

Immunotherapy for the Treatment of Head and Neck Cancer

Varinder Kaur, MD
Assistant Professor
University of Virginia
Head-Neck and Melanoma Oncology

Disclosures

- No relevant financial relationships to disclose
- I will be discussing non-FDA approved indications during my presentation.

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions

Immunotherapy in head and neck cancer treatment

^{*}Locoregional recurrence without salvage surgical or radiation option or declines local therapies

Diagnostic Workup

- Patient evaluated by multidisciplinary team and is eligible for immunotherapy
- Disease status/stage confirmed including histology/cytology and radiographic imaging
- Disease Status: Locoregional recurrence* and/or metastatic disease
- Patient is considered eligible for immunotherapy by treating physician

^{*}Locoregional recurrence without salvage surgical or radiation option or declines local therapies

^{**}Disease Progression on or after Platinum-Based Therapy: Disease progression on or after platinum-based therapy including within 6 months of platinum-based CRT given in the locally advanced setting. Patients that receive but cannot tolerate platinum-based chemotherapy would also be included in this category.

HNSCC: head and neck squamous cell carcinoma

^{**}Refer to Figure 2. Initial Therapy Treatment Recommendations: Immune Checkpoint Inhibitor monotherapy (nivolumab or pembrolizumab)

Approved checkpoint inhibitors in head and neck cancers

Drug	Approved	Indication	Dose	
Pembrolizumab	2016	Recurrent/metastatic HNSCC, progression on/after chemotherapy	200 mg Q3W or 400 mg Q6W	
Nivolumab	2016	Recurrent/metastatic HNSCC, progression on/after chemotherapy	240 mg Q2W or 480 mg Q4W	
Pembrolizumab + platinum + fluorouracil	2019	Recurrent/metastatic HNSCC 1 st line – all patients	200 mg Q3W or 400 mg Q6W	
Pembrolizumab	2019	Recurrent/metastatic HNSCC 1 st line − PD-L1 CPS ≥ 1	200 mg Q3W or 400 mg Q6W	

Clinical trials in HNSCC

Trial	Patient selection criteria	Treatment arm(s)	N	ORR	Median PFS (months)	Median OS (months)
	Untreated R/M HNSCC (total population)	Pembrolizumab	301	16.9%	2.3	11.5
		Pembrolizumab + chemo	281	36%	4.9	13.0
		Cetuximab + chemo	300	36.0%	5.2	10.7
KEYNOTE-012	R/M HNSCC	Pembrolizumab	192	18% (PD-L1+: 21%, PD-L1-: 6%)	2.1	8
CheckMate 141	R/M HNSCC with progression on platinum	Nivolumab	240	13.1% (PD-L1+: 17.7%, PD-L1-: 11.8%)	2.0	7.7
		Investigator's choice	121	5.8%	2.3	5.1
KEYNOTE-040	R/M HNSCC with progression on platinum	Pembrolizumab	247	14.6%	2.1	8.4
		Investigator's choice	248	10.1%	2.3	6.9

KEYNOTE-048: Pembrolizumab +/Chemotherapy in newly diagnosed R/M HNSCC

"Assessed using the PD-L1 IHC 22C3 pharmDx assay (Agilent). TPS = tumor proportion score = % of tumor cells with membranous PD-L1 expression. "Assessed using the CINtec p16 Histology assay (Ventana); cutpoint for positivity = 70%. "Following a loading dose of 400 mg/m².

KEYNOTE-048: Overall survival in the total population

Rischin, ASCO 2019 © 2020-2021 Society for Immunotherapy of Cancer

#LearnACI

KEYNOTE-048: Overall survival in the PD-L1 positive population

PD-L1 CPS ≥1

PD-L1 CPS ≥1

126 (0) 102 (0) 77 (0) 60 (1) 50 (1) 44 (1) 36 (8) 21 (22) 4 (38) 0 (42) 0 (42)

110 (0) 91 (0) 60 (1) 40 (1) 26 (1) 19 (2) 11 (4) 4 (8) 1 (11) 0 (12) 0 (12)

KEYNOTE-048: Outcomes on subsequent therapy

Key Eligibility Criteria

- SCC of the oropharynx, oral cavity, hypopharynx, or larynx
- R/M disease incurable by local therapies
- ECOG PS 0 or 1
- Tissue sample for PD-L1 assessment^a
- Known p16 status in the oropharynx^b

Stratification Factors

- PD-L1 expression^a (TPS ≥50% vs <50%)
- p16 status in oropharynx (positive vs negative)
- ECOG performance status (0 vs 1)

KEYNOTE-048: Outcomes on subsequent therapy

- After progression, most common next treatment was a chemotherapy regimen
- PFS2: Progression-free survival on second treatment (after progression on KEYNOTE-048 treatment)
- Benefits seen for patients who received pembrolizumab regimens up-front
- Provides support to use of immunotherapy in front-line setting

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions

PD-L1: TPS vs CPS

$$TPS = \frac{\text{\# of PD-L1 positive tumor cells}}{number of viable tumor cells} \times 100$$

$$CPS = \frac{\# \ of \ PD-L1 \ positive \ cells \ (tumor \ cells, lymphocytes, macrophages)}{total \ number \ of \ tumor \ and \ immune \ cells} \times 100$$

- PD-L1-positive immune cell
- PD-L1-negative immune cell
- PD-L1-positive tumor cell
- PD-L1-negative tumor cell

$$TPS = \frac{6 \text{ positive tumor cells}}{14 \text{ total tumor cells}} \times 100 = 43$$

$$CPS = \frac{6 \text{ positive tumor cells+2 positive immune cells}}{22 \text{ total cells}} \times 100 = 36$$

Impact of PD-L1 in HNSCC

PD-L1 CPS

- KEYNOTE-048
 - First-line treatment
 - Approval of pembrolizumab monotherapy: CPS > 1
- KEYNOTE-040
 - After platinum
 - Improved outcomes in PD-L1positive patients (by CPS ≥ 1), no significance in total population

PD-L1 TPS

- CheckMate 141
 - After platinum
 - Greatest benefit seen for PD-L1positive tumors (TPS > 1%), but benefit regardless
- KEYNOTE-012
 - Second-line treatment
 - Higher response rate with PD-L1 CPS-positive tumors
 - No difference for PD-L1-positive tumors by TPS

KEYNOTE-048: Outcomes by PD-L1 status

- Greatest benefits seen in tumors with highest PD-L1 expression
- Approval requires PD-L1 expression (CPS) only for monotherapy
- For total population, only pembrolizumab + chemotherapy should be considered, not monotherapy

*superiority statistically demonstrated at interim or final analysis

CheckMate 141: Outcomes by PD-L1 status

CheckMate 141: 2 year update

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions

Toxicities in head and neck cancer patients

- Patients typically receive aggressive radiation treatment, with accompanying side effects
- Radiation in combination with chemotherapy, immunotherapy and/or surgery can further complicate toxicity profiles
- While combinations may have higher response rates, also have higher toxicity rates

Viral infections in HNSCC

- Virally-associated cancers are biologically and clinically distinct
 - Human papillomavirus associated with oropharynx cancer
 - Epstein Barr virus associated with nasopharyngeal cancer
- Evidence that HPV+ tumors may perform better, but there is benefit with immunotherapy regardless of HPV status

Combination immune checkpoint inhibition in HNSCC – *limited success to date*

Trial	Patient population	Treatment arms	ORR	Median OS (months)	Landmark OS
	R/M HNSCC after platinum	Durvalumab	17.9%	7.6	24-months: 18.4%
		Durvalumab + tremelimumab	18.2%	6.5	24-months: 13.3%
		SoC	17.3%	8.3	24-months: 10.3%

Trial	Patient population	Treatment arms	Expected study completion	
KESTREL	Untreated HNSCC	Durvalumab	February 2021	
		Durvalumab + tremelimumab		
		SoC		
CheckMate 714	Platinum-refractory HNSCC	Nivolumab + ipilimumab	January 2024	
		Nivolumab		
CheckMate 651	Untreated HNSCC	Nivolumab + ipiliumumab	February 2026	
		EXTREME regimen		

Outline

- Approved immunotherapies in head and neck cancers
- Biomarkers and immunotherapy responsiveness
- Unique considerations for head and neck cancers
- Future directions

In development: Oral cavity cancer

In development: Oral cavity cancer

- No serious AEs or unexpected surgical complications/delays
- pTR-2: 22%
- pTR-1: 22%
- 1-year relapse rate: 16.7%

In development: Checkpoint inhibitors + radiotherapy as primary therapy

- NCT03247712: neoadjuvant nivolumab + SBRT
 - Phase I
 - Decreased tumor size prior to surgery; high pathologic CR rate
- KEYNOTE-412: pembrolizumab + chemoradiation
 - Phase III
 - Safety confirmed, estimated completion 2021
- JAVELIN Head and Neck 100: avelumab + chemoradiation
 - Phase III trial terminated in early 2020, due to likelihood of limited efficacy
- REACH: avelumab + cetuximab + radiotherapy
 - Phase III
 - Safety confirmed, estimated completion 2027

In development: cetuximab + pembrolizumab for recurrent metastatic disease

- Cetuximab and pembrolizumab are both approved as monotherapies for HNSCC
- Phase II trial testing cetuximab + pembrolizumab:
 - Platinum refractory or ineligible disease
 - ORR: 45%
 - Median OS: 18.4 months
 - Safety profile consistent with individual drugs

In development: Selected ongoing combination trials

Trial	Patient population	Treatment arms	Targets	Expected study completion	
LEAP-010	Untreated recurrent/ metastatic PD-L1+ HNSCC (CPS ≥ 1)	Pembrolizumab + lenvatinib	PD-1 + multikinase inhibitor	April 2024	
		Pembrolizumab	PD-1		
meta	Untreated recurrent/ metastatic PD-L1+	Pembrolizumab + GSK609	PD-1 + ICOS	July 2023	
	HNSCC (CPS \geq 1)	Pembrolizumab	PD-1		
NCT02643550	HNSCC after 1-2 therapies, including progression on Pt	Monalizumab + cetuximab	NKG2A + EGFR	Phase 1/2: 2021 Phase 3: planned	

Conclusions

- Cytotoxic chemotherapy achieves limited survival in HNSCC with unfavorable side effects.
- Checkpoint inhibitors that target the PD-1 axis, nivolumab and pembrolizumab, are approved in platinum-refractory/exposed recurrent/metastatic HNSCC.
- Nivolumab and pembrolizumab are in general better tolerated than cytotoxic chemotherapy.
- Ongoing areas of research include combinations of immunotherapy with radiation and/or other drugs and development of predictive biomarkers.

Resources

Cohen et al. Journal for ImmunoTherapy of Cancer https://doi.org/10.1186/s40425-019-0662-5 (2019) 7:184

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of squamous cell carcinoma of the head and neck (HNSCC)

Ezra E. W. Cohen¹, R. Bryan Bell², Carlo B. Bifulco², Barbara Burtness³, Maura L. Gillison⁴, Kevin J. Harrington⁵, Quynh-Thu Le⁶, Nancy Y. Lee⁷, Rom Leidner², Rebecca L. Lewis⁸, Lisa Licitra⁹, Hisham Mehanna¹⁰, Loren K. Mell¹, Adam Raben¹¹, Andrew G. Sikora¹², Ravindra Uppaluri¹³, Fernanda Whitworth¹⁴, Dan P. Zandberg⁸ and Robert L. Ferris^{8*}

Case Studies

A 62 year old female presents with worsening right sided oral pain. Of note, she was diagnosed with a pT4apN2bcM0 squamous cell carcinoma of right hard palate in 11/2019 for which she underwent anterior maxillectomy, bilateral neck dissection and reconstruction, followed by adjuvant radiotherapy (completed 02/2020). Physical examination shows a large oro-nasal fistula with nodular tissue on the anterior edge and marked right sided trismus. A CT soft tissue neck shows "approx. 3.5 cm nodular lesion within the right maxillectomy resection cavity and enlarged right level V cervical node". A CT chest showed no evidence of thoracic metastasis. A biopsy of the nodular lesion shows "squamous cell carcinoma". She has met with otolaryngology and her tumor has been deemed unresectable. She presents to your office to discuss treatment options?

- 1. What of the following additional testing should you obtain next?
 - A. PET-CT
 - B. Combined prognostic score testing
 - C. Audiology testing
 - D. HPV-DNA testing of tumor

A 62 year old female presents with worsening right sided oral pain. Of note, she was diagnosed with a pT4apN2bcM0 squamous cell carcinoma of right hard palate in 11/2019 for which she underwent anterior maxillectomy, bilateral neck dissection and reconstruction, followed by adjuvant radiotherapy (completed 02/2020). Physical examination shows a large oro-nasal fistula with nodular tissue on the anterior edge and marked right sided trismus. A CT soft tissue neck shows "approx. 3.5 cm nodular lesion within the right maxillectomy resection cavity and enlarged right level V cervical node". A CT chest showed no evidence of thoracic metastasis. A biopsy of the nodular lesion shows "squamous cell carcinoma". She has met with otolaryngology and her tumor has been deemed unresectable. She presents to your office to discuss treatment options?

- 1. What of the following additional testing should you obtain next?
 - A. PET-CT (Incorrect- A CT soft tissue neck and CT chest will be sufficient staging imaging, thus PET-CT is not needed at this time)
 - B. Combined prognostic score testing (Correct- This will be needed to decide first line therapy)
 - C. Audiology testing (Incorrect- Is not needed at this time as this will not help decide first line therapy)
 - D. HPV-DNA testing of tumor (Incorrect- HPV testing is not required for oral cavity HNSCC, does not add prognostic information or help decide first line therapy")

A CPS score testing is obtained and shows a CPS score of 0

- 1. Which of the following treatment options would you recommend for her?
 - A. Concurrent chemo-radiotherapy
 - B. Carboplatin, 5-fluorouracil and pembrolizumab
 - C. Pembrolizumab monotherapy
 - D. Carboplatin, 5-fluorouracil and cetuximab

This patient received carbo-5FU-pembrolizumab therapy, and attained a partial response after 2 cycles. She is currently on cycle 5 of this regimen and tolerating it well

A CPS score testing is obtained and shows a CPS score of 0

- 1. Which of the following treatment options would you recommend for her?
 - A. Concurrent chemo-radiotherapy (Incorrect- patient has already received adjuvant RT therefore re-irradiation will have significant toxicity)
 - B. Carboplatin, 5-fluorouracil and pembrolizumab (Correct- given no PD-L1, chemotherapy plus pembrolizumab should be the preferred therapy)
 - C. Pembrolizumab monotherapy (Incorrect- For tumors with no PD-L1 expression, pembrolizumab monotherapy is inferior)
 - D. Carboplatin, 5-fluorouracil and cetuximab (Incorrect- KEYNOTE048 showed superior efficacy of carbo-5FU-pembrolizumab regimen over EXTREME regimen)

This patient received carbo-5FU-pembrolizumab therapy, and attained a partial response after 2 cycles. She is currently on cycle 5 of this regimen and tolerating it well

A 55 year old male was diagnosed with HPV associated cT4N1M0 squamous cell carcinoma of right base of tongue in 12/2020. He completed definitive chemo-radiotherapy (with high dose cisplatin) on 01/31/2021. His post-treatment PET-CT performed showed a partial response in the oropharyngeal tumor, resolution of cervical adenopathy, but interval development of several FDG avid mediastinal nodes as well as bilateral lung nodules. A biopsy of the most accessible lung lesion shows squamous cell carcinoma. CPS score is 0.

Instructions - Case Study 1

Raise your hand or give me a thumbs up to indicate you would select option A or B

Option A) Nivolumab Monotherapy

Option B) Carboplatin, 5-fluorouracil and pembrolizumab

Instructions - Case Study 1

Raise your hand or give a thumbs up to indicate you would select option A or B

Option A would be most appropriate

Either monotherapy with Nivolumab or Pembrolizumab would be the most appropriate therapy given platinum refractory disease, based on results of CheckMate 141 and KEYNOTE040 trials, respectively

Thank you

