How cancer rearranges the rules for immune tissue schematics: New Class of Targets for Therapy

Architecture as defined by organization of niches and INTER-CELLULAR relationships

Commercial conflicts:

- Akoya Bio
- IonPath
- Scale Bio

Garry P. Nolan, Ph.D.

Split

F DA

Pool Split

Rachford and Carlota A. Harris Professor Dept. of Pathology Stanford University

Parker Institute for Cancer Immunotherapy

CODEX2 • MULTIPLEXING BY REANNEALING

CODEX FFPE • Validated DNA-Barcoded Antibodies

CD / immune markers			Tissue-Specific and other markers				
CD1a	CD38	CD103	AIF-1	dsDNA	IRF4 (MUM-1)	p16	Synaptophysin
CD2	CD39	CD117 (c-kit)	alpha-SMA	EGFR	Карра	p63	T-bet
CD3	CD44	CD134 (OX-40)	Annexin A1	EpCAM	Ki-67	Nucleolin	TCR-a/b
CD4	CD45	CD138	Arginase-1	FoxP3	Lambda	p53	TCR-g/d
CD5	CD45RA	CD162	beta-catenin	GATA3	Lamin A/C	Pancreatic amylase	TIA-1
CD7	CD45RO	CD163	BCL-2	GFAP	Lamin B1	Pancreatic lipase	TMEM119
CD8	CD47	CD164	beta-tubulin 3	Glucagon	Mast cell tryptase	Pancreatic PP	TTF-1
CD11b	CD56	CD194 (CCR4)	Cathepsin D	Granzyme B	Melan-A	PAX5	Vimentin
CD11c	CD57	CD206	CCR6	Hep-Par-1	MHC-1	PNAd	VISTA
CD15	CD62L	CD223 (LAG-3)	CDX2	Histone pH2A.X	MMP9	Podoplanin	
CD16	CD66a	CD235a	Chromogranin A	Histone H3	MMP12	Pro-insulin	
CD20	CD68	CD271	CK 7	Hist H3K9ac	MPO	pSTAT1	
CD21	CD69	CD274 (PD-L1)	Collagen IV	Hist H3K27me3	MUC-1	pSTAT3	
CD25	CD70	CD278 (ICOS)	COX-2	Hist H3pS28	MUC-2	pSTAT5	
CD30	CD71	CD279 (PD-1)	CX3CR1	HLA-DR	MUC-5AC	S100A6	
CD31	CD73	CD366 (TIM-3)	CXCL13	IDH-1 R132H	MYC	S100A9	
CD34	CD74		CXCR3	IDO-1	Na-K-ATPase	Somatostatin	
CD36	CD79a		Cytokeratin (Pan)	Insulin	Nestin	SOX11	

TOTAL

133

with Salil Bhate, Nolan lab

Identify Tissue Motifs

CELLS AT THE INTERFACE • DRIVING INTERACTIVE BIOLOGY

Signals generated by local processes modulate the expression of functional markers

> Increase in WHITE marker expression in SC at the green / blue interface

Increase in RED marker expression in SC at the green / purple interface

SPATIAL CONTEXT: OUTER ZONE EXHIBITS DYNAMIC CD38 EXPRESSION

Follicle WITH CD38 Expression in Outer Zone

Minor changes in expression levels determines your neighbors

CD79b, immunoglobulin-associated beta

Most algorithms DO NOT APPRECIATE how minor changes in expression levels influence localization.

What you "think" and say determines your neighbors.

This data be used in Al algorithms to better classify cell types. Make sure your algorithms use this subtle information.

Goltsev Y, Samusik N, Kennedy-Darling J, Bhate S, Hale M, Vazquez G, Black S, **Nolan, GP**. <u>*Cell*</u> 2018

LYMPH NODES ARE SIMILAR • ... BUT NOT ALL THE SAME

- Tonsil 1

- Tonsil 2

with Salil Bhate, Nolan lab

INTERPRETATION:

Rest of motif required for instance of blue CN to form constraints on 3D architecture (only have 2D images)

with Salil Bhate, Nolan lab

with Salil Bhate, Nolan lab

CASE STUDY • CRC TUMOR IMMUNE MICROENVIRONMENT

Christian Schuerch & Darci Phillips

CRC • IN DII, IMMUNE MODULES DO NO AGGREGATE/COALESCE

There are no significant differences in "types" of neighborhoods But ... The neighborhoods are smaller and more fragmented

Cell Type Prognostic Value in Neighborhoods

NEIGHBORHOOD ADJACENCIES ARE REFLECTIVE OF DISEASE STATE

Salil Bhate & Graham Barlow

NEIGHBORHOODS, SCS AND MECHANISM

CNs w/ certain SCs predict disease state

DII PATIENTS • Tumor Appropriates Higher-Order Tissue Motif

Bhate*, Barlow* et al., accepted

Cell Type Prognostic Value in Neighborhoods

Salil Bhate & Graham Barlow Enrichment of mutated motif in DII patients 1.0 -CLR: 1, DII: 8 T cell Enriched 0.8 Tumor inserted into motif preferentially in DII patients Bulk Tumor 0.6 DII without DII with 2 Immune Infiltrated Stroma 0.4 Cox PHp=0.006 Macrophage Enriched ____CLR: 6, QII: 13 0.2 _ Follicle log2 enrichment in DII patients 6 Tumor Boundary 20 60 120 0 40 80 100 140 7-9 `A___ Vascularized Smooth Muscle 0 8 Smooth Muscle Follicle inserted into motif preferentially in 9 Granluocyte Enriched VARIABLE COEF LOWER 95% UPPER 95% P-VALUE CLR patients G-GCL PD-1+, CD4+, T cell -0.55 -0.93 -0.18 0.004 ____CLR: 8, DII: 3 frequency in cn9 ____CLR: 3, DII: 1 Has cn2-2.09 3.55 0.64 0.005 Triangle (1,4,7) Motif

JUMP

Making "Super" CD8+ T Cells by Controlling Metabolism

(Vodnala, *Science*, 2019)

CODEX Imaging of Tumors (day 3 Post-treatment)

Inflammatory, Anti-Tumor Programs

Hoechst - NuclearCD45 = ImmuneKi67 = ProliferationH2Kb = Antigen PresentationPDL1 = Immune inhibitory $100 \mu m$

No T cells

Canonical Activated T cells

Metabolically Transformed T cells

Spatial Context Map Analysis: Inter-neighborhood interactions

Critical Intercellular and Molecular Relationships

Tissue schematics can teach us about rules of interaction

The boundary space can inform "where the action is"

An expert observer can infer mechanistic consequences of these interaction zones

By stopping or enabling their development these are new therapeutic targets (small molecule/Abs)

SC-RNASeq data can be 'transferred' to CODEX to infer mechanism and suggest therapeutics

ACKNOWLEDGEMENTS •

TECHNICAL (6)

Sarah Black

Kenji Munoz

Han Chen

Angelica Trejo

Gustavo Vasquez

CODEX @AkoyaBio *

Maeve O'Huallachain

+ 20 others

Nilanjan Mukherjee

Julia Kennedy + 150 others

Quantum Barcoding @Roche

Kimberly Smythe Robert H. Pierce Steven P. Fling Nirasha Ramchurren Martin A. Cheever

With UPenn

SUPER-MARIO

Bokai Zhu* Shuxiao Chen* Yuchao Jiang Zongming Ma Nancy Zhang Garry Nolan

围

POST DOCTORAL (8) Christian Schuerch, MD Darci Phillips, MD

David McIlwain, PhD Goujun Han, PhD Xavier Clave, PhD Sizun Jiang, PhD Ivan Lee, MD Zainab Rahil, PhD Quolan Lu, PhD Yuqi Tan, PhD

Senior Scientists (2) Yury Goltsev, PhD Shigemi Kinoshita, PhD

Grad Students (5) Salil Bhate Graham Barlow

Yunhao Bai Bokai Zhu Maxim Markovic

www.stanford.edu/group/nolan

SCIENTIFIC VISUALIZATION: SCI•VI Shawn Hollahan

* Equity holder and therefore potentially conflicted