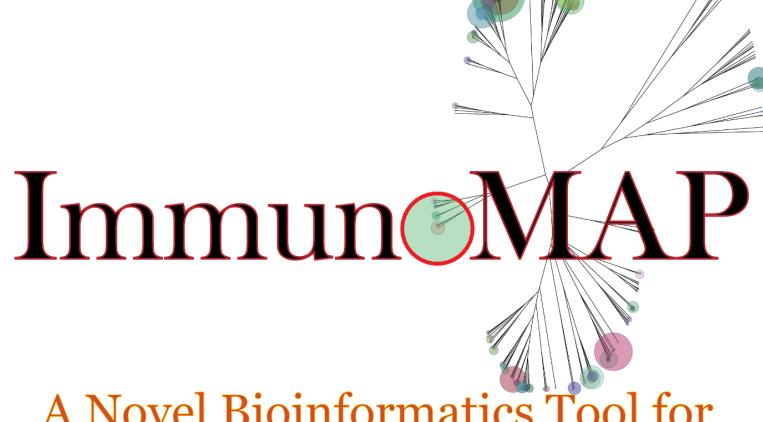


SITC 2016


NATIONAL HARBOR, MD NOVEMBER 9-13, 2016

A Novel Bioinformatics Tool for Immune Cell Repertoire Analysis

John-William Sidhom
MD/PhD Candidate MII,GIII
Jonathan Schneck Lab

Presenter Disclosure Information

John-William Sidhom

The following relationships exist related to this presentation:

No relationships to disclose

Overview

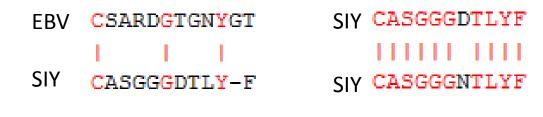
- Algorithm Overview
- Basic Science Application
 - Understanding Antigen-Specific Responses in Naïve and Tumor-Bearing Setting
- Clinical/Translational Application
 - Revealing signatures associated with responders on checkpoint blockade

Background

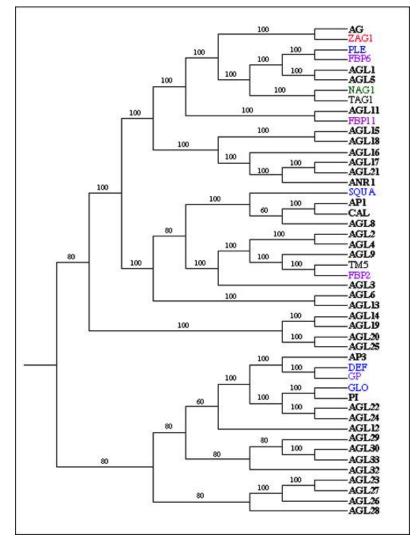
- Advent of sequencing of T Cell Receptor CDR3
 - Understanding Immune Responses to Cancer

- Clones
- Frequency (Reads)
- V,D,J usage
- Difficult to parse data into meaningful biological conclusions

Current Approaches


- Diversity of Individual Repertoire
 - Shannon Entropy measure of diversity as a function of # of sequences & frequency¹
- Comparing Multiple Repertoires
 - Tracking *exact* clonotypes (at nucleotide or amino acid level)^{2,3}

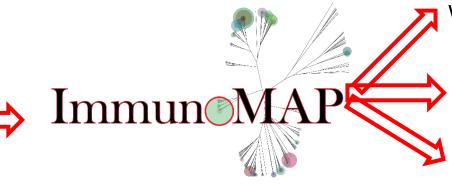
Ignore Sequence Relatedness & Structure


Phylogenetic Approach

- Evolutionary Biology Approach
- Phylogenetic 'distance' can be used to understand how a collection of sequences is related to itself and other samples
 - Function of Sequence Alignment Scores

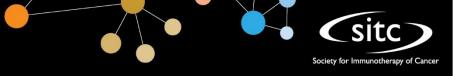
Phylogenetic Distance

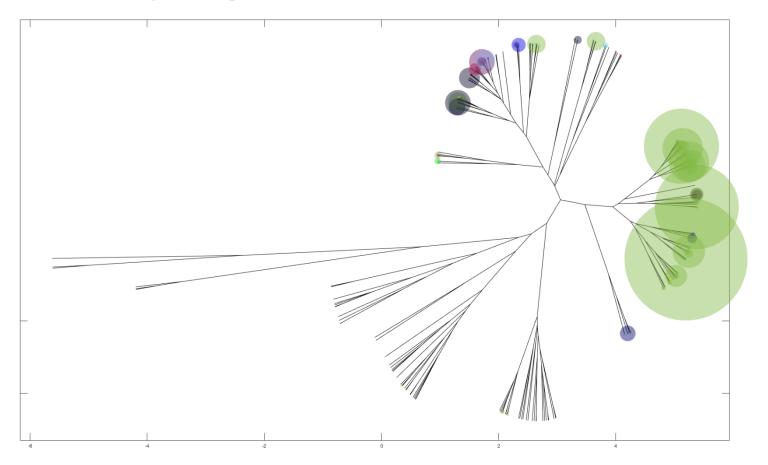
0.2481 0.9884



Overview of...

Sequencing Data (Sequence, Frequency, VDJ Usage)


	_	_	1 -		1 -		
aminoAcid	count (ter	frequency	cdr3Lengt	vMaxReso	vFamilyNa	vGeneNar	vGe
CASSLPRDRSAETLYF	55	0.073788	48	TCRBV16-	TCRBV16	TCRBV16-0	
CASSGTGGSTEVFF	35	0.048739	42	TCRBV13-	TCRBV13	TCRBV13-0	
LCQQSGDNTGQLYF	34	0.047961	42	TCRBV26-	TCRBV26	TCRBV26-0	
CASSQGLGGNAEQFF	33	0.044997	45	TCRBV05-	TCRBV05	TCRBV05-0	
CASRTGAYEQYF	23	0.032259	36	TCRBV16-	TCRBV16	TCRBV16-0	

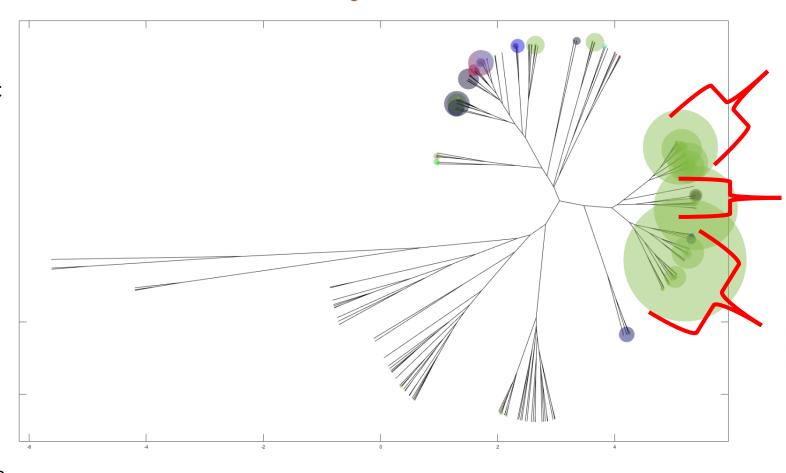

Weighted Phylogenetic Trees

Dominant Motif Analysis

TCR Diversity Score



Weighted Phylogenetic Trees


Color of Circle: V-Beta Usage

Size of Circle: Frequency of Sequence ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Dominant Motif Analysis

Clusters of sequences based on phylogenetic distance and frequency selected and termed, 'Dominant Motifs'

Color of Circle: V-Beta Usage


Size of Circle: Frequency of Sequence

ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

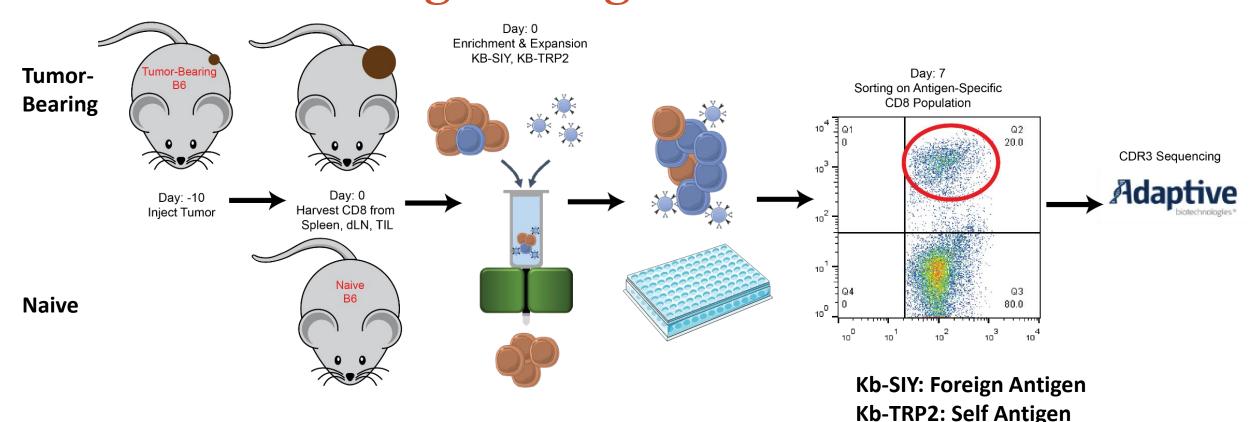
CASSGGGLEQYF CTSSGGGLEQYF CARSGGGLEQYF CASSGGGYEQYF CASGTGGYEQYF CATGTGGYEQYF CASGAGGYEOYF

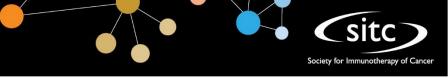
> CASSDGNIGQLYF CASSDRNIGQLYF CASSGGDIGQLYF CASSGGDIGQLYF CASGAGDIGQLYF

CASSLGGGA-DTQYF
CASSIG-GGGDTQYF
CASSIG-GGGDTQYF
CASSIG-GGQDTQYF
CASSLGGG-QDTQYF
CASSLG-GGGDTLYF
CASSLG-GGDTLYF
CASSIG-GNQDTQYF
CASSIG-GNQDTQYF
CASSIG-GNQDTQYF
CASSIG-GNQDTQYF
CASSLG-GRQDTQYF
CASSLG-GRQDTQYF
CASSLG-GRQDTQYF
CASSLGGGAQDTQYF
CASSLGGGGQDTQYF
CASSLGGGGQDTQYF
CASSLGGGGQDTQYF
CASSLGGGGQDTQYF
CASSLGGGGQDTQYF
CASSLGGGGQDTQYF
CASSLGGGGQDTQYF

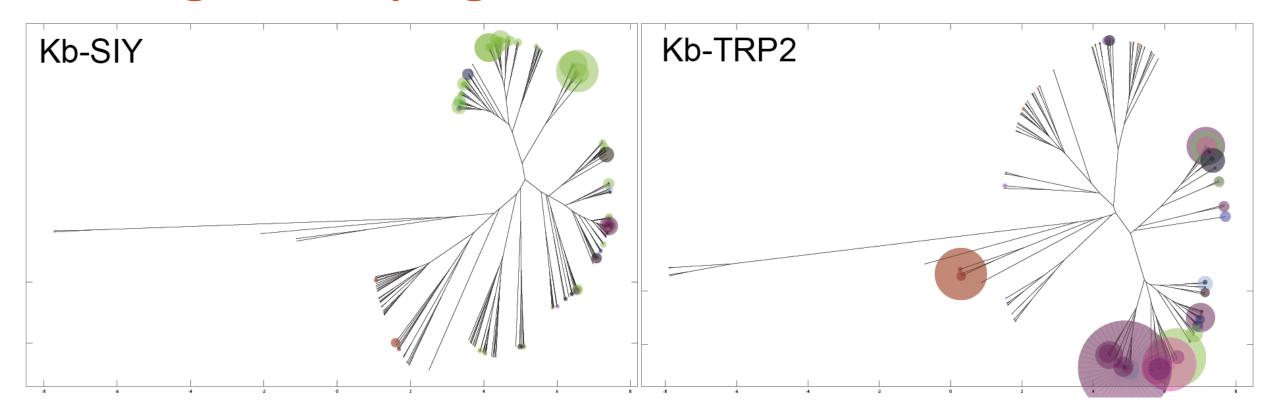
TCR Diversity Score

- Score = average phylogenetic distance of all sequences in a sample.
- Score ranges from 0 to 1
 - 1 = All Sequences Identical
 - 0 = All Sequences Infinitely Different


CASGGGDTLYF

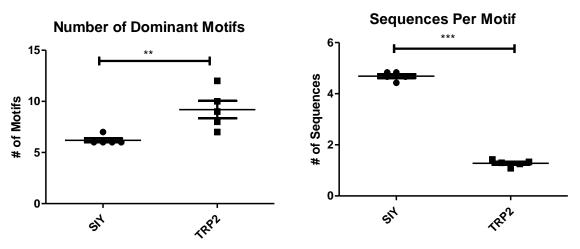

0.2076

0.9600



Antigen-Specific Responses in Naïve and Tumor-Bearing Settings

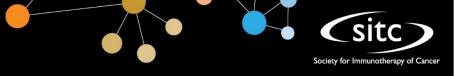
Weighted Phylogenetic Trees – Naïve



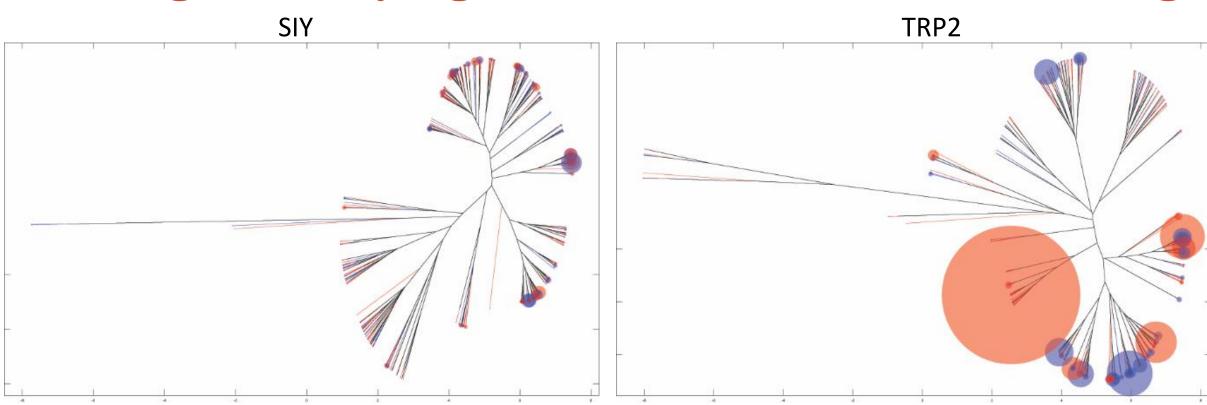
Color of Circle: V-Beta Usage

Size of Circle: Frequency of Sequence ADVANCING CANCER IMMUNOTHERAPY WORLDWIDE

Dominant Motif Analysis – Naïve


	TCR Diversit	y Score
0.40	**	*
0.35- 9.00 9.035-		
0.30-		
0.25	·	
	est	ZREN

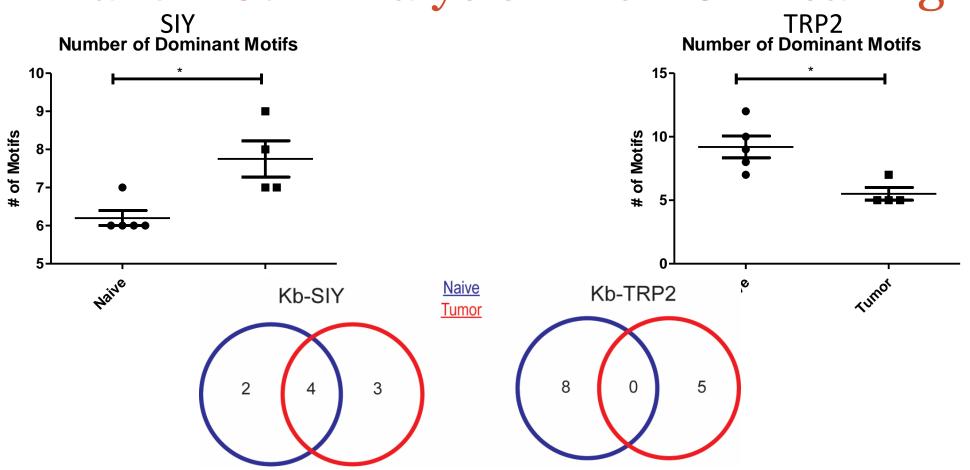
Kb-SIY	Motif 1	Motif 2	Motif 3	Motif 4	Motif 5	Motif 6
Contribution to Response (%)	3.37	10.65	7.83	4.46	4.67	3.59
Alignment	CASGAGDYAEOFF CASGGGYAEOFF CASGGGYAEOFF CASGGGYAEOFF CASGGGAEOFF CASGGGAEOFF	CASSFGGEDTOYF CASSIGGEDTOYF	CASGGGTLYF CASGGGNTLYF CASGGGTOYF CASGTGTOYF CASGTGTTYF CASGTGTTYF CASGTGTTYF CASGDGGTOYF CASGDGTOYF	CASGGLGGOYF CASGGLGGOYF CASGGGDDYF CASGGGDDYF CASGGGEOYF	CASATGDNOAPLF CASGTGDNOAPLF CASGTGDNRAPLF	CASSDAYSNOAPL


TRP2

Kb-TRP2	Motif 1	Motif 2	Motif 3	Motif 4	Motif 5	Motif 6
Contribution to Response (%)	10.68	5.66	5.50	3.07	5.66	6.15
Sequences	CASSLPRDGSAETLYF CASSLPRDRSAETLYF CASSLPSGSSAETLYF CASSRSRDNSAETLYF	CASSLRGFEQYF	LCQQSGDNTGQLYF	CASSQEGTGGREQYF	CASSQGLGGNAEQFF	CASSGTGGSTEVFF
	Motif 7	Motif 8				•
Contribution to Response (%)	3.07	4.05				
Sequences	CASSLDSGGSQDTQYF	CASRTGAYEQYF				

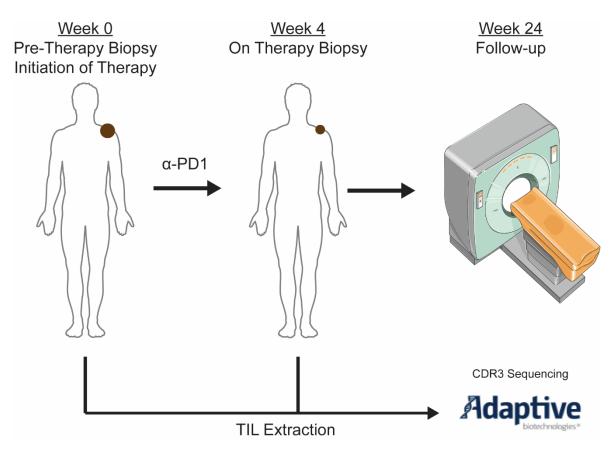
DVANCING CANCER IMMUNOTHERAPY WORLDWIDE

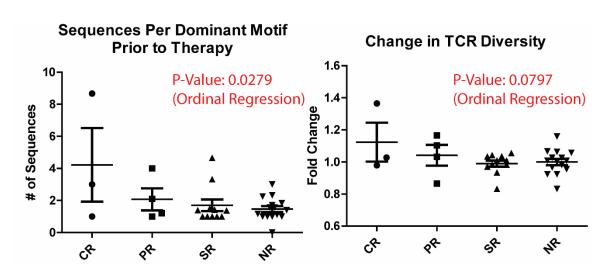
Weighted Phylogenetic Trees – Tumor-Bearing

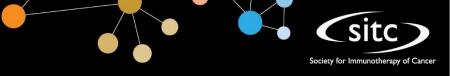


Blue: Naïve Response

Red: Tumor-Bearing Response




Dominant Motif Analysis – Tumor-Bearing



Analysis of Tumor-Infiltrating Lymphocytes from Melanoma Pts. Undergoing α -PD1

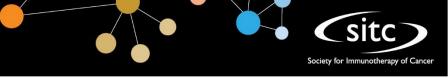
Concluding Points

- Current approaches to TCR Repertoire Analysis do not address structural/sequence aspects of the response
- ImmunoMAP uses a novel phylogenetic approach to understand repertoire structure and diversity
- Insights from ImmunoMAP to:
 - Understand the basic biology of immune responses across many scientific and medical fields (oncology, autoimmunity, infectious disease)
 - Differential immune pressure on various tumor antigens
 - Characterize responses of patients who respond/resist immune therapies

Acknowledgements

Dr. Jonathan Schneck's Lab

- Catherine Ami Bessell
- Kristy Chu
- Alyssa Kosmides
- John Hickey
- Bo-yi


Dr. Timothy Chan's Lab

Jonathan Havel

References

- 1. Jost, L. PARTITIONING DIVERSITY INTO INDEPENDENT ALPHA AND BETA COMPONENTS. *Ecology* **88**, 2427–2439 (2007).
- 2. Sherwood, A. et al. Tumor-infiltrating lymphocytes in colorectal tumors display a diversity of T cell receptor sequences that differ from the T cells in adjacent mucosal tissue. Cancer Immunol Immunother 62, 1453–61 (2013).
- 3. Venturi, V, Kedzierska, K, Tanaka, MM & Turner, SJ. Method for assessing the similarity between subsets of the T cell receptor repertoire. *Journal of ...* (2008). doi:10.1016/j.jim.2007.09.016