Phase III Clinical Trials in Immunotherapy

Leisha A. Emens, MD PhD
Professor of Medicine
Director of Translational Immunotherapy for Women's Cancers
Co-Leader of Cancer Immunology and Immunotherapy
UPMC Hillman Cancer Center

Disclosure Information

I have the following financial relationships to disclose:

<u>Consultant for</u>: Vaccinex, Celgene, Bristol Meyers Squibb, AstraZeneca, Amgen, Syndax, Molecuvax, eTHeRNA, Peregrine, Bayer, Gritstone, Medimmune, Abbvie, Replimune, Bristol-Myers Squibb, Roche, Genentech, Macrogenics

<u>Grant/Research support from</u>: Genentech/Roche, EMD Serono, Maxcyte, Merck, AstraZeneca, Aduro, Corvus

Under a licensing agreement between Aduro Biotech, and the Johns Hopkins University, the University and Dr. Emens are entitled to milestone payments and royalty on sales of a GM-CSF-secreting breast cancer vaccine. The terms of these arrangements are being managed by the Johns Hopkins University in accordance with its conflict of interest policies

I will discuss the following off-label use and/or investigational use:

Atezolizumab

The Drug Development Continuum

What is a Phase III Clinical Trial?

- confirms and expands on the safety and effectiveness data from Phase I and II trials
- compares a new drug or treatment regimen to the current standard of care for the disease or condition being studied
- evaluates the overall risks and benefits of the drug
- recruits a large group of carefully defined subjects with the disease or condition, typically ranging from 1000-3000 participants
- provides a data set for the FDA to review when considering a drug for approval

FDA Approvals in Immunotherapy 2010-2016

Placebo Controlled Phase III Trial of Sipuleucel-T in Patients with Metastatic, Asymptomatic Hormone-Refractory Prostate Cancer

PROVENGE activate T cells in the body

- n = 127
- randomized at 2:1 ratio
- 3 infusions of sipuleucel-T or placebo every 2 weeks
- placebo patients allowed to cross over at PD
- primary endpoint of TTP
- 36-month follow up for OS

Randomized, Placebo Controlled Phase III Trial of Sipuleucel-T in Patients with Metastatic, Asymptomatic Hormone-Refractory Prostate Cancer

Progression-Free Survival

Overall Survival

median ratio of T cell stimulation pre-trt to 8W post-trt was 8X higher in Sipuleucel-T group: 16.9 v 1.99, p<0.001 adverse events: rigors, pyrexia, tremor, feeling cold

Small EJ et al J Clin Oncol 2006

A Randomized, Open Label Phase III Trial of T-VEC: Talimogene Laherparepvec in Advanced Melanoma

Andtbacka RHI et al J Clin Oncol 2015

- unresected Stage 3B-4 melanoma
- randomized 2:1 to intralesional T-VEC or SQ GM-CSF
- primary endpoint was DRR: objective response beginning within 12 months of starting treatment and lasting 6 months or longer
- secondary endpoints were ORR and OS

A Randomized, Open Label Phase III Trial of T-VEC: Talimogene Laherparepvec in Advanced Melanoma

Andtbacka RHI et al J Clin Oncol 2015

Outcome	GM-CSF (N=141)	T-VEC (N= 295)	Treatment Difference (T-VEC – GM-CSF)
Durable Response Rate	2.1%	16.3%	14.1% P < 0.0001*
Overall Response Rate	5.7%	26.4%	20.8% P < 0.0001*
Progression Free Survival (modified)	2.9 months	8.2 months	HR=0.42 P < 0.0001*
Overall Survival	18.9 months	23.3 months	HR=0.787 P = 0.051

Adverse events: chills, pyrexia, injection site pain, nausea, flu-like sx, fatigue

Immune Checkpoint Era

Toxicity: immune related adverse events

Ipilimumab/Tremelimumab

pembrolizumab, nivolumab, atezolizumab, avelumab, durvalumab and many others

A Phase 3 Clinical Trial of Ipilimumab, gp100 peptide vaccine, or Both in Patients with Previously Treated Metastatic Melanoma

- median OS < 1 year if distant mets
- only approved therapy 1st line
- no accepted SOC except clinical trial
- gp100 thus was active control
- no randomized study had ever shown OS benefit

- n = 676
- HLA-A*0201
- randomized at 3:1:1 ratio
- ipi + gp100 v ipi v gp100
- ipi 3 mg/kg q 3w x 4 induction
- eligible patients could get reinduced
- primary endpoint OS

Hodi FS et al NEJM 2010

A Phase 3 Clinical Trial of Ipilimumab, gp100 Peptide Vaccine, or Both in Patients with Previously Treated Metastatic Melanoma

	lpi	gp100	lpi + gp100
mFU, mos	27.8	17.2	21.0
mOS, mos	10.1	6.4	10.0
mPFS, mos	2.86	2.76	2.76
12W PFS	57.7%	48.5%	49.1%

- Grade 3-4 irAEs in 10-15% ipi-treated patients and 3% gp100 alone-treated patients
- 14 deaths (2.1%) r/t study treatment, 7 associated with irAEs

Hodi FS et al NEJM 2010

Activity of Nivo Alone or with Ipi in Advanced Cancers

Nivo + Ipi

3002001003004020-40-40-60-80-1000 10 20 30 40 50 60 70 80 90 100 110 120

Weeks since Treatment Initiation

Topalian SL et al J Clin Oncol 2014

Wolchok JD et al NEJM 2015

Raising the Tail of the Curve with Immunotherapy Combinations

Sharma P and Allison JP: Cell 161: 205-214, 2015.

Postow MA et al: NEJM 372: 2006-2017, 2015.

Considerations for Phase III Clinical Trial Designs Unique to Immunotherapy

- durability of response and impact on overall survival dominates, with limited impact on ORR or PFS
- patients with disease progression by standard RECIST criteria may derive clinical benefit, with initial apparent progression followed by response—lead to development of irRECIST and iRECIST
- atypical response patterns may occur, with pseudoprogression, hyperprogression, and late responses possible
- side effect profile is distinct from standard cancer therapies
- targets a broad range of tumor types
- biomarker considerations may be complex

Three Pressing Challenges for the Field

- 1. Deepening Responses to SA Immunotherapy
- 2. Converting Non-Responders to Responders
- 3. Personalizing Immunotherapy

The Immune System and Breast Cancer

Gajewski TF Semin Oncol 2015 42: 663-71.

Herbst RS et al Nature 2014 515: 568-71.

Chen DS Mellman I Immunity 2013 39: 1-10.

Cimino-Mathews A/Emens LA, unpublished images.

- Poor prognostic factors (ER^{neg}, PR^{neg}, high grade, LN⁺) are associated with higher T cell infiltrates at diagnosis
- Higher numbers of CD8⁺ TILs and a higher CD8+ T cell/FoxP3+ Treg ratio predict better clinical outcomes (cPR, DFS, OS), except for ER+ BC
- TNBC and HER-2+ breast cancers are high value targets for cancer immunotherapy
 - --Few approved targeted therapies for TNBC
 - --Potentially synergistic targeted therapies in HER-2+ BC (trastuzumab, TDM-10)
- ER+ breast cancers present the challenge of transforming tumors from cold to hot

Atezolizumab Monotherapy in Metastatic TNBC: Patient Population

Baseline Characteristics	Patients (N = 115)
Median age (range)	53 y (29 to 82)
ECOG PS, 0 1 2	46% 52% 2%
Visceral metastatic sites ^a	65%
Bone metastatic sites ^b	30%
PD-L1 status on IC ^c	
ICO/1 (< 5%)	33%
IC2/3 (≥ 5%)	63%
Median prior systemic therapies (range) ^d	7 (0 to 21)
Anthracycline taxane	85% 94%
Platinum bevacizumab	58% 21%
Current line of therapy, e 1L 2L 3L+	17% 24% 58%

Prior to receiving atezolizumab, most patients were heavily pretreated

- At data cutoff, median treatment duration was 2.1 mo (range, 0.0-36.6)
- Median of 4 cycles (range, 1-45)

Atezolizumab Monotherapy in Metastatic TNBC

Clinical benefit was observed in some patients with RECIST v1.1 SD or PD status

Overall TNBC cohort

Criteria	Median DOR (range)	Median PFS (95% CI)
RECIST v1.1	21 mo (3 to 38+)	1.4 mo (1.3, 1.6)
irRC	25 mo (3 to 42+)	1.9 mo (1.4, 2.6)

Emens LA et al JAMA Oncol 2018

TNBC Response Rates to Atezolizumab by Subgroup

Objective response—evaluable patients. Four patients had unknown PD-L1 status. Confirmed, investigator-assessed responses are plotted. Patients with missing or unevaluable responses are included (16 per RECIST v1.1 and 23 per irRC). ORR 95% CI was estimated using Clopper-Pearson method. Data cutoff: March 31, 2016.

Atezolizumab Monotherapy and Overall Survival of TNBC Patients by PD-L1 Subgroup

Atezolizumab Monotherapy and Overall Survival of TNBC Patients: Line of Treatment

Overall Survival by PD-L1 and TIL Status

^a Four patients had unknown PD-L1 status. Median survival follow-up (range) was 15.2 mo (0.4+ to 36.7) in all patients, 17.0 mo (0.43+ to 36.7) in IC2/3 patients and 12.8 mo (0.8+ to 16.9) in IC0/1 patients. Median TIL level based on median TIL. ^a Samples unevaluable for TIL assessments (6 per RECIST v1.1 and 5 per irRC) are not included. Objective response—evaluable population includes patients with an evaluable response assessments (16 per RECIST v1.1 and 23 per irRC). Log-rank (Mantel-Cox) P value is exploratory. Data cutoff: March 31, 2016.

Overall Survival by Response Status (RECIST v1.1 and irRC)

- Median OS was 9.3 mo (95% CI: 7.0, 12.6) in all patients^a
 - Landmark OS rates (95% CI) were: 41% (31, 51) at 1 year, and 22% (12, 32) at both 2 and 3 years

Pseudo-progression was observed in patients with RECIST PD and long-term OS

^a Median survival follow-up (range) was 15.2 mo (0.4+ to 36.7) in all patients, 17.0 mo (0.43+ to 36.7) in IC2/3 patients and 12.8 mo (0.8+ to 16.9) in IC0/1 patients. ^b Patients included in the Kaplan-Meier plots were alive for \geq 6 weeks. Data cutoff: March 31, 2016.

Emens LA et al JAMA Oncol 2018

KEYNOTE-086: Phase 2 Study of Pembrolizumab Monotherapy in Metastatic TNBC

PD-L1 is an imperfect biomarker. Context is important.

	Previously Treated Any PD-L1 Expression Cohort A			First Line PD-L1+ Cohort B
	All* (n=170)	PD-L1+ (n=105)	PD-L1- (n=64)	PD-L1+ (n=52)
ORR, %	4.7%	4.8%	4.7%	23.1%
DCR, %	7.6%	9.5%	4.6%	
CR, n	1	1	0	
PR, n	7	4	3	
SD, n	35	22	12	

Adams S et al ASCO 2017, SABCS 2017

^{*1} patient was PD-L1 unknown

KEYNOTE-086: Phase 2 Study of Pembrolizumab in Metastatic TNBC

sTILs are an imperfect biomarker. Context is important.

Three Pressing Challenges for the Field

- 1. Deepening Responses to SA Immunotherapy
- 2. Converting Non-Responders to Responders
- 3. Personalizing Immunotherapy

One Framework for Personalizing Breast Cancer Immunotherapy

Patterns of T Cell Infiltration

Non-inflamed

Chemotherapy, XRT
HER-2-directed antibodies
Vaccines, STING agonists

Inflamed

Anti-PD-1/PD-L1 IDO inhibition A2AR inhibition

Gajewski TF Semin Oncol 2015 42: 663-71.

Herbst RS et al Nature 2014 515: 568-71.

Chen DS Mellman I Immunity 2013 39: 1-10.

Cimino-Mathews A/Emens LA, unpublished images.

Combination of PD-1/PD-L1 Blockade with Standard Chemotherapy in TNBC

Atezolizumab with Nab-Paclitaxel

Changes in Tumor Burden Over Time with Line of Therapy

- PD-1 unselected patients
- Atezolizumab 840 mg every 2W; Nab-paclitaxel 100 mg/m² weekly
- Confirmed ORR = 41.7%; 3 pseudoprogressors

 $n = 9 (ORR \sim 67\%)$

n = 15 (ORR ~ 25-28%)

Taxane+Atezolizumab (ORR 41.7%)

- --antigen release
- N = 24
- --signal through TLR-4
- --augment DC activity and Ag presentation

Eribulin+Pembrolizumab (ORR 26.4%) (29.2% ORR 1st line, 22% 2nd/3rd line)

N = 107 (66/41)

- --antigen release
- --decreases Tregs
- --decreases M2 macrophages

Adams S et al JAMA Oncol 2018 Tolaney S SABCS 2016, 2017

IMpassion130: A global, randomised, double-blind, Phase III study of atezolizumab + nab-paclitaxel vs placebo + nab-paclitaxel in treatment-naive locally advanced or metastatic triple-negative breast cancer

- Co-primary endpoints were PFS and OS in the ITT and PD-L1+ populations^d
 - Key secondary efficacy endpoints (ORR and DOR) and safety were also evaluated

IC, tumour-infiltrating immune cell; TFI, treatment-free interval. a ClinicalTrials.gov: NCT02425891. Locally evaluated per ASCO—College of American Pathologists (CAP) guidelines. Centrally evaluated per VENTANA SP142 IHC assay (double blinded for PD-L1 status). Radiological endpoints were investigator assessed (per RECIST v1.1).

IMpassion130 statistical testing

IMpassion130 baseline characteristics

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)
Median age (range), y	55 (20-82)	56 (26-86)
Female, n (%)	448 (99%)	450 (100%)
Race, n (%) ^a		
White	308 (68%)	301 (67%)
Asian	85 (19%)	76 (17%)
Black/African American	26 (6%)	33 (7%)
Other/multiple	20 (4%)	26 (6%)
ECOG PS, n (%)b,c		
0	256 (57%)	270 (60%)
1	193 (43%)	179 (40%)
Prior (neo)adjuvant treatment, n (%)	284 (63%)	286 (63%)
Prior taxane	231 (51%)	230 (51%)
Prior anthracycline	243 (54%)	242 (54%)

Characteristic	Atezo + nab-P (N = 451)	Plac + nab-P (N = 451)		
Metastatic disease, n (%)	404 (90%)	408 (91%)		
No. of sites, n (%) ^d				
0-3	332 (74%)	341 (76%)		
≥ 4	118 (26%)	108 (24%)		
Site of metastatic disease, n (%)				
Lung	226 (50%)	242 (54%)		
Bone	145 (32%)	141 (31%)		
Liver	126 (28%)	118 (26%)		
Brain	30 (7%)	31 (7%)		
Lymph node only ^d	33 (7%)	23 (5%)		
PD-L1+ (IC), n (%)	185 (41%)	184 (41%)		

Data cutoff: 17 April 2018. ^a Race was unknown in 12 patients in the Atezo + nab-P arm and 15 in the Plac + nab-P arm. ^b Of n = 450 in each arm. ^c ECOG PS before start of treatment was 2 in 1 patient per arm. ^d Of n = 450 in the Atezo + nab-P arm and n = 449 in the Plac + nab-P arm arm.

Atezolizumab + Nab-Paclitaxel: Clinically Meaningful Efficacy in PD-L1+ Patients

Schmid P/Emens LA et al NEJM 2018
Emens LA/Schmid P et al SABCS 2018

No Benefit for Atezolizumab + Nab-Paclitaxel in **PD-L1- Patients**

Emens LA et al SABCS 2018

- A trend toward association between PD-L1 IC positivity and poor prognosis was observed but was not statistically significant
- PD-L1 IC positivity was predictive of PFS and OS benefit with atezolizumab + nab-paclitaxel

Secondary efficacy endpoints

- Numerically higher and more durable responses were seen in the Atezo + nab-P arm
 - Differences were not significant based on α level = 0.1% (ITT: P = 0.0021; PD-L1+: P = 0.0016)
- The CR rate was higher in the Atezo
 + nab-P arm vs the Plac + nab-P arm
 - ITT population: 7% vs 2%
 - PD-L1+ patients: 10% vs 1%

Exposure and dose intensity

	nab-P Exposure		Atezo or Plac Exposure		
	Atezo + nab-P (n = 452)	Plac + nab-P (n = 438)	Atezo + nab-P (n = 452) ^a	Plac + nab-P (n = 438)	
Treatment duration	n, weeks				
Median (range)	22.1 (0-137)	21.8 (0-103)	24.1 (0-139)	22.1 (0-109)	
Patients with indi	cated treatment du	uration, n (%)			
≤ 16 weeks	361 (80%)	316 (72%)	355 (79%)	316 (72%)	
≤ 6 months	315 (70%)	257 (59%)	311 (69%)	259 (59%)	
≤ 12 months	100 (22%)	75 (17%)	138 (31%)	108 (25%)	
≤ 18 months	53 (12%)	44 (10%)	89 (20%)	63 (14%)	
> 18 months	12 (3%)	7 (2%)	25 (6%)	15 (3%)	
Dose intensity, %					
Mean (SD)	87.7 (18%)	90.4 (15%)	95.8 (10%)	NE	
No. of cycles					
Median (range)	6.0 (1-34)	6.0 (1-26)	7.0 (1-35)	6.0 (1-28)	

- A higher proportion of patients in the Atezo + nab-P arm compared with the Plac + nab-P arm received nab-P for at least 6 months (70% vs 59%) and at least 12 months (22% vs 17%)
- Atezo did not compromise the dose intensity of nab-P

Most common AEs regardless of attribution

AEs in ≥ 20% (all grade) or ≥ 3% (grade 3-4) of patients	Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
in either arm, n (%)	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Alopecia	255 (56%)	3 (1%)	252 (58%)	1 (< 1%)
Fatigue	211 (47%)	18 (4%)	196 (45%)	15 (3%)
Nausea ^a	208 (46%)	5 (1%)	167 (38%)	8 (2%)
Diarrhoea	147 (33%)	6 (1%)	150 (34%)	9 (2%)
Anaemia	125 (28%)	13 (3%)	115 (26%)	13 (3%)
Constipation	113 (25%)	3 (1%)	108 (25%)	1 (< 1%)
Cougha	112 (25%)	0	83 (19%)	0
Headache	105 (23%)	2 (< 1%)	96 (22%)	4 (1%)
Neuropathy peripheral	98 (22%)	25 (6%)	97 (22%)	12 (3%)
Neutropaenia ^a	94 (21%)	37 (8%)	67 (15%)	36 (8%)
Decreased appetite	91 (20%)	3 (1%)	79 (18%)	3 (1%)
Neutrophil count decreased	57 (13%)	21 (5%)	48 (11%)	15 (3%)
Hypertension	22 (5%)	4 (1%)	24 (5%)	11 (3%)

- The most common AEs were generally similar between arms
- Most common Grade 3-4
 AEs: neutropaenia,
 decreased neutrophil count,
 peripheral neuropathy,
 fatigue, anaemia
 - Grade 3-4 AEs ≥ 2%
 higher in the Atezo
 + nab-P arm included
 peripheral neuropathy
 (6% vs 3%)

Schmid P/Emens LA et al NEJM 2018

Most common serious AEs

SAEs occurring in ≥ 1% of patients in either arm (regardless of attribution)

		Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
SAE, n (%)	Any Grade	Grade 3-4	Any Grade	Grade 3-4	
All	103 (23%)	78 (17%)ª	80 (18%)	56 (13%) ^b	
Pneumonia	10 (2%)	8 (2%) ^c	5 (1%)	0	
Urinary tract infection	5 (1%)	2 (< 1%)	0	0	
Dyspnoea	5 (1%)	3 (1%)	2 (< 1%)	2 (< 1%)	
Pyrexia	5 (1%)	3 (1%)	3 (1%)	0	

- A higher proportion of patients in the Atezo + nab-P arm than in the Plac + nab-P arm reported SAEs (23% vs 18%)
- No SAE was reported with a ≥ 2% difference between treatment arms

Schmid P/Emens LA et al NEJM 2018

AESIs suggestive of potential immune-related aetiology

	Atezo + nab-P (n = 452)		Plac + nab-P (n = 438)	
AESI, n (%) ^a	Any Grade	Grade 3-4	Any Grade	Grade 3-4
All	259 (57%)	34 (8%)	183 (42%)	19 (4%)
Important AESIs				
Hepatitis (all)	69 (15%)	23 (5%)	62 (14%)	13 (3%)
Hepatitis (diagnosis)	10 (2%)	6 (1%)	7 (2%)	1 (< 1%)
Hepatitis (lab abnormalities)	62 (14%)	17 (4%)	58 (13%)	12 (3%)
Hypothyroidism	78 (17%)	0	19 (4%)	0
Hyperthyroidism	20 (4%)	1 (< 1%)	6 (1%)	0
Pneumonitis	14 (3%)	1 (< 1%)	1 (< 1%)	0
Meningoencephalitis ^b	5 (1%)	0	2 (< 1%)	0
Colitis	5 (1%)	1 (< 1%)	3 (1%)	1 (< 1%)
Adrenal insufficiency	4 (1%)	1 (< 1%)	0	0
Pancreatitis	2 (< 1%)	1 (< 1%)	0	0
Diabetes mellitus	1 (< 1%)	1 (< 1%)	2 (< 1%)	1 (< 1%)
Nephritis	1 (< 1%)	0	0	0
Other AESIs ^c				
Rash	154 (34%)	4 (1%)	114 (26%)	2 (< 1%)
Infusion-related reactions	5 (1%)	0	5 (1%)	0

- 1 grade 5 AESI per arm (both treatment related):
 - Atezo + nab-P: autoimmune hepatitis
 - Plac + nab-P: hepatic failure
- All hypothyroidism AESIs were grade 1-2; none led to discontinuation
 - Atezo + nab-P: 17%
 - Plac + nab-P: 4%
- Pneumonitis was infrequent with only 1 grade 3-4 event in the Atezo + nab-P arm
 - Atezo + nab-P: 3%
 - Plac + nab-P: < 1%
- Hepatitis rates were balanced

AESI, adverse event of special interest. Data cutoff: 17 April 2018. ^a Baskets of preferred terms according to medical concepts. ^b All events of photophobia.

^c Includes all AESIs occurring in ≥ 1% of patients in either arm.

IMpassion130 Biomarker Analyses

- Pre-existing immune biology, including PD-L1 expression on TC, CD8+ T cells and stromal TILs, has also been associated with clinical benefit from anti–PD-L1/PD-1^{1,2}
- In this exploratory analysis, we sought to evaluate whether this immune biology and BRCA1/2 mutation status were associated with clinical benefit from atezolizumab + nab-paclitaxel
- Biomarkers were centrally analyzed in pre-treatment biopsies
 - PD-L1 on IC and TC by VENTANA SP142 IHC assay^a
 - Intratumoral CD8+ T cells by IHC (Dako clone C8/144B) and stromal TILs by H&E^b
 - BRCA1/2 mutation status by FoundationOne assay

^a PD-L1 scoring: IC0: < 1%; IC1: ≥ 1% and < 5%; IC2: ≥ 5% and < 10%; IC3: ≥ 10%; TC-: < 1% PD-L1 on tumor cells; TC+: ≥ 1% PD-L1 on tumor cells.

^b Pre-specified cutoffs for CD8 IHC and stromal TILs are based on references 1 and 2.

^{1.} Adams JAMA Oncol 2018. 2. Denkert Lancet Oncol 2018.

PD-L1 is Expressed Primarily on Tumor Infiltrating Immune Cells in mTNBC

Prevalence of PD-L1 IC subgroups

Prevalence of PD-L1 TC subgroups

The majority of patients with expression of PD-L1 on TC are included within the PD-L1 IC+ population

Emens LA et al SABCS 2018

Consistent Clinical Benefit for Atezolizumab + Nab-Paclitaxel was Observed Across All PD-L1 IC Subgroups

^a Adjusted for prior taxane treatment and liver metastases.

Emens LA et al SABCS 2018

CD8+ T Cells Predict Clinical Benefit Only in PD-L1 IC+ Patients

- PD-L1 IC+ are enriched in CD8+ (P < 0.0001) and CD8+ are enriched in PD-L1 IC+ (P < 0.0001)^a
- Patients with CD8+ tumors derived clinical benefit (PFS/OS) only if their tumors were also PD-L1 IC+

Stromal TILs Predict Clinical Benefit Only in PD-L1 IC+ Patients

- TIL+ were enriched for PD-L1 IC+ (P < 0.0001) but PD-L1 IC+ were not enriched for TIL+ (P = ns)a
- Patients with TIL+ tumors derived clinical benefit (PFS/OS) only if their tumors were also PD-L1 IC+

Clinical Benefit Derived by PD-L1 IC+ Patients is Independent of Their BRCA 1/2 Mutation Status

- BRCA1/2 mutants and PD-L1 IC+ are independent from each other (P = ns)^a
- Patients with BRCA1/2-mutant tumors derived clinical benefit (PFS/OS) only if their tumors were also
 PD-L1 IC+^b

Summary of IMpassion130 Results

- In the Phase III IMpassion130 study, PD-L1 expression on IC is a predictive biomarker for selecting patients who clinically benefit from first-line atezolizumab + nab-paclitaxel treatment for mTNBC
 - PFS and OS benefit was observed in patients with a PD-L1 IC of ≥ 1% (by VENTANA SP142 IHC assay)
 - A treatment effect was not seen for adding atezolizumab to chemotherapy in the PD-L1-negative subgroup
- PD-L1 expression on TC did not provide additional information beyond PD-L1 IC status
 - Prevalence of tumor-cell PD-L1 expression was low, and the majority of these tumors were also PD-L1 IC+
- PD-L1 IC expression was the best predictor of clinical benefit as the patient subgroups with tumor-infiltrating immune cells (stromal TILs+) or cytotoxic T cells (CD8+) derived clinical benefit with atezolizumab + nabpaclitaxel if their tumors were also PD-L1 IC+
- PFS and OS results were consistent regardless of BRCA1/2 mutation status
- Patients with newly diagnosed metastatic and unresectable locally advanced TNBC should be routinely tested for PD-L1 IC status to determine whether they might benefit from atezolizumab + nab-paclitaxel

PANACEA: A Phase 1b/2 Trial of Pembrolizumab and Trastuzumab in Patients with Trastuzumab^R Metastatic HER-2+ Breast Cancer

Response Rates by RECISTv1.1

	PD-L1+ (n = 46)	PD-L1- (n = 12)
ORR	15.2% (7/46)	0
DCR	24% (11/46)	0
CR	2	-
PR	5	-
SD	7	2

PD-L1+ Cohort (n = 44)

PANACEA: A Phase 1b/2 Trial of Pembrolizumab and Trastuzumab in Patients with Trastuzumab^R Metastatic HER-2+ Breast Cancer

Loi S et al SABCS 2017

KATE2: A randomized Phase II study of atezolizumab + trastuzumab emtansine (T-DM1) vs placebo + T-DM1 in previously treated HER2+ advanced breast cancer

Primary endpoint

 Investigator-assessed PFS per RECIST v1.1 (ITT)

Secondary endpoints

· OS, ORR, DOR (ITT)

Exploratory endpoints

- PFS in the PD-L1+ (PD-L1 IC ≥ 1%) subgroup
- Efficacy in subgroups defined by immune-related (tumor-infiltrating lymphocytes and CD8 IHC expression) and HER2-related biomarkers

Safety endpoints

 AEs, SAEs, AEs leading to death, study discontinuation, or dose reduction and interruption

Emens LA et al SABCS 2018

Primary Endpoint PFS in ITT Patients

 The study did not demonstrate a meaningful PFS benefit from the addition of atezolizumab to T-DM1 in the ITT population

Secondary Endpoint: ORR in ITT Patients

	T-DM1 + Atezolizumab (n = 132) ^a	T-DM1 + Placebo (n = 69)
ORR, %	45.5	43.5
CR, %	6.1	7.2
PR, %	39.4	36.2
SD, %	37.9	29.0
PD, %	16.7	26.1

PD, progressive disease; PR, partial response; SD, stable disease.

Data cutoff: 11 December 2017.

- ORR and complete response (CR) rates in the ITT population were similar between arms
- OS data were not mature with 21 events (10%) in total. Median DOR was not reached

^a Only 132 patients were evaluable for ORR (ie, had measurable disease at baseline).

Primary Endpoint PFS in PD-L1+ Patients

- PFS in the PD-L1+ subgroup numerically favored atezolizumab + T-DM1 vs atezolizumab + placebo (HR, 0.60 [95% CI: 0.32, 1.11])
- The magnitude of the benefit is uncertain given the limited number of patients and the corresponding wide confidence interval of the hazard ratio

Conclusions

- Breast cancer can be immunogenic, most breast tumors are not
- Standard cancer therapies can be safely combined with immunotherapy, and may augment clinical efficacy
- Atezolizumab combined with nab—paclitaxel is well-tolerated in advanced mTNBC
- Atezolizumab plus nab-paclitaxel confers a PFS and OS benefit in PD-L1+ mTNBC patients, and is a new standard of care for first-line therapy
- Adding Atezolizumab to trastuzumab or T-DM1 is safe and may confer clinical benefit in advanced HER-2+ breast cancer
- PD-L1 is emerging as a reliable predictive biomarker in metastatic breast cancer
- We need to do smart trials that both prioritize the most promising immunotherapy combinations for testing in patients, and elucidate immunologic mechanisms of response and resistance in patients

Acknowledgements

- Jeremy Foote
- Marleen Kok
- James Leatherman
- Chiara Dellepiane
- Bridget Marcinkowski
- Melek Sunay
- Gang Chen
- Elizabeth Manning
- Todd Armstrong
- Justin Edwards
- Sheeba Irshad

- Maureen Berg
- Richard Zak
- Jane Zorzi
- Tianna Dauses
- Katrina Purtell
- Jeanne Harrison
- Candace Griffin
- Helen Cai
- Anita Miller Hart
- Jing Ye
- Jennifer Durham
- Xiaobu Ye
- Steve Piantadosi

- Elizabeth Jaffee
- Drew Pardoll
- JHU breast cancer program colleagues
- Genentech colleagues
- Corvus Colleagues
- Aduro Colleagues
- UPMC breast cancer colleagues
- UPMC CIIP colleagues

A special thanks to all of the patients and families who participated in these studies!

