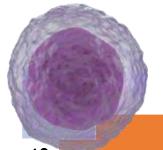
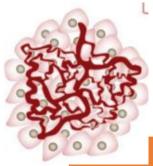

4:15-5:15pm Breakout Sessions 2
Topic D – Cytokine-based
immunotherapies and other molecular
bispecifics, other immunotherapies
Michael T. Lotze, MD—University of
Pittsburgh

- TNF and IL-1/FGF Family Members (Leaderless cytokines)
- The Interferons, IL-10 Family
- IL-2 Family Members
- IL-12 Family Members
- Pegylated or Muteinized Cytokines
- Anti-cytokines (TNF, IL-17, etc.)
- Cytokine-antibody conjugates

Innate Core and Adaptive Shell


Endothelial Myeloid, Lymphoid Cell **Develop**ment


Foundations of Cancer Therapy (WuXing Again)

- Chemotherapy
- Radiation
- Other Targets:
- Signal Transduction
- Autophagy
- Oncogenes
- Tumor Suppressor Genes

- Immune **Stimulants**
- Checkpoint Inhibition
- Adoptive Cell **Therapy** (CARs, TIL)
- DC Vaccines
- Oncolytic Viruses

Endothelium

- Anti-VEGF
- Chloroquine
- Platelet **Derived Growth Factor (PDGF)**
- Fibroblast **Growth Factor** (FGF)
- TKI's (Sorafenib, Sunitinib, Axitinib, Pazopanib)

and

Platelets

- Erythropoietin
- Thrombopoietin
- Interleukin 11
- Red Cell Infusions

 Platelet Derived **Growth Factor** (PDGF)

Bispecific antibodies in cancer immunotherapy

Eva Dahlén, Niina Veitonmäki and Per Norlén

Tumor-targeted Class Description **Targets** Stage* Examples immunomodulators T-cell redirectors Redirects T cells to malignant cells by targeting a $CD19 \times CD3$ Blinatumomab Market tumor antigen and CD3 $EpCAM \times CD3$ Marketed Catumaxomab (withdrawn) $CD20 \times CD3$ XmAb13676 BTCT4465A R07082859 Dual $CD123 \times CD3$ MGD006 immunomodulators JNJ-63709178 Xmab14045 BCMA × CD3 JNJ-64007957 BI 836909 MGD009 $B7H3 \times CD3$ $CEA \times CD3$ R06958688 MT111 $PSMA \times CD3$ **Pasotuximab** ES414/MOR209 NK-cell redirectors Redirects NK cells to malignant cells by targeting $CD30 \times CD16A$ AFM13 a tumor antigen and CD16A PC EGFR × CD16A AFM24 AFM26 PC BCMA × CD16A

Therapeutic Advances in Vaccines and Immunotherapy

2018, Vol. 6(1) 3-17

DOI: 10.1177/ 2515135518763280

© The Author(s), 2018. Reprints and permissions: http://www.sagepub.co.uk/

ATOR-1015

 $CTLA-4 \times 0X40$

Directs potent costimulation to the tumor- infiltrating immune cells by targeting a tumor antigen and costimulatory molecules such as CD40 or 4-1BB	TA × CD40	ABBV-428	Ι
	$HER2 \times 4-1BB$	PRS343	1
	$FAP \times 4-1BB$	4-1BB agonist	PC
	$5T4 \times 4-1BB$	ALG.APV-527	PC
Simultaneous targeting of two immunomodulating targets, resulting in blockade of inhibitory targets, depletion of suppressive cells or activation of effector cells	$PD\text{-}L1 \times TGF\text{-}\beta$	M7824	I
	$\text{PD-1} \times \text{LAG-3}$	MGD013	1
		FS118	PC
	$\text{PD-1} \times \text{TIM-3}$	MCLA-134	PC
	$\text{PD-1} \times \text{CTLA-4}$	XmAb20717	PC

Macrophages

CD40 Agonists Alter Tumor Stroma and Show Efficacy Against Pancreatic Carcinoma in Mice and Humans

Gregory L. Beatty, *et al.* Science **331**, 1612 (2011);

DOI: 10.1126/science.1198443

Gregory L. Beatty, 1,2,6 Elena G. Chiorean, Matthew P. Fishman, Babak Saboury, Ursina R. Teitelbaum, Weijing Sun, Richard D. Huhn, Wenru Song, Dongguang Li, Leslie L. Sharp, Drew A. Torigian, Peter J. O'Dwyer, Robert H. Vonderheide, Robert H. Vonderheide, Leslie L. Sharp, Drew A. Torigian, Drew A. Torigian, Robert H. Vonderheide, Robert H. Vo

Pennsylvania School of Medicine, 421 Curie Boulevard, Philadelphia, PA 19104, USA. ²Abramson Cancer Center, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. ³Division of Hematology/Oncology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA. ⁴Pfizer Corporation, New London, CT 06320, USA. ⁵Department of Radiology, Department of Medicine, University of Pennsylvania School of Medicine, Phila-

¹Abramson Family Cancer Research Institute, University of

*To whom correspondence should be addressed. E-mail: rhv@exchange.upenn.edu

Medicine, Philadelphia, PA 19104, USA.

delphia, PA 19104, USA. ⁶Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania School of

Fig. 1. Agonist CD40 mAb in combination with gemcitabine induces clinical responses in patients with surgically incurable PDA.

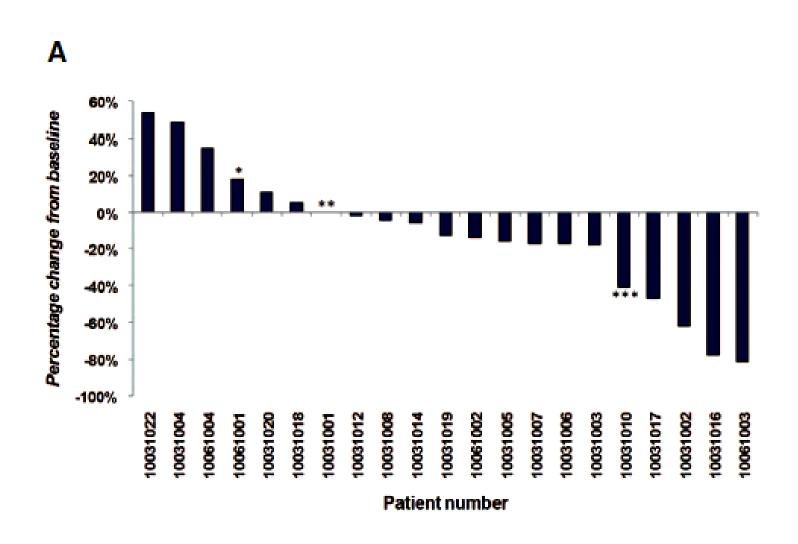
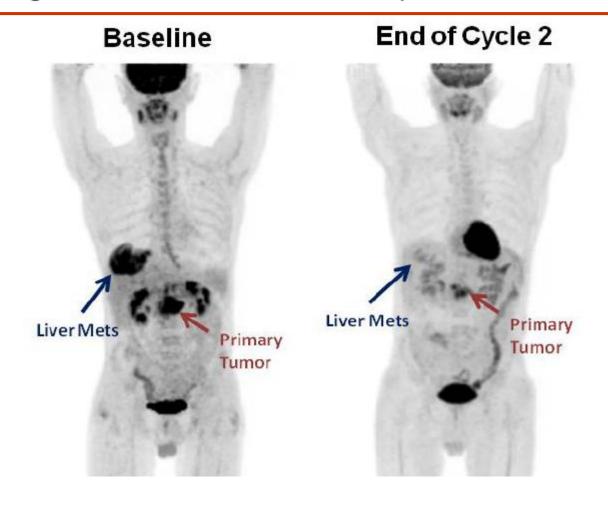
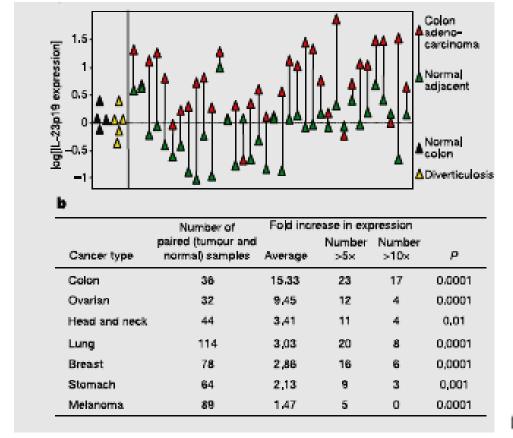



Figure S3. Metabolic tumor response to treatment

nature


May 2006

IL23

_ETTERS

IL-23 promotes tumour incidence and growth

John L. Langowski¹*, Xueqing Zhang¹*, Lingling Wu¹, Jeanine D. Mattson¹, Taiying Chen¹, Kathy Smith¹, Beth Basham¹, Terrill McClanahan¹, Robert A. Kastelein¹ & Martin Oft¹

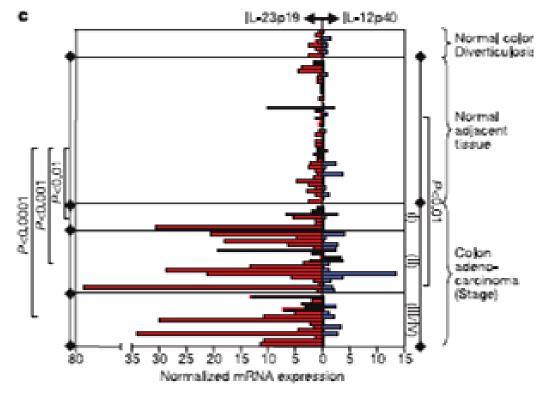


Figure 1 | Overexpression of IL-23 but not of IL-12 in human cancer.

Role of Cytokines in Promoting Cancer (Dranoff Review)

Cytokine	Cellular sources	Role in tumour formation
II-1	Macrophages, dendritic cells, B cells, natural killer cells, keratinocytes	Required for tumour invasion and angiogenesis
II-6	Macrophages, T cells, B cells, endothelial cells, fibroblasts	Required for chemically induced lymphoma
II-12	Macrophages, dendritic cells, neutrophils	Inhibits chemical carcinogenesis
II-15	Macrophages, dendritic cells	Promotes natural killer T cell leukaemias
lfn-γ	Natural killer cells, natural killer T cells, T cells, B cells, macrophages, dendritic cells	Inhibits chemical carcinogenesis; inhibits lymphomas (especially with perforin); Stat1 and Rag2 inhibit carcinomas
M-csf	Macrophages, endothelial cells, fibroblasts, bone-marrow stroma	Promotes breast cancer invasion
Gm-csf	Respiratory epithelial cells, T cells, natural killer cells, natural killer T cells, macrophages, eosinophils, endothelial cells, fibroblasts	Inhibits lymphomas and carcinomas (with Ifn-γ and II-3)
Tnf-α	Macrophages, natural killer cells, B cells, T cells, neutrophils, fibroblasts, keratinocytes	Required for chemically-induced skin cance
Mif	Macrophages, T cells, eosinophils, fibroblasts, keratinocytes, pituitary	Inhibits p53 tumour-suppressor functions
Tgf-β	T cells, B cells, macrophages, platelets, bone-marrow stroma, eye, testis	Inhibits colon carcinomas (with Rag2)
Fas- Fas ligand	B cells, T cells, hepatocytes, colon, ovary, respiratory epithelial cells	Inhibits lymphomagenesis

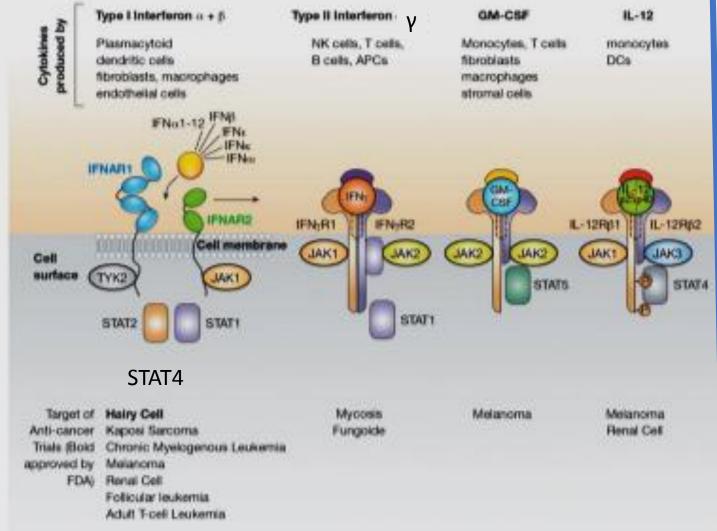
Clinical Administration of Cytokines (Dranoff)

V) + 2 4		
Cytokine	Therapeutic actions	Clinical administration
IL-2	Enhances NK cell and CD8+ T-cell function; increases vascular permeability	Systemic, local
IL-3	Enhances tumour antigen presentation	Systemic
IL-4	Enhances eosinophil function and T-cell activation	Systemic, local
IL-6	Enhances T-cell and B-cell function; inhibition of IL-6 reduces lymphoproliferation	Systemic, local
IL-7	Enhances T-cell function	Local
IL-10	Inhibits tumour antigen presentation	Pending
IL-12	Enhances T _H 1 immunity and cytotoxicity; inhibits angiogenesis	Systemic, local
IL-13	Inhibits cytotoxicity against viral neoplasms	Pending
IL-15	Enhances cytotoxicity	Pending
IL-18	Enhances T _H 1 immunity and cytotoxicity; inhibits angiogenesis	Pending
MESE	Enhances macrophage function	Systemic
G M-C SF	Enhances tumour antigen presentation	Systemic, local
IFN-α	Enhances tumour antigen presentation and cytotoxicity	Systemic
IFN-γ	Enhances tumour antigen presentation and cytotoxicity	Systemic, local
TNF-α	Induces tumour-cell apoptosis; activates endothelium and granulocytes	Systemic
TRAIL	Induces tumour-cell apoptosis	Pending
FLT3 ligand	Stimulates dendritic-cell and NK-cell function	Systemic
Lymphotactin	Enhances T-cell recruitment	Local
TGF-β	Inhibits T-cell effector function	Pending

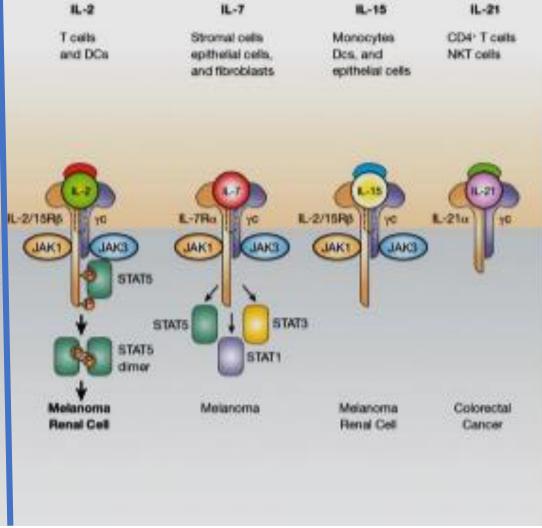
JOURNAL OF INTERFERON & CYTOKINE RESEARCH Volume 39, Number 1, 2019
© Mary Ann Liebert, Inc.

DOI: 10.1089/jir.2018.0019

RESEARCH REPORTS


Cytokines in the Treatment of Cancer

IL23


Kevin C. Conlon, Milos D. Miljkovic, and Thomas A. Waldmann

IL35

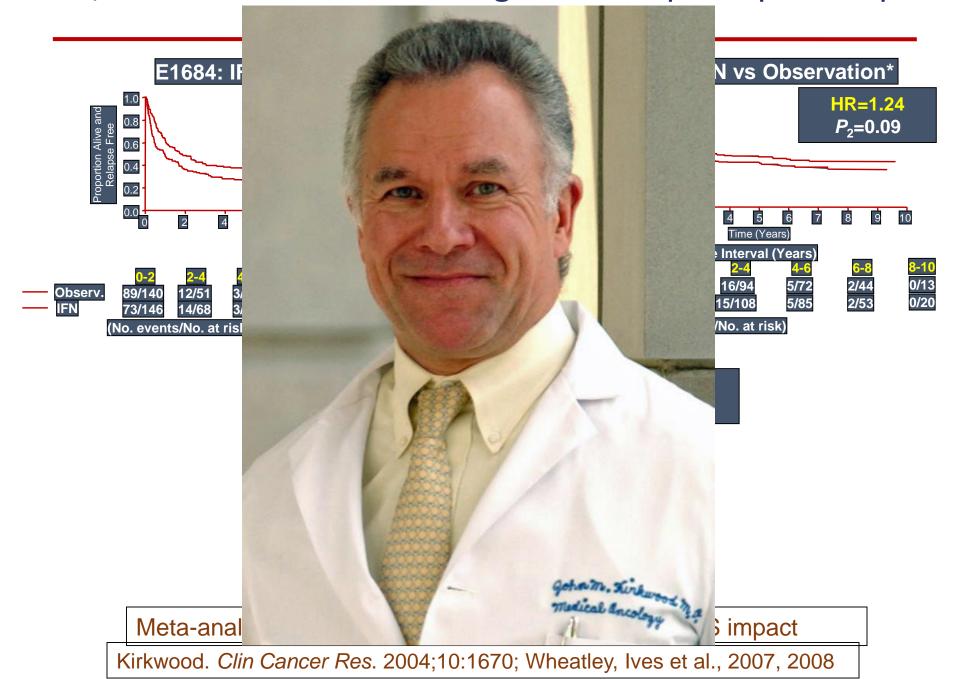
IL27

And IL-4 and IL-9 (mast cells)

Cytokines IFNα, IL-1, IL-2, IL-4, IL-7, IL-10, IL-12, IL-15, IL-18, IL-21, IL-24....IL-41

- IL-2 Discovered in 1976 and described as a protein that stimulated growth of T cells¹
- Jurkat IL-2 in 1983 [Lotze]
- Recombinant IL-2 first cloned in 1983¹
- First phase I studies of rIL-2 in malignant disease in 1984²
- Phase II clinical trials began in 1985³

- 1. Atkins MB, Lotze MT et al. *J Clin Oncol*. 1999:17;2105-2116.
- 2. Lotze MT et al *J Immunol.* 1985;134:157-166
- 3. Atkins MB et al. *J Clin Oncol.* 1986;4:1380-1391


The Beginning of Molecular Therapeutics - 1978

PEOPLE.COM • ARCHIVE

Will Interferon Kill Cancer? Finnish Dr. Kari Cantell Is Helping the World Find Out

But Cantell and the Finnish Red Cross, now producing 250 billion units (5,285 quarts) a year, have provided the great bulk of pure interferon used for clinical studies on humans, including a \$2 million batch bought last year by the American Cancer Society. "Production is the bottleneck," says Cantell, who finds it "stupid and irritating" that until recently nobody else has tried to produce the substance in large-scale volume.

E1684, E1690, and E1694: Durable and significant Impact upon relapse-free * and

Interferon Alpha

- IFNa and Peginterferon alpha 2b are approved as adjuvant treatment for patients with completely resected stage III or IV high-risk melanoma
- Adjuvant in Melanoma (Kirkwood/ECOG); On February 15, 2019, the Food and Drug Administration approved pembrolizumab (KEYTRUDA, Merck) for the adjuvant treatment of patients with melanoma with involvement of lymph node(s) following complete resection.
- First-line treatment for patients with mRCC (alfa-2a, and alfa-2b in combination with bevacizumab),
- AIDS-related Kaposi's sarcoma (alfa-2b), follicular lymphoma (alfa-2b), HCL (alfa-2a, alfa-2b), chronic myelogenous leukemia (Philadelphia chromosome-positive alfa-2a),
- Condyloma acuminata (alfa-2b), and cervical intraperitoneal neoplasms (alfa-2b) (Gutterman and others 1980; Kirkwood and Ernstoff 1984; Windbichler and others 2000).
- Pegylated for Hepatitis
- Hairy cell leukemia

Interferon-gamma (IFN-γ)

- Only type II IFN
- Produced mainly by NK cells and T lymphocytes
- Works primarily as an immunomodulator
 - 100-10K x more active than Type I interferons
- Functions
 - Regulate MHC expression
 - Activates differentiation and function of phagocytes
 - Augments interactions between macrophages and Tcells
 - Key role in regulating T-cell subsets to determine the type of immune effector function during a specific immune response

Final results of the EORTC LAURENCE H. KLOTZ,

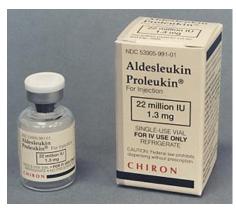
trial. rIENI 22h Varence rIENI 2 Varence ISCA DOD Reserve to the EORTC 18871/DKG 80-1 randomised phase III trial: rIFN-\alpha2b versus rIFN-\gamma versus ISCADOD \quad \text{Policy versus of the policy of th observation after surgery in melanoma par INTERFERON GAMMA-1b TAFA ELHILALI, YVES FRADEI, TON, ALEX BAJAMONE MARTIN E. GLEAVE, MALCOLM J. MC

FAILEDIIII

nterferon

with alpha and recombinant interferon alpha and gamma in pure EORTC (30885) randomised phase III study - Maintenance in ∽ell Lung Cancer. A advanced renal cell carcinoma the EORTC Lung Cancer Percentage of Pati P = 0.778 12 Time (years) 10 Placebo 12 Time to Death (months)

Systemic Injection Of Cytokines For Tumor Therapy


Melanoma

Bone marrow recovery

Melanoma, renal cancer

Kidney cancer

Classes of Molecules That Initiate The Innate Immune Response – Signal 0

Pathogen-associated Molecular Patterns (PAMPs):

Molecules expressed or released by invading microorganisms that are structurally unique to the pathogen.

Ruslan Medzhitov, 2000

<u>Damage-associated Molecular Patterns (DAMPs):</u>

Molecules expressed or released that are normally unavailable to the immune system but are released and recognized by immune cells following tissue injury [Danger].

DAMPs - Chronic Tumor Lysis Syndrome

Cell Constituents:

Acute Tumor Lysis Syndrome

Secreted molecules:

Matrix elements:

HMGB1 – Cytochrome C

Heat shock proteins

Uric Acid, ATP, Adenosine; CpG DNA

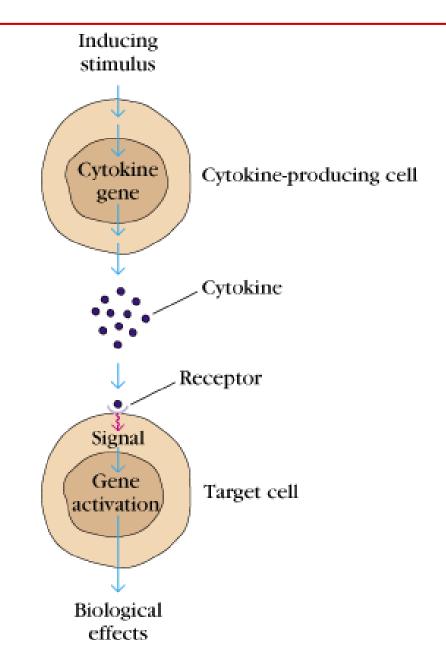
s100 proteins

Hepatoma derived growth factor

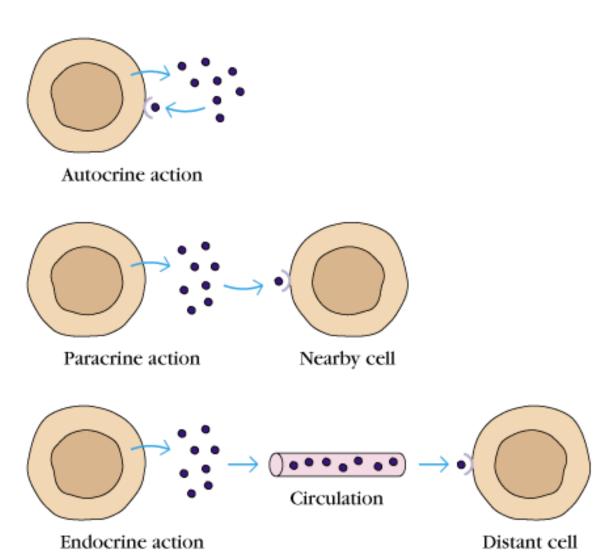
LDH

DNA

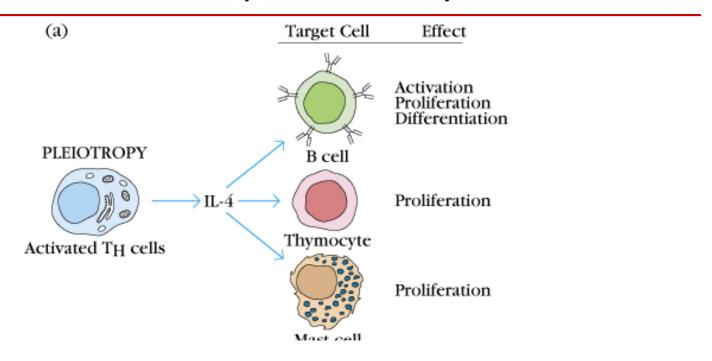
Fibrinogen domain A

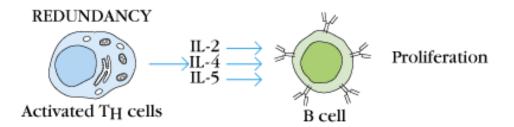

Surfactant protein A

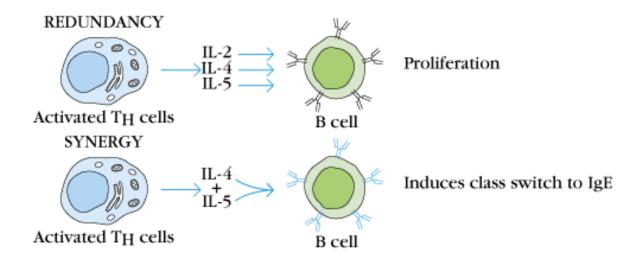
Heparan sulfate

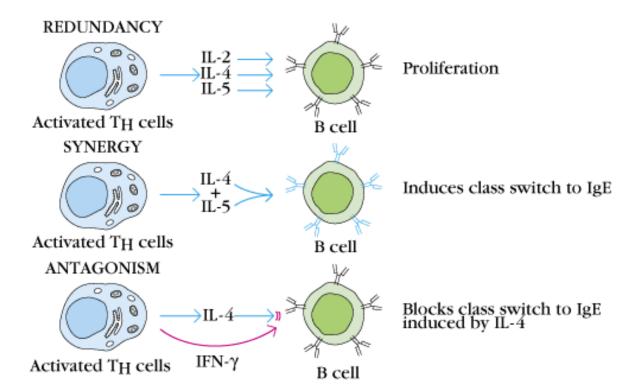

Soluble hyluranan

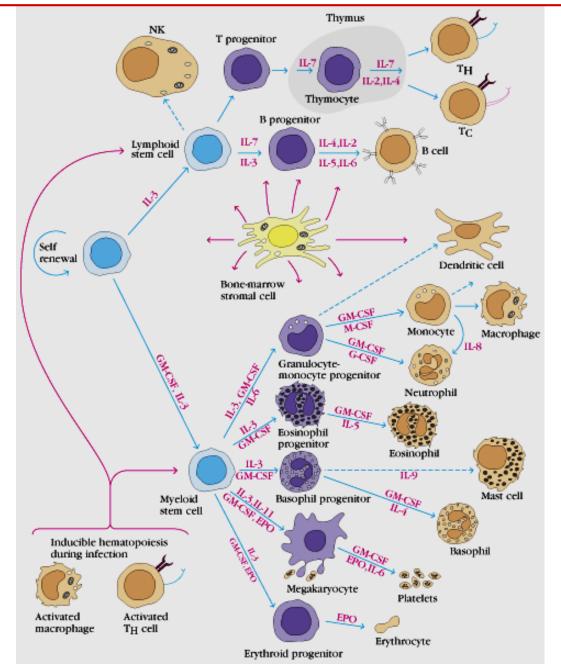
Fibronectin


General properties of cytokines

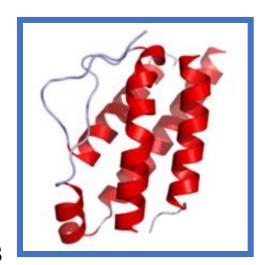

General properties of cytokines


General Properties Of Cytokines


General Properties Of Cytokines


General properties of cytokines

General Properties Of Cytokines


Hematopoietic Cytokines

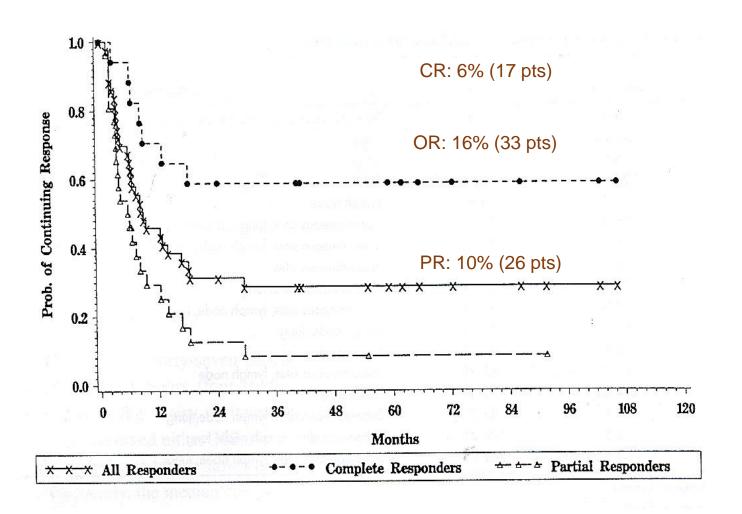
IL-3
IL-11
EPO
M-CSF
G-CSF
GM-CSF
IL-5
IL-9
IL-4
IL-12, IL-18
IL-24

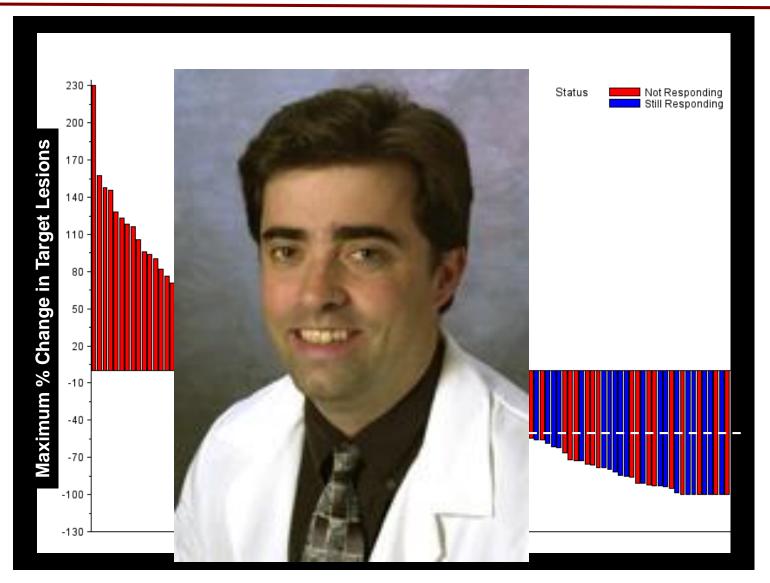
Cytokines IFN α , IL-1, IL-2, IL-4, IL-7, IL-10, IL-12, IL-15, IL-18, IL-21, IL-24....IL-38

- IL-2 Discovered in 1976 and described as a protein that stimulated growth of T cells¹
- Jurkat IL-2 in 1983 [Lotze]
- Recombinant IL-2 first cloned in 1983¹
- First phase I studies of rIL-2 in malignant disease in 1984²
- Phase II clinical trials began in 1985³

- 1. Atkins MB, Lotze MT et al. *J Clin Oncol*. 1999:17;2105-2116.
- 2. Lotze MT et al *J Immunol.* 1985;134:157-166
- 3. Atkins MB et al. *J Clin Oncol.* 1986;4:1380-1391

High Dose IL-2 Immunotherapy


- Approved in patients with melanoma and kidney cancer.
- Significant 'toxicity'.
- Associated with 'cytokine storm'.
- iNOS blockers, sTNF-R or IL-1Ra have yielded limited reduction in side effects.
- IL-2 treatment is associated with a 'systemic autophagic syndrome' and temporally limited tissue dysfunction.



AR. Chavez, X Liang, MT Lotze. Ann. N.Y.Acad.Sci.1182:14-27 (2009)

The Hallmark of IL-2 Therapy

Renal Cancer Response Rate=25% (n=118)

May 27, 2010 — Two white-coated cancer researchers are among the luminaries picked for *TIME* magazine's 2010 list of the 100 most influential people in the world. Larry Kwak, MD, PhD, and Doug Schwartzentruber, MD, FACS, join Sarah Palin, James Cameron, Steve Jobs, & Lady Gaga on this year's "influentials" list.

Dr. Doug Schwartzentruber

BiovaxID
patient-specific
vaccine for
follicular
lymphoma

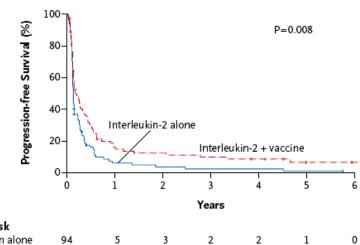
Melanoma gp100 2092M +IL-2

Dr. Larry Kwak

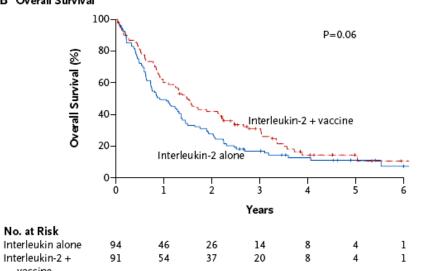
N Engl J Med 2011; June 2; 364:2119-27

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

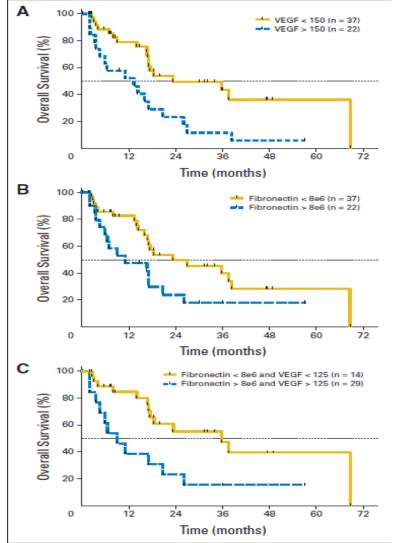

gp100 Peptide Vaccine and Interleukin-2 in Patients with Advanced Melanoma

Douglas I. Schwartzentruber, M.D., David H. Lawson, M.D.,


A Progression-free Survival

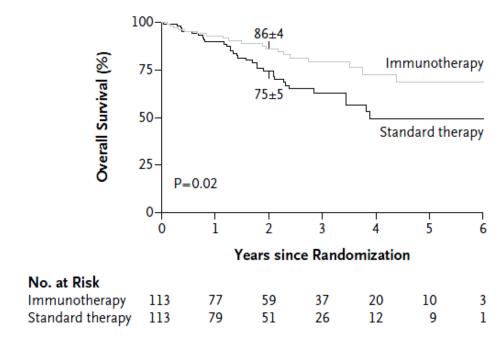
No. at Risk							
Interleukin alone	94	5	3	2	2	1	0
Interleukin-2 +	91	13	10	8	6	2	1
vaccine							

B Overall Survival


vaccine

Serum Vascular Endothelial Growth Factor and Fibronectin Predict Clinical Response to High-Dose Interleukin-2 Therapy

Marianna Sabatino, Seunghee Kim-Schulze, Monica C. Panelli, David Stroncek, Ena Wang, Bret Taback, Dae Won Kim, Gail DeRaffele, Zoltan Pos, Francesco M. Marincola, and Howard L. Kaufman



ORIGINAL ARTICLE

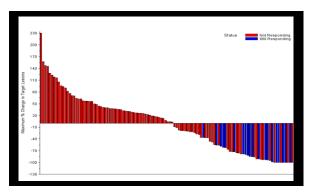
Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma

Alice L. Yu, M.D., Ph.D., Andrew L. Gilman, M.D., M. Fevzi Ozkaynak, M.D., Wendy B. London, Ph.D., Susan G. Kreissman, M.D., Helen X. Chen, M.D., Malcolm Smith, M.D., Ph.D., Barry Anderson, M.D., Judith G. Villablanca, M.D., Katherine K. Matthay, M.D., Hiro Shimada, M.D., Stephan A. Grupp, M.D., Ph.D., Robert Seeger, M.D., C. Patrick Reynolds, M.D., Ph.D., Allen Buxton, M.S., Ralph A. Reisfeld, Ph.D., Steven D. Gillies, Ph.D., Susan L. Cohn, M.D., John M. Maris, M.D., and Paul M. Sondel, M.D., Ph.D., for the Children's Oncology Group

The Strange Immunobiology of RCC

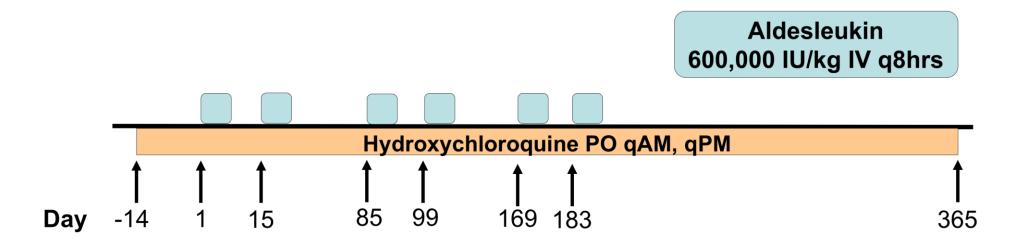
RESPONSE	INTEFERON α	IL- 2	CTLA4 AB	PD-1 AB	TIL
MELANOMA	+	+++	++	++	++++
RCC	+	+++	++	++	-

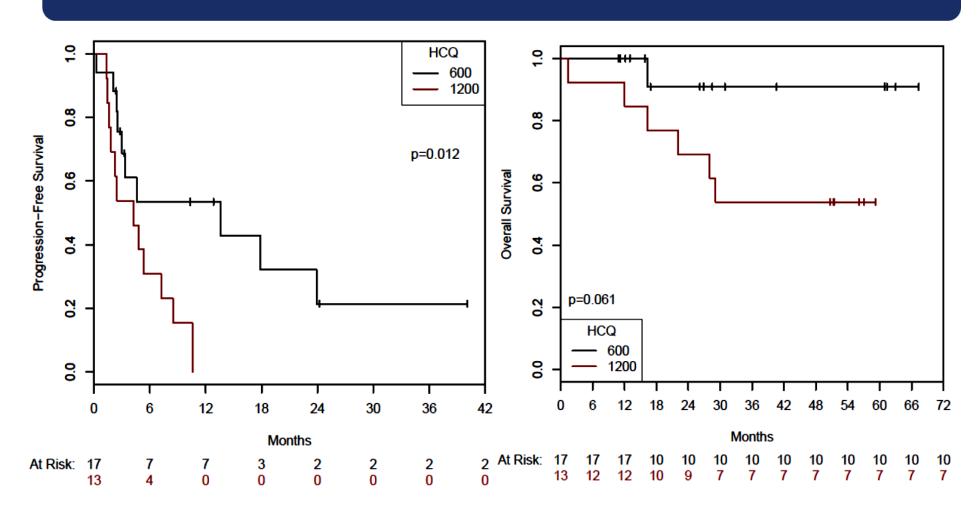
- 1: **Lotze MT**, Maranchie J, Appleman L. Inhibiting autophagy: a novel approach for the treatment of renal cell carcinoma. Cancer J. 2013 Jul-Aug;19(4):341-7
- 2: Romo de Vivar Chavez A, de Vera ME, Liang X, **Lotze MT**. The biology of IL-2 efficacy in the treatment of patients with RCC. Med Oncol. 2009; 1:3-12.
- 3: Bernhard H, Maeurer MJ, Jäger E, Wölfel T, Schneider J, Karbach J, Seliger B, Huber C, Storkus WS, **Lotze MT**, Meyer zum Büschenfelde KH, Knuth A. Recognition of human RCC and melanoma by HLA-A2-restricted CTL is mediated by shared peptide epitopes and up-regulated by IFNg. Scand J Immunol. 1996;44:285-92.
- 4: Maeurer MJ, Martin DM, Castelli C, Elder E, Leder G, Storkus WJ, **Lotze MT**. Host immune response in RCC: IL-4 and IL-10 mRNA are frequently detected in freshly collected TIL. Cancer Immunol Immunother. 1995 Aug;41(2):111-21.
- 5: Spencer WF, Linehan WM, Walther MM, Haas GP, **Lotze MT**, Topalian SL, Yang JC, Merino MJ, Lange JR, Pockaj BA, et al. Immunotherapy with IL2 and IFNα in patients with metastatic RCC with *in situ* primary cancers. J Urol. 1992 147(1):24-30.
- 6: Rosenberg SA, **Lotze MT**, Muul LM, et al. Observations on the systemic administration of autologous lymphokine-activated killer cells and recombinant IL-2 to patients with metastatic cancer. N Engl J Med. 1985 Dec 5;313(23):1485-92.


- ...two groups of tumors with extensive CD8+T-cells:
- high expression of immune checkpoints in the absence of fully functional mature DC→↑ risk of disease progression.
- 2. low expression of immune checkpoints and localization of mature DC in peritumoral immune

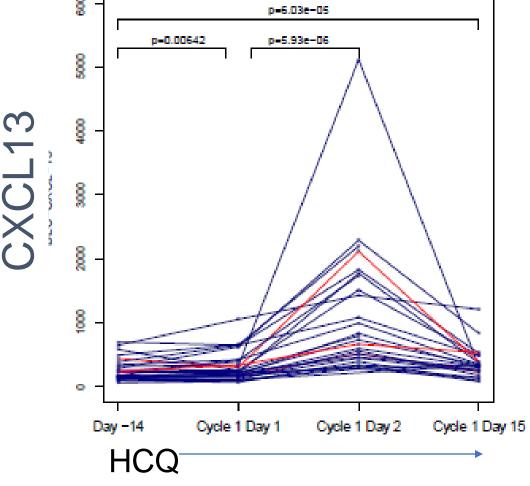
Inhibiting the Systemic Autophagic Syndrome – A Phase I/II Study of Hydroxychloroquine and Aldesleukin in Renal Cell Carcinoma Patients (RCC) – 30 Patients

A Cytokine Working Group (CWG) Study
Principal Investigator: Michael T. Lotze, MD,
Len Appleman, MD, PhD
Prometheus/Nestle


Dartmouth
Harvard
Indiana
Oregon
Pittsburgh
Portland



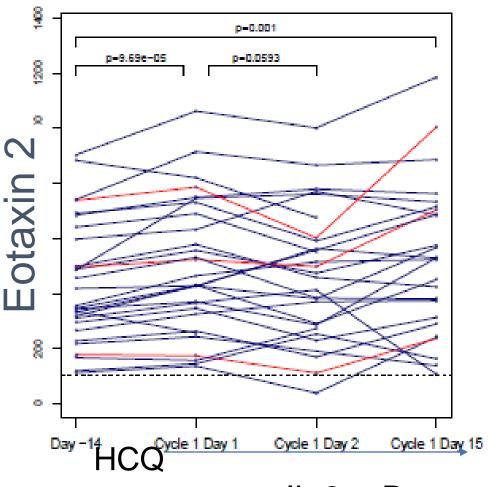
STUDY DESIGN


Pre-Therapy Post-therapy Patient 3 Patient 5

PFS AND OVERALL SURVIVAL

Dramatic Increases in CXCL13 (B cell Chemoattractant) on

IL-2 and HCQ

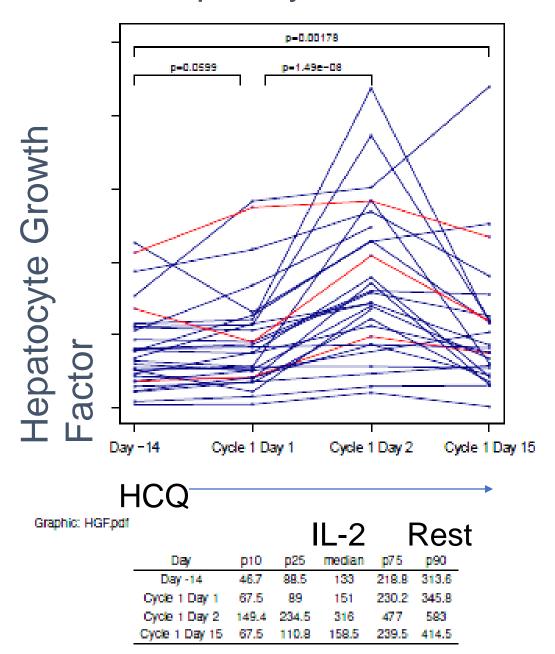


Graphic: BLC-CXCL-13.pdf

IL-2 Rest

Day	p10	p25	median	p75	p90
Day -14	111.5	136.2	165.5	308.8	503.2
Cycle 1 Day 1	103.8	164.5	221	377.5	643
Cycle 1 Day 2	326.6	482.5	791	1622	2146.4
Cycle 1 Day 15	134	229.8	314.5	380.2	524.5

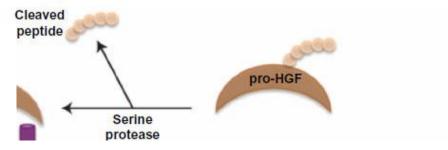
Increases in Eotaxin 2 on IL-2 and HCQ



IL-2 Rest

Graphic: Exotaxin-2.pdf

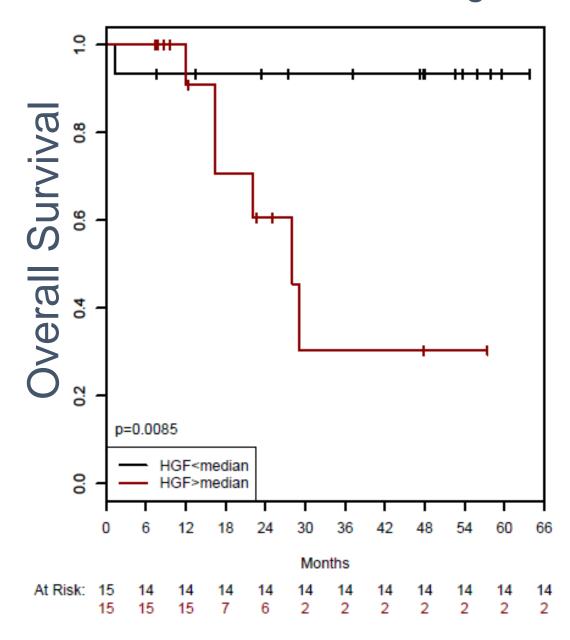
Day	p10	p25	median	p7.5	p90
Day -14	176.9	299	387	573.2	738.3
Cycle 1 Day 1	172.3	330.2	447.5	675.8	789.4
Cycle 1 Day 2	206	288.5	474	630	774.2
Cycle 1 Day 15	200	328.2	526	699.8	824.5


Dramatic Increases Hepatocyte Growth Factor IL-2/HCQ

Vogel S, Börger V, Peters C, Förster M, Liebfried P, Metzger K, Meisel R, Däubener W, Trapp T, Fischer JC, Gawaz M, Sorg RV. Necrotic cell-derived high mobility group box 1 attracts antigenpresenting cells but inhibits hepatocyte growth factor-mediated tropism of mesenchymal stem cells for apoptotic cell death. Cell Death Differ. 2015 Jul;22(7):1219-30.

and proliferation

and motility

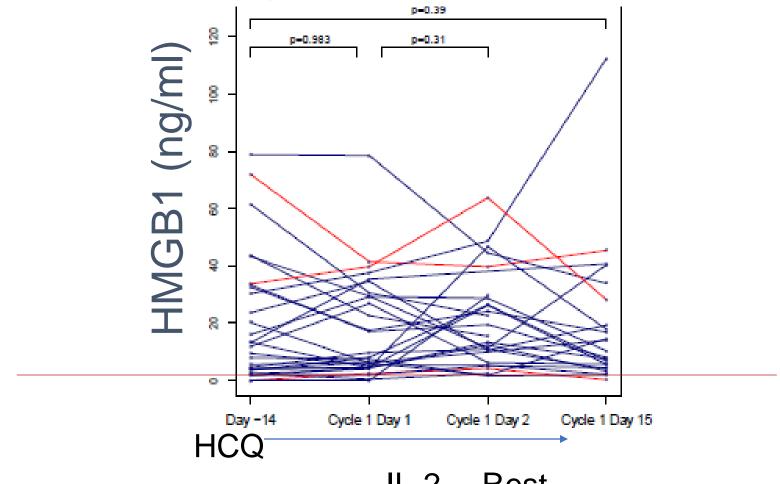


Ilangumaran S, Villalobos-Hernandez A, Bobbala D, Ramanathan S. The hepatocyte growth factor (HGF)-MET receptor tyrosine kinase signaling pathway: Diverse roles

and dissemination

in modulating immune cell functions. Ras Cytokine. 2016 Jun;82:125-39. Grb2 CRKL Grb2 STAT3 **mTOR** PLC-q **DOCK180** Anti-apoptosis C3G Cell division and survival Rac/Rho ERK Rap1 Cell growth Cell adhesion Cell adhesion Cell migration

Decreased Survival in Individuals with High HGF Serum


Potential synergistic signaling pathways –

HGFA and HMGB1 **HGF** 15000 **** 10000 5000 **HMGB1** ICG-001 CXCL12

Jagdeep Nanchahal

Holland JD et al. Combined Wnt/β-catenin, Met, and CXCL12/CXCR4 signals characterize basal breast cancer and predict disease outcome. Cell Rep. 2013 Dec 12;5(5):1214-27.

No Relationship Between HMGB1 Levels and Response/Treatment

Graphic: HMGB1.pdf

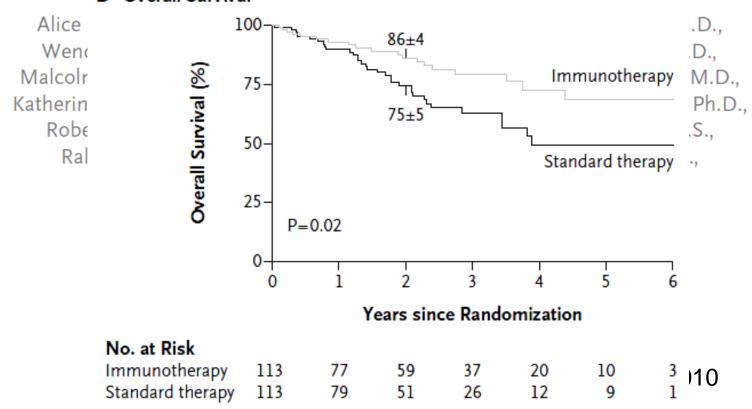
IL-2 Rest

Day	p10	p25	median	p75	p90
Day -14	1.9	3.9	11.8	32	45.5
Cycle 1 Day 1	2.4	4.4	8.9	30.1	37.9
Cycle 1 Day 2	3.5	8.1	15.4	29.1	45.4
Cycle 1 Day 15	2.5	5.4	12.2	25.4	40.7

Jack Butler Tecan/IBL **Shinotest**

CEA-IL2v (FAP-IL2v)

A CEA-targeted interleukin-2 variant

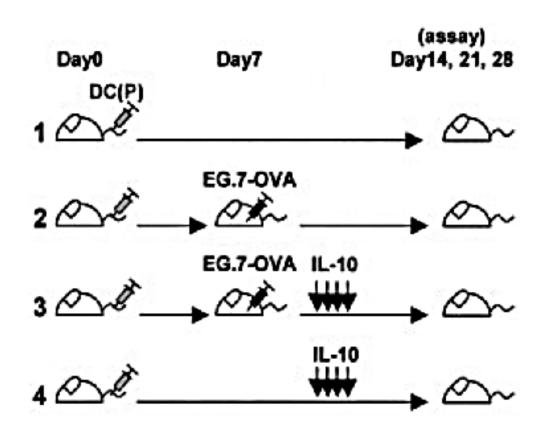

Clinical confirmation of tumor targeting and evidence of intra-tumoral immune activation

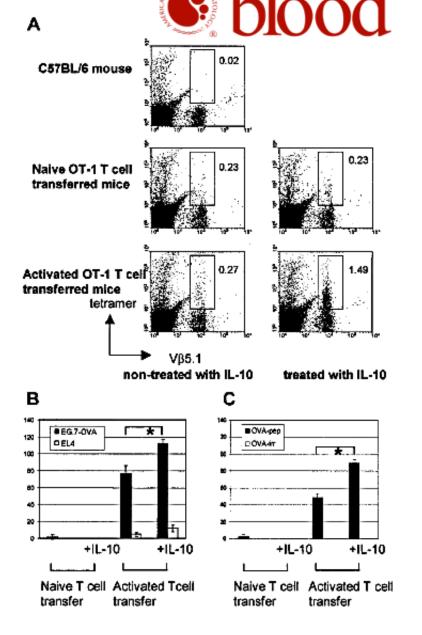
ORIGINAL ARTICLE

Anti-GD2 Antibody with GM-CSF, Interleukin-2, and Isotretinoin for Neuroblastoma

B Overall Survival

A first-in-human dose escalation study of PEGylated recombinant human IL-10 (AM0010) in advanced solid tumors


Jeffrey R. Infante¹, Aung Naing², Kyriakos P. Papadopoulos³, Karen A. Autio⁴, Patrick A. Ott⁵, Deborah J. Wong⁶, Gerald S. Falchook⁷, Manish Patel^{1,8}, Shubham Pant⁹, Melinda Whiteside¹⁰, Johanna C. Bendell¹, Todd Bauer¹, Filip Janku², Milind Javle², David Hong², Martin Oft¹⁰


Interleukin-10 promotes the maintenance of antitumor CD8⁺ T-cell effector

function in situ

Shin-ichiro Fujii, Kanako Shimizu, Takashi Shimizu, and Michael T. Lotze

BLOOD, 1 OCTOBER 2001 VOLUME 98, NUMBER 7

IL-2+IL-10=IL-12

Immune Activation by AM0010 – PEG-IL-10

 AM0010 / Pegylated IL-10 induced a comprehensive immune signature

Th1 cytokines IFNγ, IL-18
 Dendritic cell stimulation: GM-CSF, IL-4
 Growth factor for memory CD8+ T cells IL-7
 CD8+ T cell activity FasL

- Inhibited immune suppression TGF-β
- Immune activation signature is induced in all patients at RP2d
- Combination with Chemotherapy, TKI and Immune checkpoint inhibition in progress
- Increase of PD-1+ CD8+ T cells in responding patients
- Increase of CD8+ T cells in tumor biopsies

Virotherapy with T-Vec: Melanoma Successfully Treated With Herpes-based Drug

CONCLUSION:

T-VEC is the first oncolytic immunotherapy to demonstrate therapeutic benefit against melanoma in a phase III clinical trial. T-VEC was well tolerated and resulted in a higher DRR (P < .001) and longer median OS (P = .051), particularly in untreated patients or those with stage IIIB, IIIC, or IVM1a disease. T-VEC represents a novel potential therapy for patients with metastatic melanoma.

J Clin Oncol. 2015 May 26. pii: JCO.2014.58.3377. [Epub ahead of print]
Talimogene Laherparepvec Improves Durable Response Rate in Patients With
Advanced Melanoma. Andtbacka RH et al

Efficacy of Intratumoral B-Class CpG in NHL

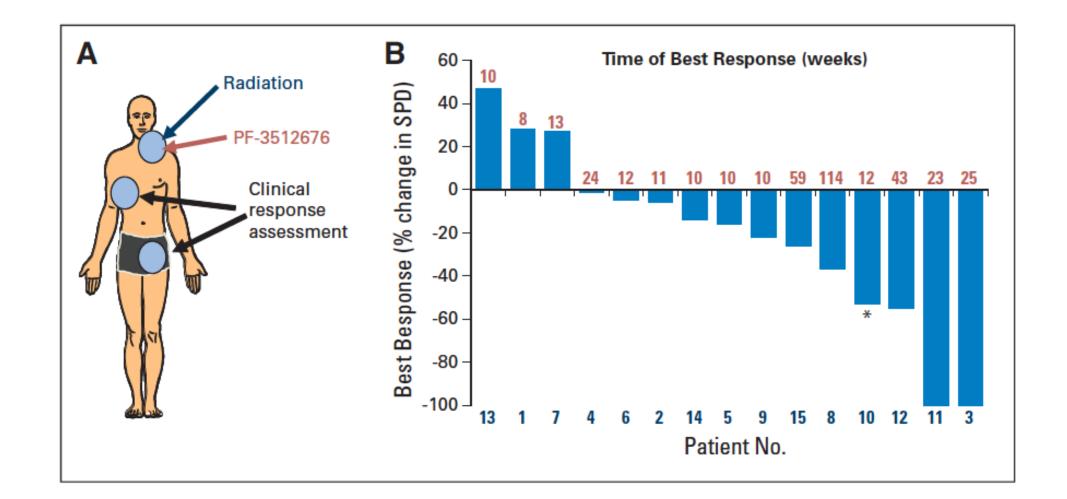
VOLUME 28 · NUMBER 28 · OCTOBER 1 2010

JOURNAL OF CLINICAL ONCOLOGY

ORIGINAL REPORT

In Situ Vaccination With a TLR9 Agonist Induces Systemic Lymphoma Regression: A Phase I/II Study

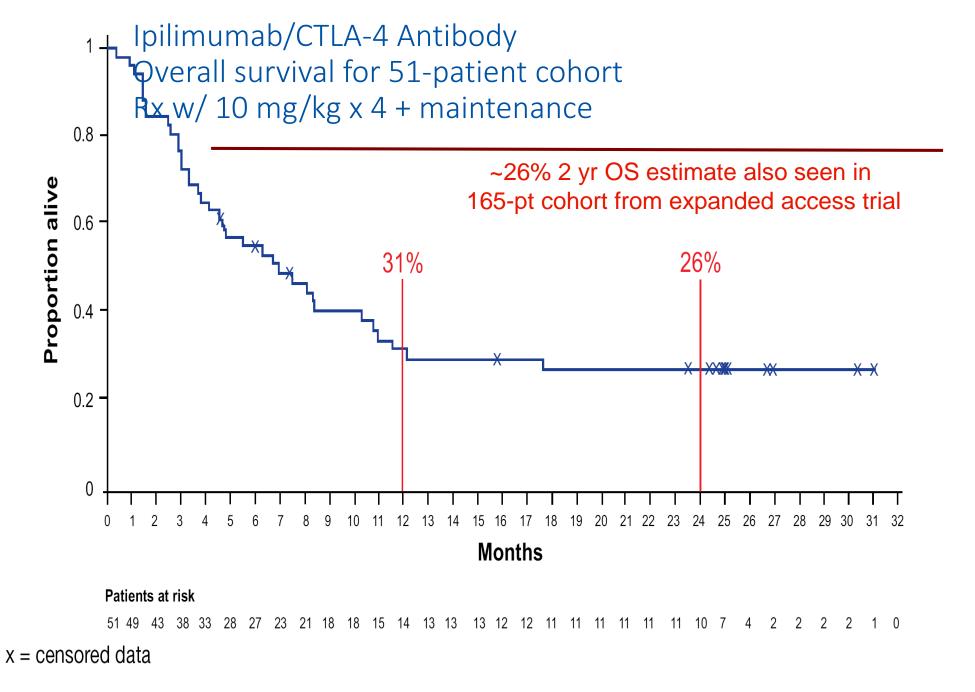
Joshua D. Brody, Weiyun Z. Ai, Debra K. Czerwinski, James A. Torchia, Mia Levy, Ranjana H. Advani, Youn H. Kim, Richard T. Hoppe, Susan J. Knox, Lewis K. Shin, Irene Wapnir, Robert J. Tibshirani, and Ronald Levy


See accompanying editorial on page 4295

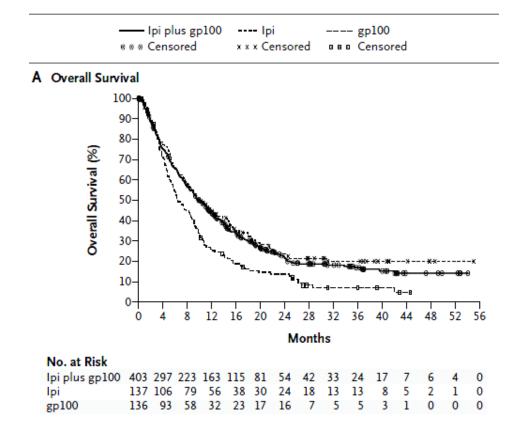
Efficacy of Intratumoral B-Class CpG in NHL

VOLUME 28 · NUMBER 28 · OCTOBER 1 2010

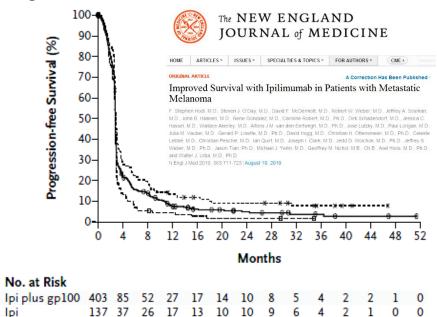
JOURNAL OF CLINICAL ONCOLOGY


ORIGINAL REPORT

A phase I study of intratumoral injection of ipilimumab and interleukin-2 in patients with unresectable stage III-IV melanoma


```
R. C. Bowen<sup>1</sup>, S. Meek, M. Williams<sup>1</sup>, K. F. Grossmann<sup>1</sup>, R. H. I. Andtbacka<sup>1</sup>, T. L. Bowles<sup>2</sup>, J. R. Hyngstrom<sup>1</sup>, S. A. Leachman<sup>3</sup>, D. Grossman<sup>1</sup>, S. L. Holmen<sup>1</sup>, M. W VanBrocklin<sup>1</sup>, H. T. Khong<sup>1</sup>
```

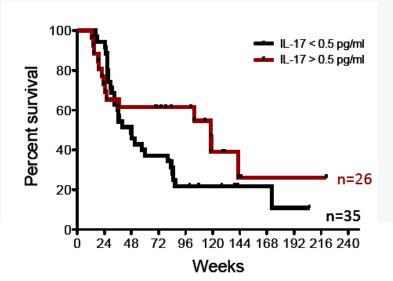
University of Utah-Huntsman Cancer Institute, Salt Lake City, UT;
 Intermountain Medical Center, Murray, UT;
 Oregon Health & Science University, Portland, OR


Kevin Heller, BMS—data presented in part at ESMO 2009, ASCO 2010, 2011 posters

Ipilimumab Treatment of Patients with Cancer

B Progression-free Survival

gp100



Evaluation of serum IL-17 levels during ipilimumab therapy: correlation with colitis.

Margaret Callahan, MD PhD

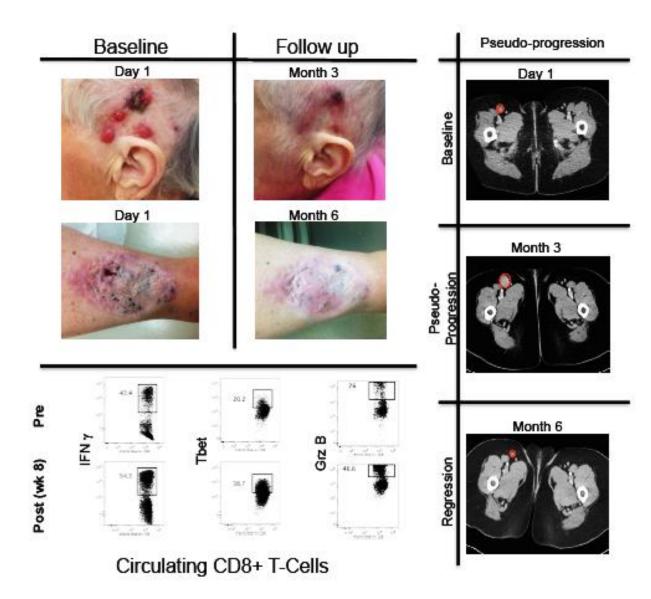
Memorial Sloan-Kettering Cancer Center

Intratumoral Ipi and IL-2

Introduction

 We hypothesized that a combination of IT IL-2 and IT Ipi would effectively hyperactivate and expand TILs to engender systemic immunity with minimal toxicity.

Methods


- Phase I dose escalation study for Ipi with fixed dose IL-2 in patients with unresectable stage III/IV melanoma and at least one injectable lesion.
- IL-2: (3 mIU) IT TIW x 2 weeks, then BIW x 6 weeks,
- Ipi: escalating doses of Ipi (0.5, 1, 2 mg) IT weekly x 8 wks.
- A minimum of 3 patients were enrolled at each dose level (total n=12).

Toxicity of Local Injection

- Most toxicities were Grade 1 or 2 in nature (Fatigue, headache, pain, chills, rash, etc).
- Grade 3 adverse events (AEs) include hyponatremia, unrelated (n=1), injection site ulceration (n=4), lymphopenia (n=1), wound complication (n=1).
- The only related grade 3 toxicity observed was injection/tumor site ulceration/necrosis, not a DLT per protocol.

Results

- An abscopal effect was seen in 9/12 patients (75%).
- 10 patients evaluable for response by immune-related response criteria: 4 PR (40%) and 6 PD.
- Circulating CD8+ T-Cells
 - IFN-γ in 6/8 abscopal responders.
 - Tbet+ cells in 4/5
 - Granzyme-B + 3/5

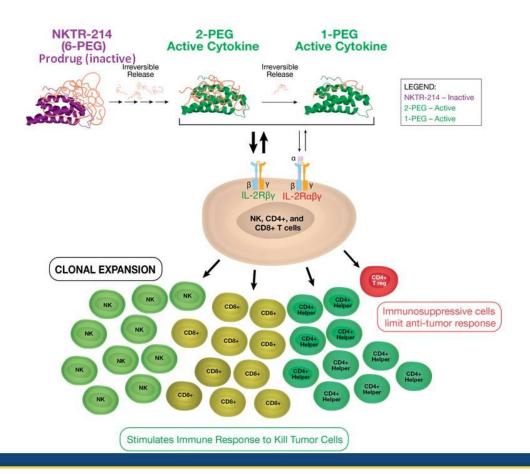
Conclusions

IT injection with Ipi/IL-2
is well tolerated and
generates a response in
injected and noninjected lesions in most
patients

Questions

- What about injection with systemic PD-1 inhibition?
- What about other local therapies including CpG's, cGAS/STING peptides, radiation therapy?
- What about direct injection of NK cells (allogeneic?) for low mutation load tumors?
- What about Radiation Therapy?

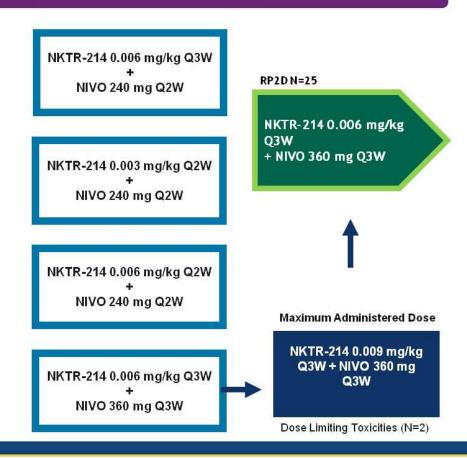
NKTR-214 (CD-122-biased agonist) plus nivolumab in patients with advanced solid tumors: Preliminary phase 1/2 results of PIVOT


ClinicalTrials.gov Identifier: NCT02983045

Adi Diab¹, Michael Hurwitz², Daniel Cho³, Vali Papadimitrakopoulou¹, Brendan Curti⁴, Scott Tykodi⁵, Igor Puzanov⁶, Nuhad K. Ibrahim¹, Sara M. Tolaney⁷, Debu Tripathy¹, Jianjun Gao¹, Arlene O. Siefker-Radtke¹, Wendy Clemens⁸, Mary Tagliaferri⁸, Scott N. Gettinger², Harriet Kluger², James M. G. Larkin⁹, Giovanni Grignani¹⁰, Mario Sznol², Nizar Tannir¹

¹The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ²Yale School of Medicine, New Haven, CT, USA, ³NYU Medical Oncology Associates, New York, NY, USA; 4Providence Cancer Center and Earle A. Chiles Research Institute, Portland, OR, USA; 5University of Washington and Fred Hutchinson Cancer Research Center, Seattle, WA, USA; 8Roswell Park Cancer Institute, Buffalo, NY, USA; 7Dana Farber Cancer Institute, Boston, MA, USA; 8Nektar Therapeutics, San Francisco, CA, USA; 9Royal Marsden NHS Foundation Trust London, United Kingdom; ¹⁰Candiolo Cancer Institute, Turin, Italy, Europe.

NKTR-214 Background: Harnessing the IL-2 Pathway to Increase TILs


- NKTR-214 prodrug design with sustained signaling
- Mitigation of rapid immune stimulation to achieve safe, outpatient regimen administered every 3 week IV dosing
- Biased signaling preferentially activates and expands effector T cells and NK cells over Tregs in the tumor microenvironment
- NKTR-214 increases proliferation of TILs and PD-1 expression on the surface of CD8+ T cells providing a mechanistic rationale for combining with nivolumab

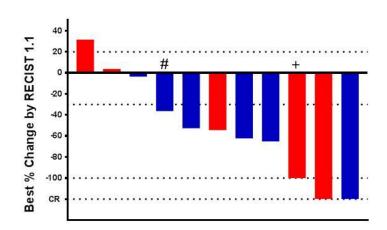
PIVOT-02 Study Dose-Escalation in I-O Treatment-Naïve Patients: Enrollment Complete

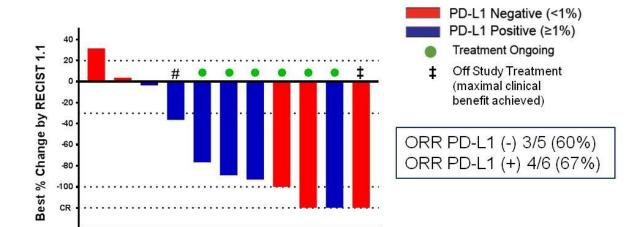
Phase 1 (N=38) Enrollment Compete

I-O Treatment-Naïve

- MEL 1L (with known BRAF status) (N=11)
- RCC 1L, 2L (N=22)
- NSCLC 1L, 2L (EGFR & ALK WT) (N=5)
- Confirmed locally advanced or metastatic solid tumors
- Measurable disease per RECIST 1.1
- ECOG 0 or 1
- · Adequate organ function
- Fresh biopsy and archival tissue

RP2D, recommended Phase 2 dosing

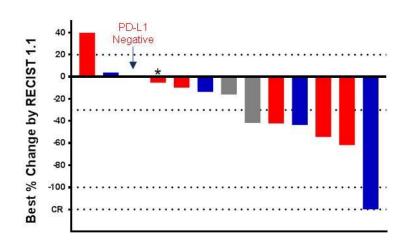


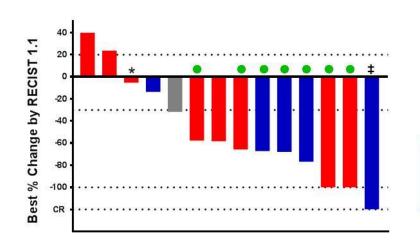

Stage IV IO-Naïve 1L Melanoma Dose Escalation Cohort (N=11) Deepening of Responses Over Time

Best Overall Response by RECIST: ORR=7/11 (64%); DCR=10/11 (91%)

SITC 2017 (Data Cut: Nov 2, 2017)

ASCO 2018 (Data Cut: May 29, 2018)



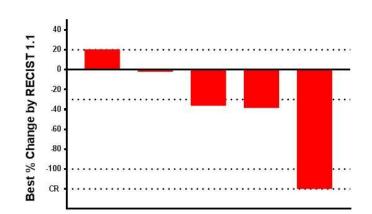


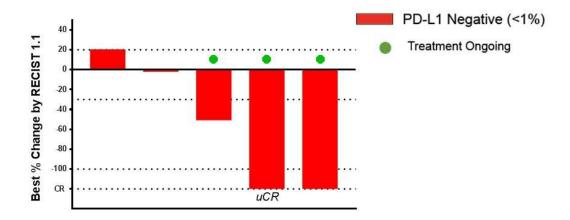

Stage IV IO-Naïve 1L RCC Dose Escalation Cohort (N=14) Deepening of Responses Over Time

SITC 2017: ORR=6/13 (46%); DCR=11/13 (85%) ASCO 2018: ORR=10/14 (71%); DCR=11/14 (79%)

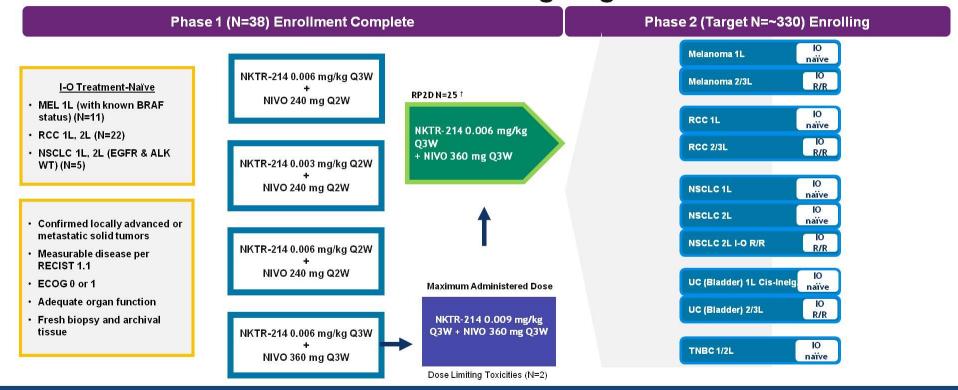
SITC 2017 (Data Cut: Nov 2, 2017) ASCO 2018 (Data Cut: May 29, 2018)

ORR PD-L1 (-) 5/8 (63%) ORR PD-L1 (+) 4/5 (80%) ORR PD-L1 Unknown 1/1


Increased ORR With Continued Treatment
Patients with Initial Stable Disease Convert to Responses Over Time


Stage IV IO-Naïve 1-2L NSCLC Dose Escalation Cohort (N=5) Deepening of Responses Over Time in PD-L1 Negative Patients

Best Overall Response by RECIST (2L): ORR=3/4 (75%); DCR=3/4 (75%)
Best Overall Response by RECIST (1L and 2L): ORR=3/5 (60%); DCR=4/5 (80%)

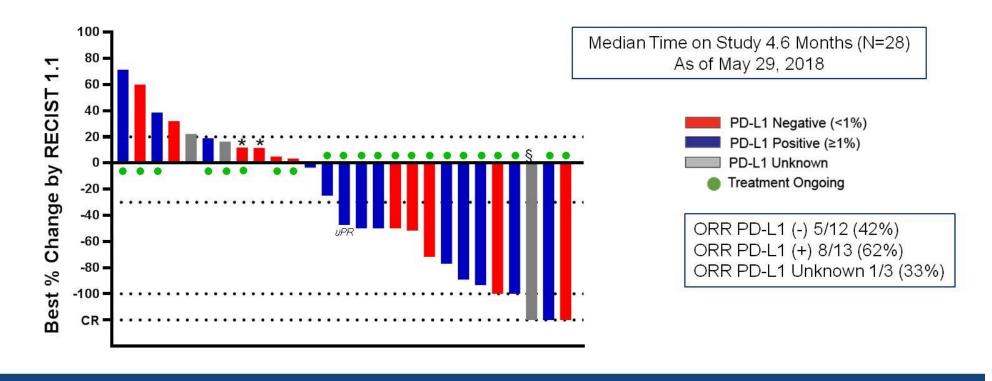

SITC 2017 (Data Cut: Nov 2, 2017)

ASCO 2018 (Data Cut: May 29, 2018)

PIVOT-02 RP2D Dose Expansion Cohorts in 5 Tumor Types: Enrollment Ongoing

TED AT: 2018 ASCO

#ASCO18

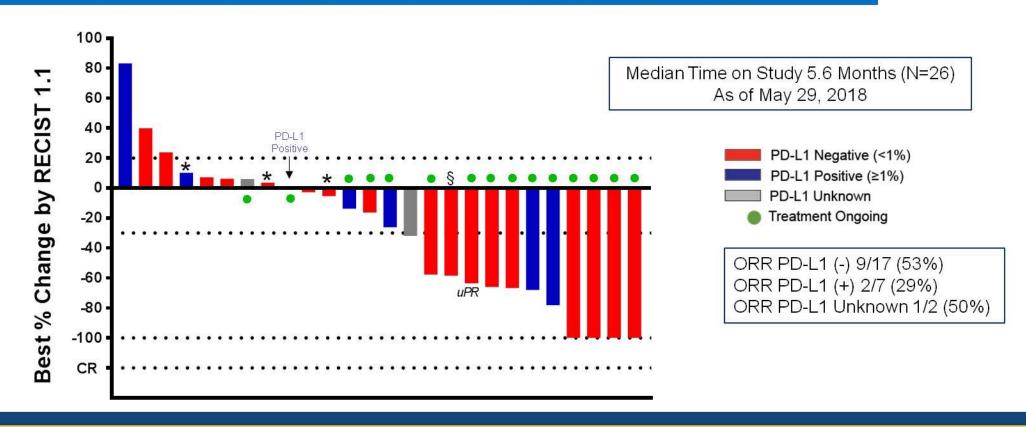

Slides are the property of the author, permission required for reuse.

PRESENTED BY: Adi Diab, M.D.

†7 patients from 1L melanoma dose escalation cohort, 11 patients from 1L RCC dose escalation cohort included in RP2D expansion cohorts RP2D: recommended Phase 2 dosing

Stage IV IO-Naïve 1L Melanoma Cohort at RP2D: Achieved Pre-Specified Efficacy Criteria

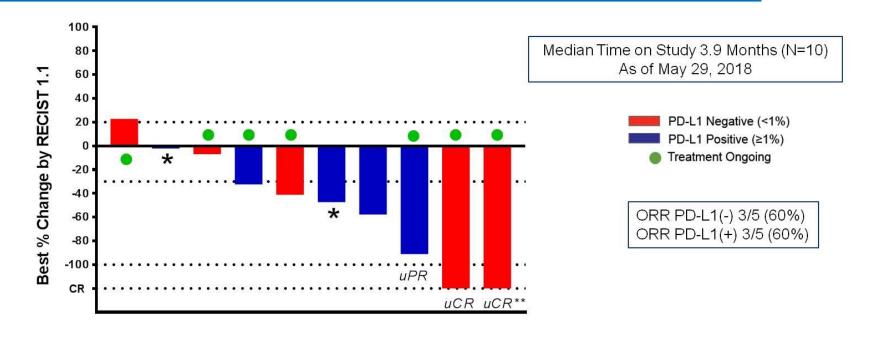
Stage 1: ORR 11/13 (85%)
Stage 2: Best Overall Response ORR=14/28 (50%); DCR=20/28 (71%)



Data cut: May 29, 2018

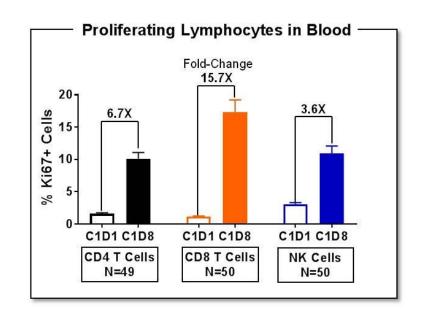
Stage IV IO-Naïve 1L RCC Cohort Achieved Pre-Specified Efficacy Criteria

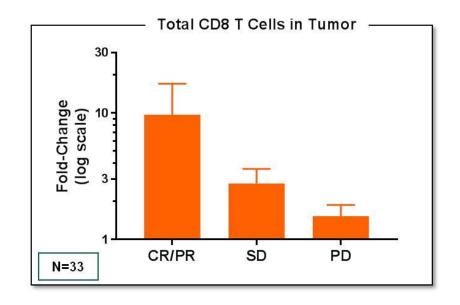
Stage 1: ORR 7/11 (64%)
Stage 2: Best Overall Response ORR=12/26 (46%); DCR=20/26 (77%)



Data cut: May 29, 2018

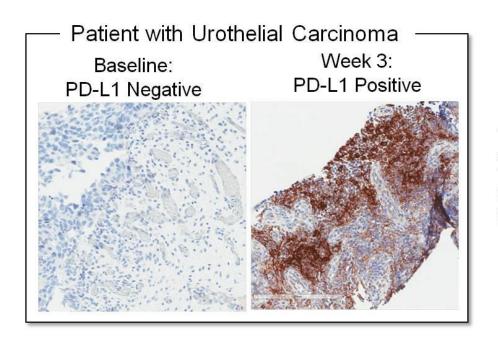
Stage IV IO-Naïve 1L Urothelial Cohort (Cisplatin-Ineligible) Achieved Pre-Specified Efficacy Criteria

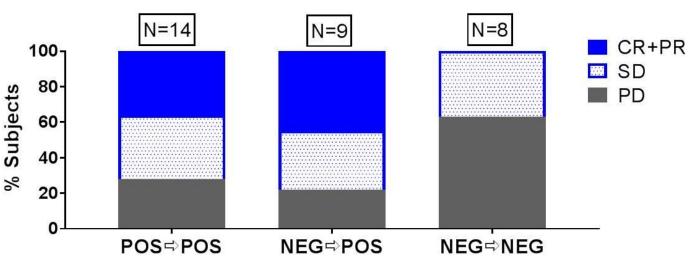

Stage 1: Best Overall Response ORR=6/10 (60%); DCR=7/10 (70%)



Data cut: May 29, 2018

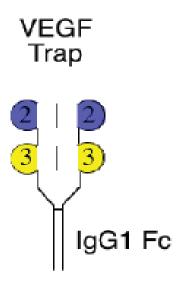
NKTR-214 + Nivolumab Increased Lymphocyte Proliferation in Blood and CD8 T Cells in Tumor



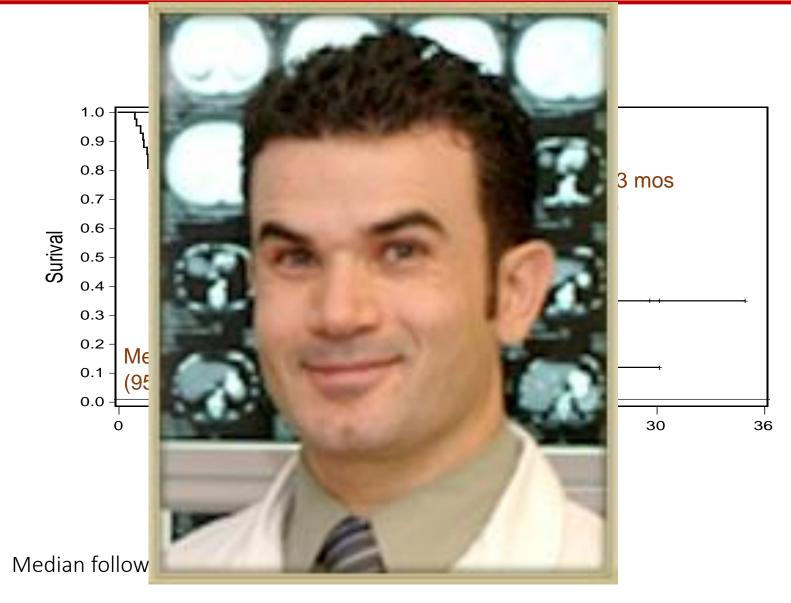


"Proliferating Lymphocytes in Blood" were measured using flow cytometry of fresh whole blood for all patients that the met inclusion criteria and had matched Cycle 1 Day 8 (C1D8) blood collections. Data presented as mean ± standard error. Fold-change calculated for C1D8/C1D1, Ki67 is a marker of proliferation. "Total CD8 T Cells in Tumor" measured using immunohistochemistry using biopsy specimens collected at baseline and week 3. Cells/mm² were counted and fold-change calculated for week3/baseline, data presented as mean ± standard error.

Conversion of PD-L1(-) to PD-L1(+) in Tumor Biopsies from Baseline to Week 3 is Associated with Clinical Benefit



- NKTR-214 + nivolumab can convert PD-L1(-) tumors to PD-L1(+)
 - PD-L1 negative to positive conversion in 9/17 (53%) of patients
- Patients that were PD-L1(+) at baseline, or converted to PD-L1(+) after start of treatment showed greatest clinical benefit

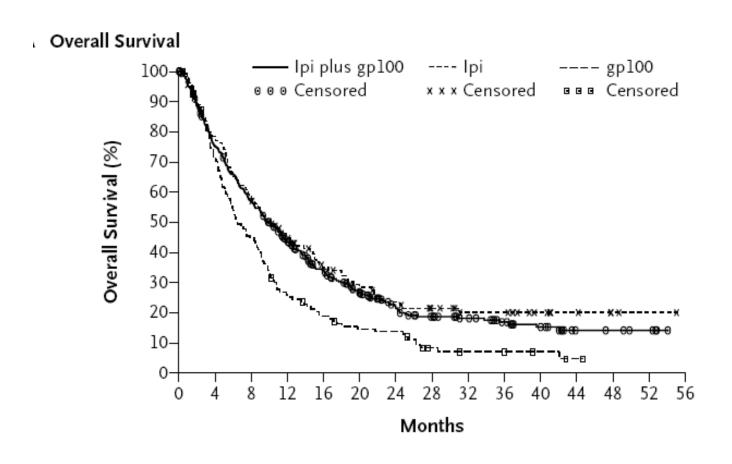

VEGF Trap

 Aflibercept (VEGF Trap) is a fusion protein combining the Fc portion of human IgG1 with the principal extracellular ligand-binding domains of human VEGFR1 & VEGFR2

- Acts as a high-affinity soluble decoy VEGF receptor and potent angiogenesis inhibitor
- Aflibercept has highest binding affinity for VEGF described to date.
 Dissociation constant 0.5 pM

Kaplan – Meier plots of the probability of OS and PFS (N=40)

IL-2 and Ipilimumab are FDA approved drugs for the treatment of melanoma


Proleukin (IL-2)

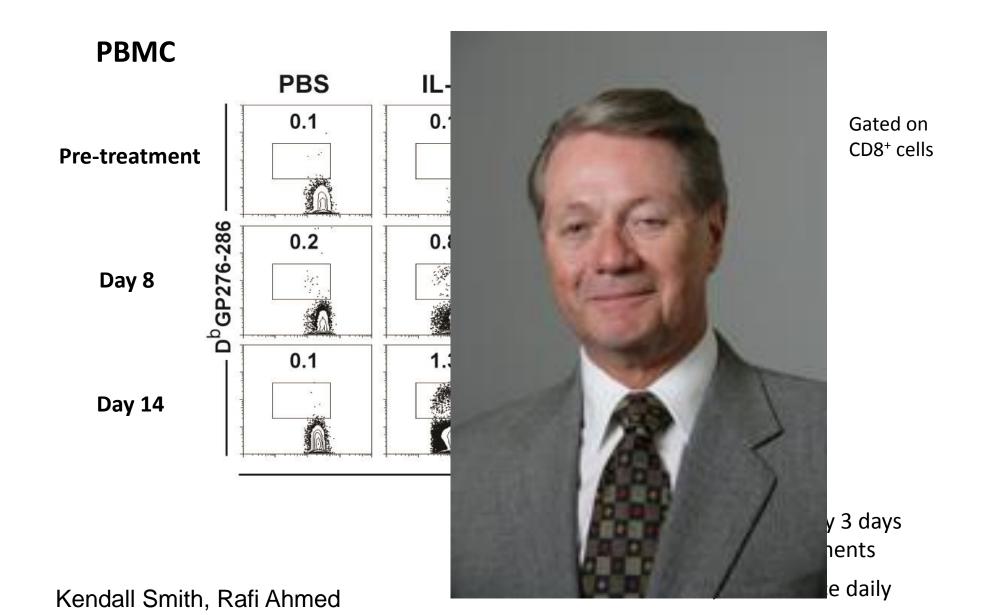
- Cytokine that promotes proliferation and cytotoxicity of T cells and NK cells
- Extensively evaluated in patients with cancer
- Results in durable objective responses in 16-17%
- FDA approved for metastatic melanoma in 1998

Ipilimimab (α CTLA-4)

- Monoclonal antibody that blocks CTLA-4 binding to B7
- Promotes anti-tumor activity through T cells
- Demonstrated improved overall survival in Phase III trial
- FDA approved for metastatic melanoma in 2011

Ipilumimab improves overall survival

Phase I/II Trial of IL-2 and Ipilumimab


- NCI Surgery Branch trial
- 36 patients with metastatic melanoma
- 3 patients treated with
 Ipilumab at 0.1, 0.3, 1.0 and
 2.0 mg/kg every 3 weeks X 3
- 24 patients treated with Ipilumimab at 3.0 mg/kg every 3 weeks X 3
- All patients received IL-2 (720,000 IU/kg) after the 2nd and 3rd dose of Ipilumimab

- 8/36 (22%) had an objective response
 - 3 CR
 - 5 PR
 - 6/8 ongoing >11-19 months
- 5/36 (14%) developed grade
 III/IV Ipi-related toxicities
- No correlation between Ipi dose and response or toxicity-all patients recovered

Study Update

Median follow-up of 71 months

- 25% objective response rate
- 17% complete response
- Median survival of 16 months

Interleukin 7 (IL-7)

Alpdogan et al, Blood 2001;98:2256-226; Alpdogan et al, J. Clin. Invest. 2003; 112:1095–1107; Rosenberg et al, J Immunother 2006;29:313–319; Sportes et al, J Exp Med 2008; 205: 1710-1714; Levy et al, J. Clin. Invest. 2009; 119:997–1007; Sereti et al, Blood 2009: 113:6304-6314; Sportes et al, Clin Cancer Res 2010; 16: 727–735.

Perales, CITN Investigator Meeting – Nov 2013

Administration of interleukin-7 after allogeneic bone marrow transplantation improves immune reconstitution without aggravating graft-versus-host disease

Onder Alpdogan, Cornelius Schmaltz, Stephanie J. Muriglan, Barry J. Kappel, Miguel-Angel Perales, Jimmy A. Rotolo, Jens A. Halm, Benjamin E. Rich, and Marcel R. M. van den Brink

Alpdogan et al, Blood 2001;98:2256-226

IL-7 enhances peripheral T cell reconstitution after allogeneic hematopoietic stem cell transplantation

Önder Alpdogan, Stephanie J. Muriglan, Jeffrey M. Eng, Lucy M. Willis, Andrew S. Greenberg, Barry J. Kappel, and Marcel R.M. van den Brink

Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA

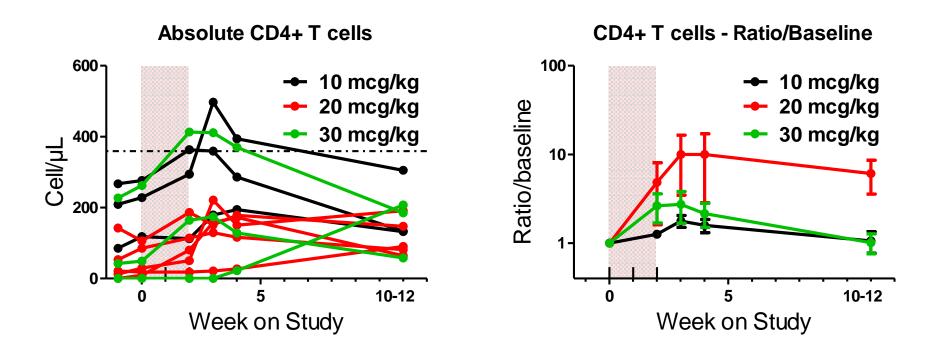
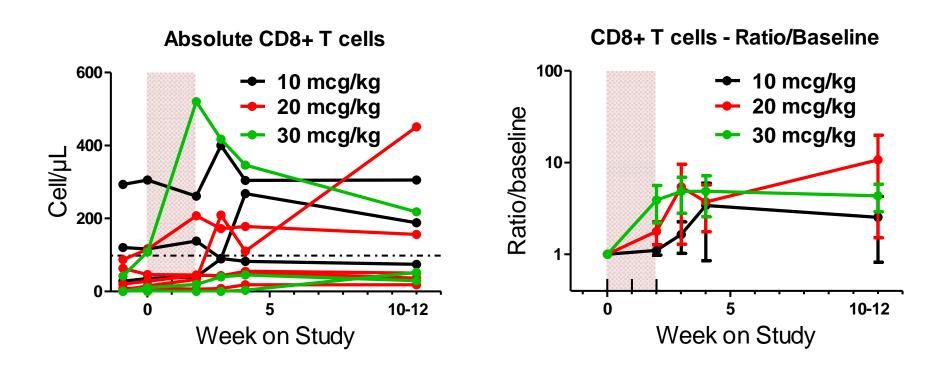
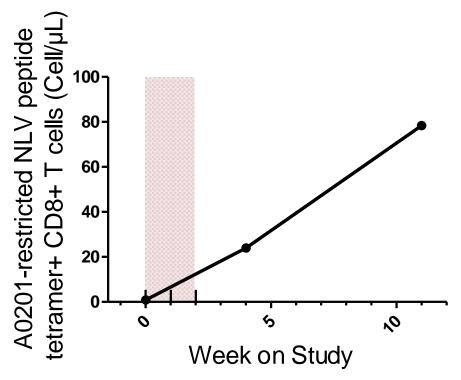

IL-7 – Initial Clinical Trials with CYT99 007

Table - 62 patients treated on 5 clinical trials with CYT 99 007

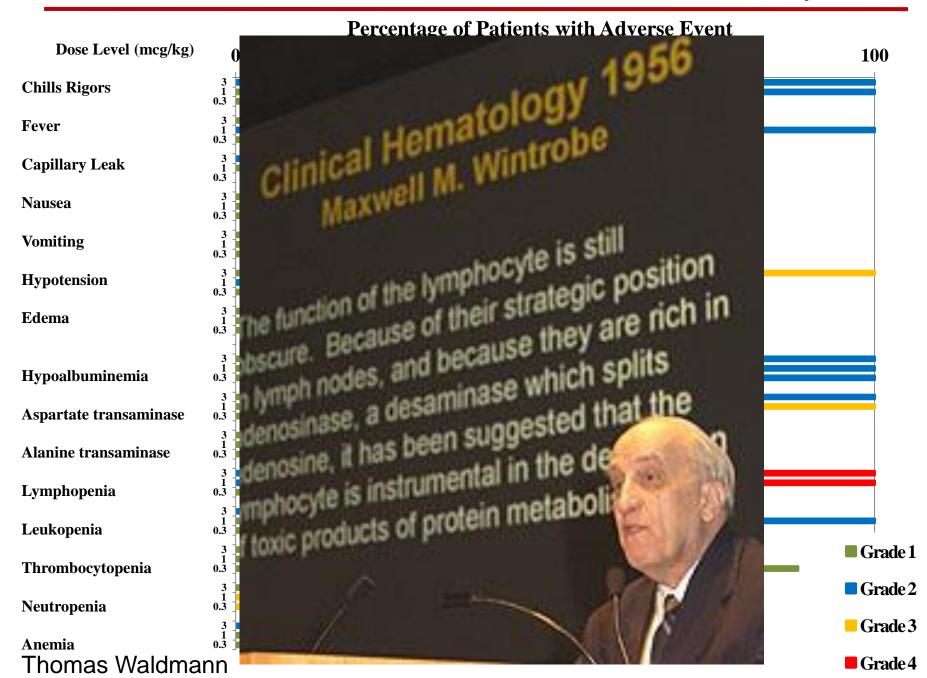
Study	Indication	N	IL-7 Dose	Outcome	Ref
1	Solid tumor	12	3 – 60 mcg/kg x8 + gp100 & MART1 pept vaccine	Rise in CD4 and CD8 T cells Decrease in Tregs	1
2	Solid tumor	16	3 – 60 mcg/kg x8	Rise in CD4 and CD8 T cells No objective tumor responses	2,3
3	HIV	19	3 – 30 mcg/kg x1	Rise in CD4 and CD8 T cells Transient rise in HIV RNA	4
4	HIV	14	3 – 10 mcg/kg x8	Rise in CD4 and CD8 T cells Transient rise in HIV RNA Rise in HIV-spec CD4 T cells	5


¹Rosenberg et al, J Immunother 2006;29:313–319; ²Sportes et al, J Exp Med 2008; 205: 1710-1714; ³Sportes et al, Clin Cancer Res 2010; 16: 727–735; ⁴Sereti et al, Blood 2009: 113:6304-6314; ⁵Levy et al, J. Clin. Invest. 2009; 119:997–1007; ⁶Perales et al, unpublished.

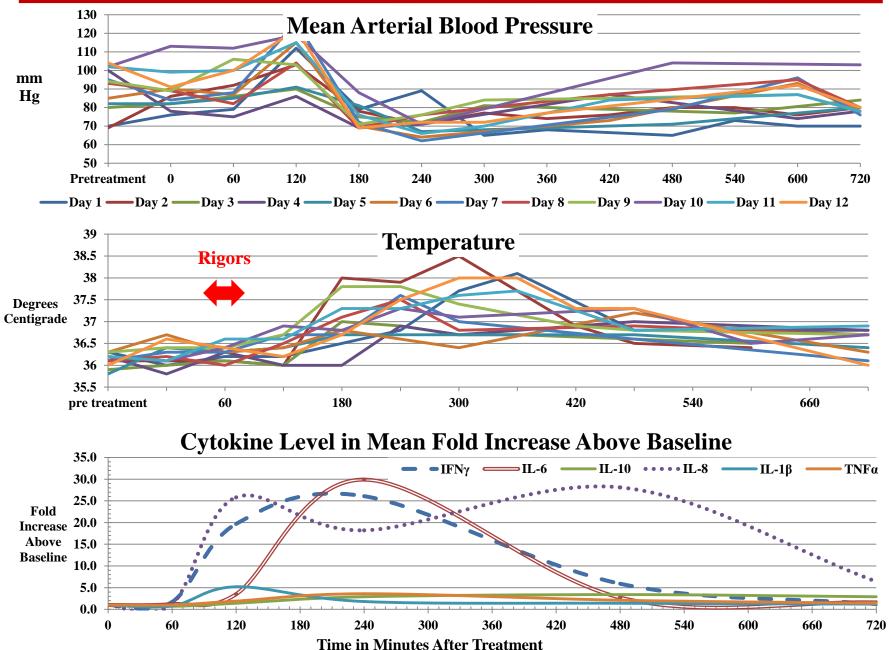
rhIL-7 (CYT107) increases CD4+ T cell counts post TCD allo-HSCT


107.4/mm³ average increase at day 21, p=0.002 (range 0 to 35-fold increase)

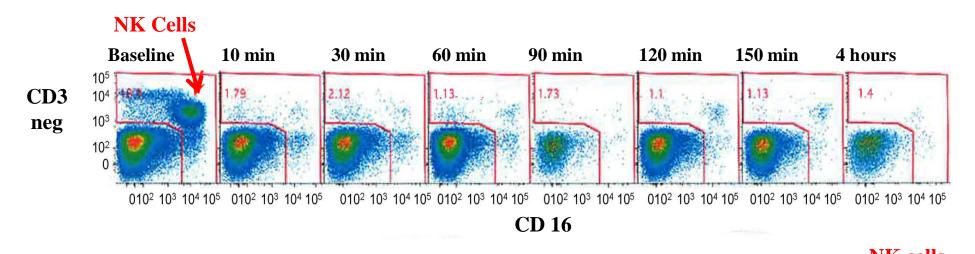
rhIL-7 (CYT107) increases CD8+ T cell counts post TCD allo-HSCT

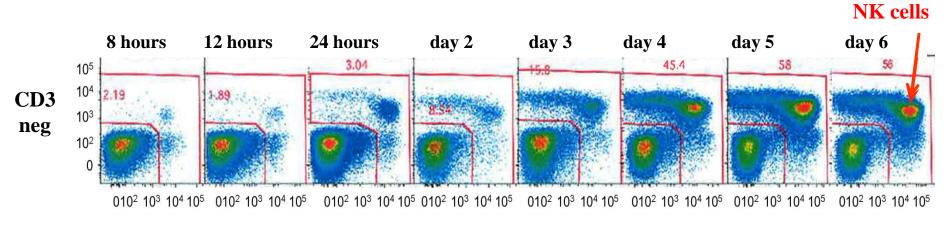

66.9/mm³ average increase at day 28, p=0.05 (range 0 to 11-fold increase)

CMV-specific responses were increased in a patient with a history of CMV viremia

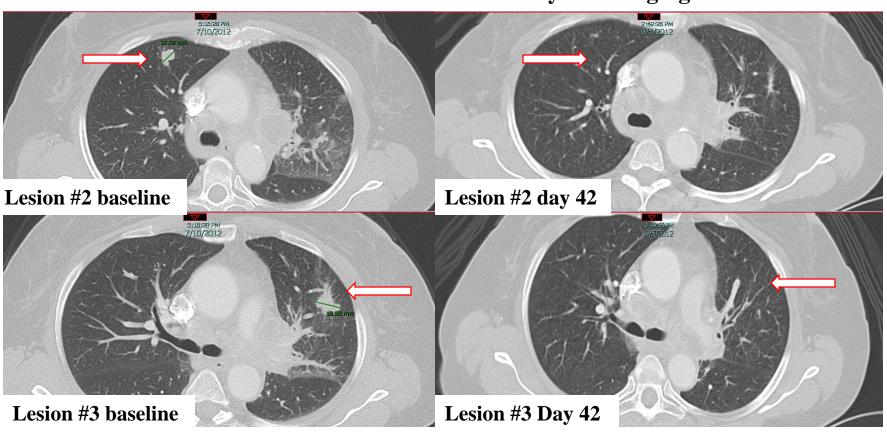


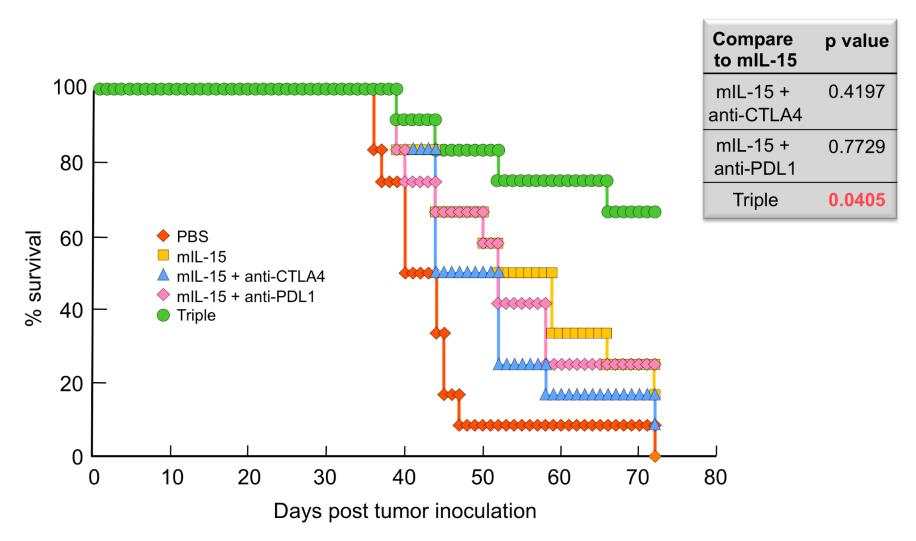
CMV responses were also detected after rhIL-7 injection in 2 other CMV-seropositive patients


Interleukin 15 Adverse Event Summary



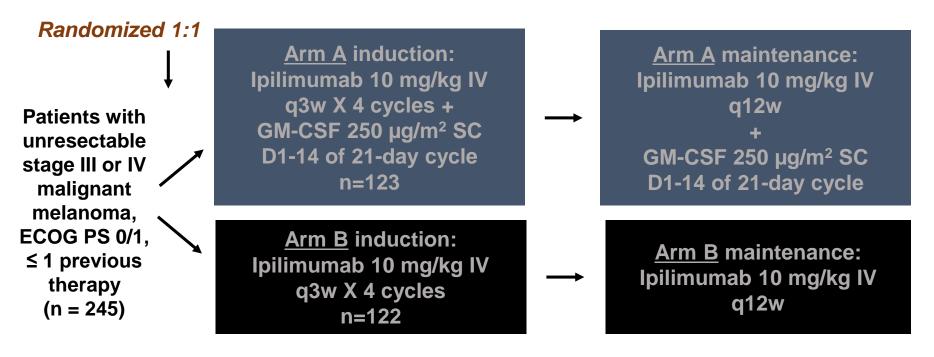
Cytokine Release and Adverse Events 3 mcg patients


Rapid Disappearance Of NK Cells rhIL-15 Treatment



Clinical Activity

Patient #16 Unconfirmed PR at day 42 restaging



The Combination of mIL-15, Anti-CTLA4 and Anti-PDL1 Enhances Survival of TRAMP-C2 Tumor Bearing Animals

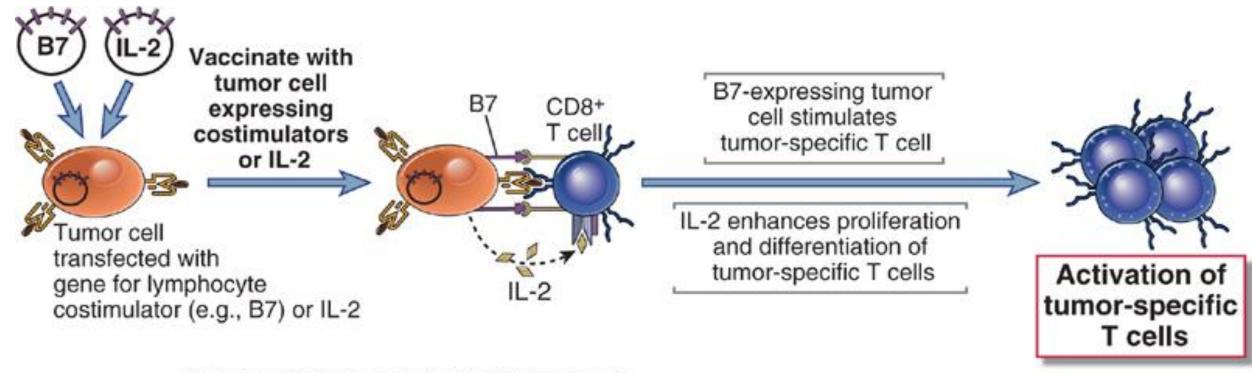
10 mice/group

Randomized Phase II Study of GM-CSF + Ipilimumab vs. Ipilimumab

- Primary endpoint: OS
- Therapy continuation permitted with ≤ doubling of sum of target lesion diameter or ≤ 4 new lesions in absence of declining PS

Randomized Phase II Study of GM-CSF + Ipilimumab

Efficacy, n (%)	GM-CSF + Ipilimumab (n = 123)	Ipilimumab (n = 122)	HR	P Value
ORR	19 (15.5%)	18 (14.8%)		.880
CR	2 (1.6%)	0		NR
PR	17 (13.8%)	18 (14.8%)		NR
SD	26 (21.1%)	23 (18.9%)		NR
Median PFS	3.1 mos	3.1 mos	0.92	.569
Median OS	17.5 mos	12.7 mos	0.64	.014
1-year Survival Rate	68.9%	52.9%	NR	NR


Hodi FS, et al. ASCO 2013. CRA 9007.

Conclusions

- Tumors release DAMPs which promote an immune response
- Cytokines are characterized by pleiotropy, redundancy, synergy, and antagonism
- IFNa and IL-2 remain our most effective cytokines for use in patients
- Novel combinations with GM-CSF and checkpoint inhibitors are on the horizon
- IL-15 appears promising in single agent studies and may be combined with antibodies and/or checkpoint inhibitors (CITN)

Enhancement Of Host Immunity With Costimulators And Cytokines

Abbas et al: Cellular and Molecular Immunology, 7e.

Copyright © 2012, 2007, 2005, 2003, 2000, 1997, 1994, 1991 by Saunders, an imprint of Elsevier Inc.

Normally, tumor cells do not have adequate co-stimulation and they downregulate antigen-presenting molecules.