckMate 227 TMB≥10mut/Mb	Nivo + Ipi Plat/Pem or Gem	7.2 23 5.4 16.4	0.48	31 vs 36%	45.3%

Adapted from Solange Peters, ASCO 2018

Immune-related Adverse Events (irAEs)

Single-agent Toxicities in 2/3L for NSCLC

	Atezolizumab OAK	Nivolumab SQ: CM 017 (updated OS; 2L)	Nivolumab NSQ:CM 057 (updated OS; 2/3L)	Pembrolizumab KEYNOTE-010
Related Grade 3-5 AEs	15%	8%	11%	13-16%
Discontinuation due to related AEs	5%	6%	6%	4-5%
Pneumonitis incidence	1%	5%	3%	4-5%

Rittmeyer et al. Lancet 2017 Brahmer et al. NEJM 2015 Borghaei et al. NEJM 2015 Herbst et al. Lancet 2015

First-Line: Phase III KEYNOTE-407 Trial Carboplatin/(nab-)Paclitaxel +/- Pembrolizumab for Advanced, Squamous NSCLC

Paz-Ares et al. ASCO 2018

First-Line: Phase III KEYNOTE-189 Trial

Carboplatin/Pemetrexed +/- Pembrolizumab for Advanced, Non-squamous NSCLC (without EGFRm/ALKr)

Table 3. Adverse Events of Interest in the As-Treated Population.*						
Event		ab Combination = 405)	Placebo Combination $(N = 202)$			
	Any Grade	Grade 3, 4, or 5	Any Grade	Grade 3, 4, or 5		
	number of patients (percent)					
Any	92 (22.7)	36 (8.9)	24 (11.9)	9 (4.5)		
Hypothyroidism	27 (6.7)	2 (0.5)	5 (2.5)	0		
Pneumonitis	18 (4.4)	11 (2.7)	5 (2.5)	4 (2.0)		
Hyperthyroidism	16 (4.0)	0	6 (3.0)	0		
Infusion reaction	10 (2.5)	1 (0.2)	2 (1.0)	0		
Colitis	9 (2.2)	3 (0.7)	0	0		
Severe skin reaction	8 (2.0)	8 (2.0)	5 (2.5)	4 (2.0)		
Nephritis	7 (1.7)	6 (1.5)	0	0		
Hepatitis	5 (1.2)	4 (1.0)	0	0		
Hypophysitis	3 (0.7)	0	0	0		
Pancreatitis	3 (0.7)	2 (0.5)	0	0		
Adrenal insufficiency	1 (0.2)	1 (0.2)	1 (0.5)	1 (0.5)		
Myositis	1 (0.2)	0	0	0		
Thyroiditis	1 (0.2)	0	0	0		
Type 1 diabetes mellitus	1 (0.2)	1 (0.2)	0	0		

Ghandi et al. NEJM 2018

In Development: CheckMate 227 Trial Ipilimumab + Nivolumab vs Chemotherapy in TMB-high NSCLC

		⊦ ipilimumab 576)	Chemotherapy (n = 570)		
TRAE,ª %	Any grade	Grade 3-4	Any grade	Grade 3-4	
Any TRAE	75	31	81	36	
TRAE leading to discontinuation ^b	17	12	9	5	
Most frequent TRAEs (≥15%)					
Rash	17	2	5	0	
Diarrhea	16	2	10	1	
Fatigue	13	1	18	1	
Decreased appetite	13	<1	19	1	
Nausea	10	<1	36	2	
Constipation	4	0	15	<1	
Anemia	4	2	32	11	
Neutropenia	<1	0	17	9	
Treatment-related deaths ^c		1		1	

Hellmann et al. AACR 2018 Hellmann et al. NEJM 2018

Consensus Recommendations for Treatment and Management of irAEs In NSCLC

- Recommend close monitoring and cross-collaboration with disease specialists
 - · Subcommittee members reported past collaborations with
 - Radiologists (79%)
 - Pulmonologists (71%)
 - Dermatologists (71%)
 - Rheumatologists (71%)
 - Endocrinologists (71%)
- ≥50% of Subcommittee members routinely use the following tests to monitor patients treated with immune checkpoint inhibitors
 - Thyroid function studies (93%)
 - Liver function tests (93%)
 - Blood urea nitrogen (BUN) and creatinine (86%)
 - Whole body imaging (71%)
 - Closely monitoring patients' oxygen saturation at rest and on ambulation was also noted
- The Subcommittee recommends patient monitoring and education of pneumonitis
 - All patients with radiographic and/or clinical evidence of pneumonitis should be referred to a pulmonary specialist
 - Grade 2 pneumonitis: immunotherapy should be withheld and steroids administered
 - Grade 3/4 pneumonitis: permanently discontinue immunotherapy and initiate treatment with steroids, including consideration of IV steroids and hospitalization

SITC Toxicity Management Guidelines

Puzanov et al. Journal for ImmunoTherapy of Cancer (2017) 5:95 DOI 10.1186/s40425-017-0300-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group

I. Puzanov^{1†}, A. Diab^{2†}, K. Abdallah³, C. O. Bingham III⁴, C. Brogdon⁵, R. Dadu², L. Hamad¹, S. Kim², M. E. Lacouture⁶, N. R. LeBoeuf⁷, D. Lenihan⁸, C. Onofrei⁹, V. Shannon², R. Sharma¹, A. W. Silk¹², D. Skondra¹⁰, M. E. Suarez-Almazor², Y. Wang², K. Wiley¹¹, H. L. Kaufman^{12†}, M. S. Ernstoff^{1*†} and on behalf of the Society for Immunotherapy of Cancer Toxicity Management Working Group

Immunotherapies in Development

Consensus Recommendations for Advanced NSCLC

Case Study

Background:

- 58 year-old male, non-smoker
- 3 month history of cough and shortness of breath, not resolved after two courses of antibiotics
- 20 lb. weight loss, night sweats, several bouts of hemoptysis
- CT scan: Bilateral lung metastases
- Biopsy
 - Adenocarcinoma
 - KRAS/p53 mutation positive
 - PD-L1 is 1%
 - TMB-intermediate of 8 mutations/MB
- Brain MRI negative for intraparenchymal metastasis

Case Study

For this specific patient, which regimen would be most appropriate for improved survival?

- A. Pembrolizmab
- B. Pembrolizumab + Carboplatin/Pemetrexed
- C. Carboplatin/Pemetrexed
- D. Atezolizumab with Carboplatin/Paclitaxel/Bevacizumab
- E. Ipilimumab/Nivolumab

Case Study

Conclusion/take-away: The upfront treatment of advanced NSCLC patients without an actionable mutation has evolved drastically with the incorporation of immunotherapy to platinum doublet chemotherapy. While single-agent pembrolizumab still remains the standard of care of patients whose tumor PD-L1 is greater than 50% (non-EGFR and/or ALK mutated), those patients whose TPS is between 1 and 50% should be considered for triplet therapy with Carboplatin/Pemetrexed/Pembrolizumab based on the landmark KEYNOTE-189 study. While dual checkpoint blockade with lpilimumab/Nivolumab remains promising it has only been investigated in patients with TMB-high tumors.

To Submit a Question

Computer

Mobile Phone

Additional Resources from SITC

Cancer Immunotherapy Guidelines:

www.sitcancer.org/cancer-immunotherapy-guidelines

- Expert consensus recommendations
- On-demand webinars

Resources for healthcare providers:

www.sitcancer.org/clinicians

- Educational programs
- Online courses
- Free resources

Continuing Education Credits are offered for physicians, PA's, NP's, RN's and pharmacists.

You will receive an email following the webinar with instructions on how to claim credit.

Questions and comments: connectED@sitcancer.org

Thank you for attending the NSCLC Webinar!