SITC

2017 Early FDG-PET Response Correlates With Dose and Efficacy in Patients With Microsatellite Stable mCRC Treated With Carcinoembryonic Antigen T-cell Bispecific (CEA-TCB) Antibody Plus Atezolizumab

> Said Bouseida,¹ Federico Sandoval,¹ Daniel Sabanés Bové,² Vaios Karanikas,³ Abiraj Keelara,¹ Tapan Nayak,¹ Jose Saro³

¹Roche Innovation Center Basel, Basel, Switzerland; ²F. Hoffmann-La Roche Ltd, Basel, Switzerland; ³Roche Innovation Center Zurich, Zurich, Switzerland

Presenter Disclosure Information

Jose Saro

#SITC2017

The following relationships exist related to this presentation:

- Roche employee
- Roche stockholder

Introduction

- CEA-TCB (RG7802, RO6958688) is a novel T-cell bispecific antibody under investigation as monotherapy and in combination with atezolizumab (anti–PD-L1) in CEA-expressing tumors, including mCRC, of which > 90% of patients express high levels of CEA¹⁻⁵
- CEA-TCB showed manageable toxicity and encouraging signs of clinical activity in combination with atezolizumab in patients with ≥ 3L MSS mCRC,^{4,5} which is a disease setting with high unmet medical need⁶⁻⁸
 - Atezolizumab enhances anti-cancer immunity, resulting in durable responses as monotherapy across a range of diseases and survival benefit as monotherapy in cancer such as NSCLC^{9,10}
- The use of FDG-PET as a pharmacodynamic biomarker for immunotherapy in mCRC has not been established previously
- We report preliminary results of FDG-PET imaging as an early pharmacodynamic marker for CEA-TCB in combination with atezolizumab in patients with MSS mCRC

3L, third line; FDG-PET, 18F-fluorodeoxyglucose positron emission tomography; MSS, microsatellite stable; NSCLC, non-small cell lung cancer. 1. Bacac M, et al. *Clin Cancer Res.* 2016; 2. Hammarström S. *Semin Cancer Biol.* 1999; 3. Tiernan JP, et al. *Br J Cancer*. 2013; 4. Tabernero J, et al. ASCO 2017 [abstract 3002]; 5. Argiles G, et al. ESMO GI 2017 [abstract LBA-004]; 6. Grothey A, et al. *Lancet.* 2013; 7. Mayer RJ, et al. *N Engl J Med.* 2015; 8. Le DT, et al. *N Engl J Med.* 2015; 9. TECENTRIQ [package insert] 2017; 10. Rittmeyer A, et al. *Lancet.* 2017.

CEA-TCB 2-to-1 Format and Mechanism of Action

Structure

- Simultaneous binding with 1 arm to CD3 on T cells and 2 arms to CEA on tumor cells
- Flexibility that enables high-avidity binding and selective killing of high—CEA-expressing tumor cells
- A longer half-life compared with other TCB formats
- A silent Fc, which results in a reduced risk of Fcy receptor—related cytokine release/IRRs

Mechanism of Action¹

Killing of tumor cells independent of pre-existing immunity through release of cytotoxic granules

- T-cell engagement and activation and tumor-cell killing by delivery of cytotoxic granules^{2,3}
- CEA-TCB is uniquely designed to^{2,3}:
 - Simultaneously bind to tumor and T cells
 - Engage and activate T cells, inducing potent killing of tumor cells
 - Increase T-cell infiltration, resulting in a more inflamed tumor micro-environment

Fc, fragment crystallizable; IRR, infusion-related reaction.

1. Figure (right) adapted from: Green *The Scientist* April 2014; 2. Bacac M, et al. *Clin Cancer Res.* 2016; 3. Bacac M, et al. *Oncoimmunology.* 2016.

Ongoing Phase Ib Study of CEA-TCB Plus Atezolizumab

• **Key objectives:** Safety/tolerability; MTD and/or recommended dose; preliminary anti-tumor activity and ORR, DOR, DCR and PFS; PK/PD

CT, computed tomography; MTD, metabolic tumor volume; SUV_{max} , maximum standardized uptake value; TLG, total lesion glycolysis. ^a Moderate to high CEA expression in $\geq 20\%$ of tumor cells by IHC using CEA-specific antibody. ^b As identified by an independent reviewer at baseline. ^c PFS was defined as the time from post-baseline FDG-PET assessment to progressive disease by RECIST v1.1. or death, whichever occurred first. NCT02650713.

- All patients: locally advanced/metastatic CEA+ solid tumors^a with ≥ 1 tumor lesion able to be biopsied who progressed on or are intolerant of standard therapy
 - Measurable disease (RECIST v1.1) and ECOG PS 0-1
- Evaluable patients: n = 25 of 77 for FDG-PET analyses;
 n = 24 for RECIST v1.1 vs FDG-PET analyses
 - Median follow-up duration, 119 days (range, 50-360 days); data cutoff, June 6, 2017
- Treatment: CEA-TCB at 5 to 300 mg IV qw + atezolizumab 1200 mg IV q3w
- **Methods:** FDG-PET/CT imaging was performed before treatment start and 3 to 7 weeks after treatment start
 - On-treatment changes in SUV_{max}, MTV and TLG were analyzed in ≤ 10 measurable lesions per patient^b
 - Exploratory statistical analyses used semi-parametric Gaussian regression models and Cox proportional hazards models and Kaplan-Meier landmark analyses (for PFS)^c

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

FDG-PET Measured CEA-TCB–Induced Pharmacodynamics

- On-treatment maximum-intensity—projection images (right) showed reduction in FDG uptake vs pre-treatment images (left)
- On-treatment decreases in tumor metabolic activity were seen in most patients treated at doses ≥ 80 mg of CEA-TCB + atezolizumab

C2D8, cycle 2 day 8. Data cutoff for CT scan: July 14, 2017. ^a Measurements were centrally assessed.

Change in On-Treatment SUV_{max} and Metabolic Responses Appeared to Correlate With CEA-TCB Dose

 On-treatment decreases in SUV_{max} appeared to correlate with increasing CEA-TCB doses + atezolizumab (P = 0.081)

- Partial metabolic response was reported in 10% (1 of 10) of patients treated with CEA-TCB < 80 mg + atezolizumab
- Partial metabolic response was reported in 53% (8 of 15) of patients treated with CEA-TCB ≥ 80 mg + atezolizumab

1. Young H, et al. Eur J Cancer. 1999.

Change in On-Treatment FDG-PET SUV_{max} Appeared to Correlate With Best Tumor Size Change From Baseline

 On-treatment decreases in SUV_{max} appeared to correlate with reduction in tumor size (*P* < 0.001)

^a Investigator assessed.

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Reduction in tumor size was seen mainly in patients

treated with CEA-TCB \geq 80 mg + atezolizumab

Change in On-Treatment FDG-PET Appeared to Correlate With Longer PFS

 On-treatment reduction in SUV_{max} appeared to correlate with prolonged PFS^a (P < 0.0001)

cfb, change from baseline. FDG-PET SUV_{max} cfb median cutoff = -6.39.

^a PFS was defined as the time from post-baseline FDG-PET assessment to progressive disease by RECIST v1.1. or death, whichever occurred first.

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Bouseida S et al. FDG-PET in MSS mCRC.

Conclusions

- SUV_{max} reduction after CEA-TCB + atezolizumab appeared to correlate with:
 - Higher CEA-TCB doses
 - Tumor size reduction
 - Longer PFS following FDG-PET assessment
- Early on-treatment changes in FDG-PET may act as a pharmacodynamic biomarker related to treatment efficacy and potentially guide dose selection in patients with MSS mCRC
- Further analyses to validate the use of FDG-PET and CT scans are ongoing

We thank all the patients who participated in this study and their families

We also thank participating study investigators and clinical sites

Josep Tabernero	Vall d'Hebron Institute of Oncology; CIMA, CUN, University of Navarra
Ignacio Melero	CIMA, CUN, University of Navarra; CIBERONC
Willeke Ros	The Netherlands Cancer Institute
Guillem Argilés	Vall d'Hebron Institute of Oncology; CIMA, CUN, University of Navarra
Aurélien Marabelle	Gustave Roussy
Maria Esperanza Rodriguez	CIMA, CUN, University of Navarra; CIBERONC
Joan Albanell	CIBERONC; Hospital del Mar
Emiliano Calvo	START Madrid-CIOCC, Centro Integral Oncológico Clara Campal
Victor Moreno	START Madrid-FJD, Hospital Fundación Jiménez Díaz
James M. Cleary	Dana-Farber/Harvard Cancer Center
Joseph Paul Eder	Yale Cancer Center
Herbert Hurwitz	Duke University Medical Center
Luis Paz-Ares	Hospital Universitario 12 de Octubre
Neil H. Segal	Memorial Sloan Kettering Cancer Center

This study is sponsored by F. Hoffmann-La Roche, Ltd. Editorial support for this presentation was provided by Health Interactions, Inc, and funded by F. Hoffmann-La Roche, Ltd ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE Bouseida S et al. EDG-

Bouseida S et al. FDG-PET in MSS mCRC.