obbvie

Breakout session |l
Somatic and epigenetic
changes related to the
cancer immune
landscape

Josue Samayoa, Richard Simon, Vésteinn
Thorsson, Daniel De Carvalho, Michele
Ceccarelli, Maulik Patel,

05/15/2018




Currently employed as a Principal research scientist, AbbVie Inc.

obbvie Presentation Title | Congress Name or Acronym | Date xx.xx.xx | Copyright © 2015 AbbVie 2



p—
A THCA PRAD KIRC BRCA GBM KIRP KICH LIHC CESQHNS(JPAAD OV STAD CRC BLCA LUSC LUAD UCECSKCM
197 155§ 494 146 2

1000 n=394 425 416 972 288 161 66 91 342 395 175 542 246 343 ()Y‘go QEJ (}- > Qg oz‘é} é) é} ;9 YQ o J é) v@ é) :Jé
FESESSESFITRK 068033 8
] 3 56 41 0 193 §5 96
" = = ] Activated CD8
Effector memory CD8
)

.
High
. E } Effe
z i Treg
Mutation ¢
n= 17 217 319 376 132 148 63 137 7 2 31 102 56 150 112

log10(mutations/Mb)
|
\
—~

|

|

|
e
\

.   //72/'

84 1138 1 68
= Activated CD8
H low Effe memory CD8

n= 382 204 97 540 14 11 7 23 0 59 4 23 12 0 31 45
L ow oz} = = i Activated CD8
] 1 Effector memory CD8
3 jaE] Activated CD4
. € I Effector memory CD4
Mutation ¢ = B R
= == MDSC

SELPS PSP
§ PESESSSHS 8

i

Heterogeneity upon heterogeneity:

* There is heterogeneity in the immune
landscapes of different tumor types

* There is also heterogeneity between high and
low TMB tumors of the same type

* The immune landscape is comprised of
multiple dimensions that all play a role in
determining response

Charoentong et al., 2017, Cell Reports 18, 248-262
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The cancer immune landscape is a relevant phenotype for 10-
responsiveness

Excluded Desert

* The focus of this session will be to investigate the interplay between
epigenetic and somatic alterations, their influence on the cancer immune
landscape, and ultimately their role in determining response to 10-based
therapies.

obbvie Presentation Title | Congress Name or Acronym | Date xx.xx.xx | Copyright © 2015 AbbVie



Immunological Constant of Rejection (ICR) — Hendrickx et al, 2017
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Immunological Constant of Rejection (ICR) — Hendrickx et al, 2017
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1. What are the underlying genomic alterations that explain the variability of response to 10 based therapies
for tumors with high TMB? Specifically, what molecular alterations are associated with cases that have
high TMB and yet fail to respond to 10?

Maulik Patel, PharmD/PhD, Senior Clinical Scientist I, AbbVie Inc., Redwood City, CA

2. How can knowledge of how somatic alterations influence the tumor microenvironment help us optimize
immunotherapy combinations? Specifically, are there shared themes in these effects that can be exploited
for improving therapy?

Vésteinn Thorsson, PhD, Senior Research Scientist, Institute for Systems Biology, Seattle, WA

3.  What molecular alterations have a direct effect on epigenetics and how does this correlate with the cancer
immune landscape and IO responsiveness?

Daniel D. De Carvalho, PhD, Assistant Professor, Department of Medical Biophysics, Faculty of Medicine,
University of Toronto

4. What are the regulatory networks downstream of molecular alterations that are correlated with the
cancer immune immune-phenotypes and response to 10-based therapies. How do we identify the main
regulators of these networks as potential targets to revert the immune silent phenotypes?

Michele Ceccarelli, PhD, Research Fellow, AbbVie Inc., Redwood City, CA
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Start with what we know.

What questions still remain to be answered?

What is our strategy to address these questions?
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Example 1: Wnt beta-catenin
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Example 3: IDH1 mutation and glioma

Mutant IDH1 regulates the tumor-
associated immune system in gliomas

Nduka M. Amankulor,' Youngmi Kim,? Sonali Arora,” Julia Kargl,** Frank Szulzewsky,’
Mark Hanke,2* Daciana H. Margineantu,* Aparna Rao," Hamid Bolouri, > Jeff Delrow,’
David Hockenberv.>* A. McGarrv Houghton,>*” and Eric C. Holland>®

Gliomas harboring mutations in isocitrate dehydrogenase 1/2 (IDH1/2) have the CpG island methylator phenotype
(CIMP) and significantly longer patient survival time than wild-type IDH1/2 (wtIDH1/2) tumors. Although there are
many factors underlying the differences in survival between these two tumor types, immune-related differences in
cell content are potentially important contributors. In order to investigate the role of IDH mutations in immune
response, we created a syngeneic pair mouse model for mutant IDH1 (mulDH1) and wtIDH1 gliomas and demon-
strated that muIDH1 mice showed many molecular and clinical similarities to muIDH1 human gliomas, including a
100-fold higher concentration of 2-hydroxygluratate (2-HG), longer survival time, and higher CpG methylation
compared with wtIDH1. Also, we showed that IDH1 mutations caused down-regulation of leukocyte chemotaxis,
resulting in repression of the tumor-associated immune system. Given that significant infiltration of immune cells
such as macrophages, microglia, monocytes, and neutrophils is linked to poor prognosis in many cancer types, these
reduced immune infiltrates in muIDH1 glioma tumors may contribute in part to the differences in aggressiveness of
the two glioma types.

GENES & DEVELOPMENT 31:1-13

Decoupling genetics, lineages, and microenvironment
in IDH-mutant gliomas by single-cell RNA-seq

Andrew S. Venteicher'%%", Itay Tirosh®"1, Christine Hebert', Keren Yizhak'Z, Cyril Neftel"%*, Mariella G. Filbin'2%, Volke
Hovestadt'~, Leah E. Escalante’, McKenzie L. Shaw'?, Christopher Rodman?, Shawn M. Gillespie', Danielle Dionne?,
Christina C. Luo', Hiranmayi Ravichandran', Ravindra Mylvaganam', Christopher Mount®, Maristela L. Onozato', Brian V.
Nahed®, Hiroaki Wakimoto®, William T. Curry?, A. John lafrate’, Miguel N. Rivera'~, Matthew P. Frosch', Todd R. Golub®®”,
Priscilla K. Brastianos®, Gad Getz', Anoop P. Patel’, Michelle Monje®, Daniel P. Cahill®, Orit Rozenblatt-Rosen?, David N. .
P ' Science 31 Mar 2017

Louis', Bradley E. Bernstein'%, Aviv Regev’ %1+ Mario L. Suva'21# Vol. 355, Issue 6332, eaai8478
DOI: 10.1126/science.aai8478



KRAS mutations lead to immunosuppresive myeloid cells by
Increasing GM-CSF
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Cancer immunogenomics can be used to identify other
possible assocations
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Genomic Alterations and High TMB:
Alterations in DDR and Repair Genes - Impact on Mutational Burden and an
Independent Effect of DDR Status on PFS and OS in mUC.
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In mUC, alterations in DDR genes were strongly associated with clinical benefit to anti-PD1/L1 treatment.

Q. What is the frequency of DDR genes alteration in UC and other solid malignancies? And, do DDR
alterations, beyond MMR, impart similar 10 response that can also be characterized as histotype-agnostic
phenomena?

Q. How can we better characterize VUS alterations ? Clear need not just for DDR gene panel but also with
other oncogenes/TSG?

Harmonization of targeted gene panels to include all high frequency DDR genes (FoundationOne Dx etc.,),
and the need for inclusion of additional low frequency DDR genes in the panel?

Macroscale: How do we evaluate the mechanisms that link DDR alterations, to TMB and neoantigen load, and
10 response?



Cancer Cell Extrinsic

Example 1: DNA methylation in
T cell exhaustion

De Novo Epigenetic Programs Inhibit
PD-1 Blockade-Mediated T Cell Rejuvenation

Hazem E. Ghoneim, Yiping Fan,2 Ardiana Moustaki,’ Hossam A. Abdelsamed,' Pradyot Dash,! Pranay Dogra,!
Robert Carter,” Walid Awad,’ Geoff Neale,® Paul G. Thomas," and Ben Youngblood'**

Department of Immunology

2Department of Computational Biology

3Hartwell Center for Bicinformatics & Biotechnology

St. Jude Children’s Research Hospital, Memphis, TN 38105, USA

4Lead Contact

*Correspondence: benjamin.youngblood@stjude.org

http://dx.doi.org/10.1016/j.cell.2017.06.007
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Cancer Cell Intrinsic

Example 2: PBAF complexin
Kidney Cancer

REPORT

Genomic correlates of response to immune checkpoint
therapies in clear cell renal cell carcinoma

Diana Miau"z, Claire A. Margolis-'z, Wenhua Gao', Martin H. Vuss:"4, Wei Lis, Dylan J. Martini’, Craig Nortun‘, Dominick
Bossé‘, Stephanie M. 'Nankowicz"‘\', Dana I:ulle.'naI Christine Horakf', Megan Wind-Rutqus, Adam Tracy“', Marios
Giannakis"‘\', Frank Stephen Hodi‘, Charles G. Drake", Mark W. Balls, Mohamad E. AIIafS, Alexandra Snyder:‘", Matthew D.
Hellmanns"‘I Thai Ho'ﬂ", Robert J. MotzerJ"‘, Sabina Signuretti‘, William G. Kaelin Jr."m, Toni K. Choueiri1'T'7, Eliezer M. Van
Allen"-2T:#

'Department of Medica

| Oncology, Dana-Farber Cancer Institute, Boston, MA 02275, USA.

Broad Institute of Ma

SMemorial Sloan k

“Bristol-Myers Squibb, New York, NY 70754, USA
‘Columbia University Medical Center, New York, NY 10032, USA

£ James Buchanan Brady Urological Institute and Department of Uralogy, Johns Hopkins University School of Medicine, Baltimore, MD

21287, USA.

9Mayo Clinic, Scottsdale, AZ 85259, USA.

titute, Dana-Farber Cancer Institute, Boston, MA 15 USA

Joward Hughes Medic 2

ding author. Email: eliezerm_vanallen@dfci.harvard.edu (E.M.\V.); toni_choueiri@dfei.harvard.edu (T.K.C.)

)
Science RESEARCH ARTICLES

Cite as: D. Pan et al., Science
10.1126/science.aao1710 (2018).

A major chromatin regulator determines resistance of

tumor cells to T cell-mediated killing

Deng Pan,'* Aya Kobayashi,'* Peng Jiang,?" Lucas Ferrari de Andrade,! Rong En Tay,' Adrienne Luoma,'
Daphne Tsoucas,? Xintao Qiu,* Klothilda Lim,* Prakash Rao,?" Henry W. Long,? Guo-Cheng Yuan,?

John Doench,* Myles Brown,? Shirley Liu,?* Kai W. Wucherpfennig">

‘Department of Cancer Immunalogy and Viralogy, Dana-Farber Cancer Institute, Boston, MA 02215, USA. “Department of Biostatistics and Computational Biology, Dana-
Farber Cancer Institute, Boston, MA 02215, USA. *Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. “Genetic Perturbation Platform,
Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. *Department of Microbiology and Immunobiology, Harvard Medical School, Baston, MA 02115, USA.
*These authors contributed equally to this work. tPresent address: Harvard University Office of Technology Development, Cambridge, MA 02138, USA.
{Corresponding author. Email: kai_wucherpfennig@dfci.harvard.edu (K.W.W); xsliu@jimmy.harvard.edu (S.L.)



Cancer Cell Intrinsic

Example 2: PBAF complexin
Kidney Cancer

Ghorani et al., Science 2018
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Cancer Cell Intrinsic

Example 4: Expression of
repetitive elements in Cancer is
predictive to response to 10

Cell Reports

Global Cancer Transcriptome Quantifies Repeat
Element Polarization between Immunotherapy
Responsive and T Cell Suppressive Classes

Alexander Solovyov,’ 210 Nicolas Vabret,!2310 Kshitij S. Arora,*519 Alexandra Snyder,® Samuel A. Funt,57
Dean F. Bajorin,57 Jonathan E. Rosenberg,5 Nina Bhardwaj,’ 2% David T. Ting,*811

and Benjamin D. Greenbaum-2:3.2.11.12,*

Tisch Cancer Institute, Departments of Medicine, Hematology and Medical Oncology, lcahn School of Medicine at Mount Sinai,
New York, NY, USA

2Department of Oncological Sciences and Department of Pathology, lcahn School of Medicine at Mount Sinai, New York, NY, USA
*Precision Immunology Institute at the Icahn School of Medicine, lcahn School of Medicine at Mount Sinai, New York, NY, USA
Massachusetts General Hospital Cancer Center, Boston, MA, USA

SDepartment of Pathology and Department of Surgery, Harvard Medical School, Charlestown, MA, USA

SDepartment of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA

7Department of Medicine, Weill Gornell Medical College, New York, NY, USA

8Department of Medicine, Harvard Medical School, Boston, MA, USA

9lcahn Institute for Genomics and Multiscale Biology, lcahn School of Medicine at Mount Sinai, New York, NY, USA

®These authors contributed equally

"Senior author

2 ead Contact

*Correspondence: benjamin.greenbaum@mssm.edu

https://doi.org/10.1016/].celrep.2018.03.042
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Cancer Cell Int

Example 4: Expression of
repetitive elements in Cancer is
predictive to response to 10

Cell Reports

Global Cancer Transcriptome Quantifies Repeat
Element Polarization between Immunotherapy
Responsive and T Cell Suppressive Classes
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To what extent is the immune landscape directed by the tumor?

— What are the known alterations that impact the environment?

— how do we modify this relationship for therapeutic 10 potential?

How do we standardize TMB in the clinical setting?

— How does response vary with the degree or number of mutations?

— And how do we translate this understanding to a threshold in the clinic?

— Should we use genomic alterations in DNA Damage Repair and Response
genes instead of TMB? Would that be a better predictor of response?

How do we incorporate functional impact assessment into mutation
assessment

Why haven't epigenetic based therapies worked against solid tumors?
— Isit just due to poor drugs?
— What did we miss?

— How do we look at the impact on the immune landscape post epigenetic
therapy?

— Do we need targeted demethylating agents?
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* High quality data and samples
 multi-dimensional data (Somatic, epigenetics, metabolomics)
e definitive immune landscape estimate

e Clinical outcomes tied to genomic information

e Standardizations across clinical measurements

 Complete patient phenotypic annotation including prior therapies
* Integrative modeling analysis

* Pre-competitive consortium wide effort is needed (NCI-PACT)

 There will be a presentation at the SITC Bio-marker meeting?
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