SITC Cancer Immunotherapy Winter School, January 2022

Industry Session: New Agents CD47/SIRPα Targeting Agents In Clinical Development

Chris H. Takimoto, MD, PhD, FACP Chief Medical Officer IGM Biosciences

Disclosures

• I am a current stockholder and employee of IGM Biosciences

o I am a former employee and current stockholder of Johnson & Johnson and Gilead Sciences

• The views you hear today are my own and do not represent those of any other individuals or organizations

• This presentation only contains publicly available information

CD47, A Don't Eat Me Signal for Phagocytic Cells and A Target for Cancer Immunotherapy

- CD47 is a 50 kDa cell surface glycoprotein ubiquitously expressed on normal and malignant tissues
- Engagement with its receptor, SIRPα on macrophages, and other effector cells delivers a potent "Don't Eat Me" signal
- Frequently overexpressed in a wide range of solid tumors and hematological malignancies,
- High expression in various tumor types is associated with a worse clinical prognosis
- Cancer cells utilize CD47 to evade surveillance by the innate immune system
- Blockade of CD47/SIRPα signaling on tumor cells in the presence of prophagocytic signals can induce phagocytosis

3

CD47, A Don't Eat Me Signal for Phagocytic Cells and A Target for Cancer Immunotherapy

CD47's Therapeutic Potential Discovered by The Weissman Lab at Stanford

CD47 Is Upregulated on Circulating Hematopoietic Stem Cells and Leukemia Cells to Avoid Phagocytosis

Cell

Siddhartha Jaiswal,^{1,*} Catriona H.M. Jamieson,² Wendy W. Pang,¹ Christopher Y. Park,¹ Mark P. Chao,¹ Ravindra Majeti,¹ David Traver,³ Nico van Rooijen,⁴ and Irving L. Weissman^{1,*} Jaiswal et al. Cell 2009

CD47 Is an Adverse Prognostic Factor and Therapeutic Antibody Target on Cell Human Acute Myeloid Leukemia Stem Cells

Ravindra Majeti,^{1,3,7,*} Mark P. Chao,^{3,7} Ash A. Alizadeh,^{1,3} Wendy W. Pang,³ Siddhartha Jaiswal,³ Kenneth D. Gibbs, Jr.,^{4,5} Nico van Rooijen,⁶ and Irving L. Weissman^{2,3,*} Majeti and Chao et al. Cell 2009

Anti-CD47 Antibody Synergizes with Rituximab to Promote Phagocytosis and Eradicate Non-Hodgkin Lymphoma

Cell

Irv Weissman

Ravi Majeti

Mark P. Chao

Mark P. Chao,^{1,10,*} Ash A. Alizadeh,^{1,2,3,10} Chad Tang,¹ June H. Myklebust,^{3,9} Bindu Varghese,³ Saar Gill,⁵ Max Jan,¹ Adriel C. Cha,¹ Charles K. Chan,¹ Brent T. Tan,⁴ Christopher Y. Park,^{1,4} Feifei Zhao,¹ Holbrook E. Kohrt,^{2,3} Raquel Malumbres,⁶ Javier Briones,⁷ Randy D. Gascoyne,⁸ Izidore S. Lossos,⁶ Ronald Levy,³ Irving L. Weissman,^{1,4,10} and Ravindra Majeti^{1,2,10}

Chao and Alizadeh et al. Cell 2009

Targeting CD47 Represents Novel Macrophage Immune Checkpoint Inhibitor Strategy

Control mAb: No Phagocytosis

Macrophages (Red) **Cancer cells (Green)**

Anti-CD47 mAb: Phagocytosis

- Anti-CD47 antibodies enables macrophages to phagocytose cancer cells by blocking the binding of the "don't eat me" signal CD47 to its receptor SIRPa
- Normal cells are not phagocytosed as they do not express "eat me" signals, except for aged red blood cells 0
- Additional external "eat me" signals can be provided by cancer-specific antibodies 0

Key Mechanistic Observations that Impact Guide Drug Development Strategies

- Antitumor activity associated with CD47 blockade generally requires additional prophagocytic signals
 - Monotherapy activity of CD47/SIRPα blocking agents may be modest
 - Combinations can optimize antitumor activity by enhancing the pro-phagocytic "Eat Me" signals on tumor cells
- Pro-Phagocytic Strategies
 - Antitumor antibodies with active Fc domains that engage Fc-receptors on macrophages
 - Cell stressors/cytotoxic agents that up regulate endogenous pro-phagocytic signals such as calreticulin, phosphatidylserine, and others
- Activation of the innate immune response (first responder cells) can enhance tumor antigen presentation and cross priming of T-cells, bringing the adaptive immune system into play
 - Targeting CD47 is a holistic approach to Immunotherapy
 - Both M1 and M2 macrophages can be induced to phagocytose tumor cells after CD47 blockade

7

Rationale for Combinations with Antitumor Antibodies That Provide Additional Pro-phagocytic Signals

--Takimoto et al, Ann Oncol 2019

8

Rationale for Combination with T Cell Checkpoint Inhibitors

- CD47 blockade can enhance phagocytic cell digestion of tumor cells
- Can potentiate tumor antigen cross priming of T Cells
- Potential to synergize with with Anti-PD-L1 Antibodies
- Currently being evaluated in clinical trials

⁻⁻McCracken, Cha, Weissman, 2015, Clin Cancer Res

CD47 Targeting Agents in Clinical Development

Sponsor	Gilead (acquired Forty Seven)	Pfizer (acquired Trillium Therapeutics)		ALX Oncology	I-Mab/ AbbVie	Innovent	Arch Oncology	Zai Lab	ImmuneOncia Therapeutics
Compound name	Magrolimab (Hu5F9-G4)	TTI-621	TTI-622	Evorpacept (ALX148)	Lemzoparlimab (TJ011133 or TJC4)	Letaplimab (IBI-188)	AO-176	ZL-1201	IMC-002
Type of molecule	mAb	WT SIRPα fusion protein	WT SIRPα fusion protein	High affinity SIRPα fusion protein	mAb	mAb	mAb	mAb	mAb
Class	IgG4	IgG1	IgG4	Inactive Fc	IgG4	IgG4	IgG2	IgG4	N/A
Clinical start date	August 2014	January 2016	May 2018	February 2017	May 2019	January 2019	February 2019	June 2020	June 2020
Study stage (highest)	Ph 3	Ph 1b/2	Ph 1b/2	Ph 2	Ph 1/2	Ph 2 with Ph 3 planned in 1H 2022	Ph 1/2	Ph 1	Ph 1
Indications	MDS, AML Heme, solid tumors	DLBCL, PTCL, Leiomyo- sarcoma	Lymphoma, myeloma, AML, MDS, Ovarian, Solid tumors	HNSCC, Gastric, Breast, MDS, AML, NHL	MDS & AML (China & US), NHL, Myeloma, and solid tumors (WW)	MDS, AML, solid tumor, lymphoma	Solid tumor Multiple myeloma	Lymphoma, solid tumor	Solid tumors, lymphomas

Magrolimab (5F9; Gilead)

• Magrolimab, an IgG4 Anti-CD47 antibody that initiated clinical trials in August 2014

- First-in-class program with >500 patients treated with hematological and solid tumor malignancies
- Clinical development initiated at Stanford, then by Forty Seven, Inc. and now, Gilead Sciences
- Currently in Ph 3 trials in higher risk MDS and demonstrated activity in AML including TP53 mutant, NHL, and solid tumors patients

Anemia is Mitigated with a Proprietary Prime and Maintenance Dosing Regimen

--Sikic et al, JCO 2019

Key Points:

- Proprietary priming dose results in an early, temporary decline in hemoglobin levels corresponding to mild to moderate anemia
- Hemoglobin levels return to baseline even with continued treatment with 5F9 at significantly higher doses (up to 45mg/kg)
- Mild to moderate anemia during the first two weeks of starting therapy
- Associated with a temporary and a reversible reticulocytosis that resolves during the dosing period

Magrolimab Monotherapy Adverse Event Profile

Solid Tumor Summary (n = 73)										
Adverse Event (AE) Term		AE Grade								
Patients treated at 10 (3 pts), 20 (39 pts), 30 (25 patients), or 45 (6 patients) mg/kg weekly	Any	3	4							
Anemia	36 (49%)	8 (11%)	0							
Hemagglutination	22 (30%)	1 (1%)	0							
Hyperbilirubinemia/Blood bilirubin increased	11 (15%)	3 (4%)	0							
Thrombocytopenia	9 (12%)	0	0							
Neutropenia	2 (3%)	0	0							
Lymphopenia/Lymphocyte count decreased	12 (16%)	7 (10%)	3 (4%)							
Fatigue	36 (49%)	0	0							
Headache	33 (45%)	1 (1%)	0							
Chills	28 (38%)	0	0							
Pyrexia	26 (36%)	0	0							
Infusion-related reaction	16 (22%)	4 (5%)	0							
Nausea	13 (18%)	0	0							
Photopsia	7 (10%)	0	0							
Back pain	7 (10%)	1 (1%)	0							
Myalgia	7 (10%)	0	0							
AST elevation	4 (5%)	1 (1%)	1 (1%)							
ALT elevation	4 (5%)	0	1 (1%)							

Key Points:

- Expected red blood cell findings are easy to manage using a priming dose regimen
- Well tolerated at high and extended exposures
- Magrolimab AE profile comparable as monotherapy or in combination
- MTD not reached with dose escalation up to 45 mg/kg and >250 patients treated as monotherapy or in combination

AEs observed in ≥ 10% or selected for clinical interest; Data cutoff 24 Jul 2018

Antitumor Activity Observed with Rituximab Combination in Relapsed or Refractory NHL

o Clinical activity is observed in rituximab-refractory patients (more than 90% of patients evaluated were rituximab-refractory)

• Approximately 90% of the patients who had an initial response, maintained their response, suggesting durability. One patient continues on therapy in complete remission after 14 months of treatment

CONFIDENTIAL

--Advani ASCO 2019

114

Magrolimab Synergizes With Azacitidine to Induce Remissions in AML Xenograft Models

- Azacitidine (AZA) induces prophagocytic "eat me" signals, such as calreticulin, on cancer cells ٠
- Increased "eat me" signals induced by AZA synergize with CD47 blockade of the "don't eat me" signals, leading to • enhanced phagocytosis

Feng D, et al. Poster presented at: 60th ASH Annual Meeting and Exposition; December 1-4, 2018; San Diego, CA. Abstract 616 with adaptations.

S American Society *of* Hematology

--Sallman ASH 2020

Magrolimab in Combination With AZA is Well Tolerated

AEs ≥15% or AEs of interest are shown. All patients with at least 1 magrolimab dose are shown. *Includes thrombocytopenia and platelet count decreased. †Includes neutropenia and neutrophil count decreased.

- No maximum-tolerated dose was reached; magrolimab + AZA profile is generally consistent with AZA monotherapy
- No significant increases in cytopenias, infections, or immune-related adverse events (AEs) were observed (most patients were cytopenic at baseline)
- 30-day all-cause mortality was 4.7%, and 60-day mortality was 7.8%
- 4.7% of patients had an AE leading to magrolimab dose reduction
- Treatment discontinuation due to drug-related AEs occurred in 4.7% of all patients

Magrolimab in combination with azacitidine is effective in myelodysplastic syndrome and acute myeloid leukemia

Best Overall Response	1L MDS ¹ N=33	1L AML ² N=43		
ORR	30 (91%)	27 (63%)		
CR	14 (42%)	18 (42%)		
CRi	NA	5 (12%)		
PR	1 (3%)	1 (3%)		
MLFS/marrow CR	8 (24%) 4 with marrow CR + HI	2 (7%)		
Hematologic improvement (HI)	7 (21%)	NA		
SD	3 (9%)	8 (28%)		
PD	0	1 (4%)		

Disease Type: MDS (n°3) AML (n°23)

Figure 14.2.2.1 Best Relative Change from Baseline in Bone Marrow Blast (Treated Aliges with a Land Response in Strategy - TN/U cohort)

¹Sallman et al., ASCO 2020; ²Sallman et al., ASH 2020

Response assessments per 2006 IWG MDS criteria and 2017 AML ELN criteria. Patients with at least 1 posttreatment response assessment are shown; all other patients are on therapy and are too early for first response assessment, except for 2 MDS patients not evaluable (withdrawal of consent) and 3 AML patients (1 AE, 2 early withdrawal).

- Four patients not shown due to missing values; <5% blasts imputed as 2.5%. *Baseline bone marrow blasts ≤5%.
- Magrolimab + AZA induces a 91% ORR (42% CR) in MDS and 63% ORR (42% CR) in AML
- Magrolimab + AZA efficacy compares favorably to AZA monotherapy in MDS and AML (CR rate 6-17%)
- Magrolimab has been granted Breakthrough Therapy Designation and PRIME Designation for Higher Risk MDS

Best Relative Change From Baseline

Registrational trials are in progress

--Sallman ASH 2020

Preliminary Median Overall Survival Is Encouraging in Both TP53 Wild-Type and Mutant 1L AML Patients

- The median OS is 18.9 months in TP53 wild-type patients and 12.9 months in TP53-mutant patients
- This initial median OS data may compare favorably to venetoclax + hypomethylating agent combinations (14.7-17.5 mo in all-comers,^{1,3} 5.2–7.2 mo in patients who are *TP53* mutant^{2,3})
- Additional patients and longer follow-up are needed to further characterize the survival benefit

NE, not evaluable.

1. DiNardo CD, et al. N Eng J Med. 2020;383(7):617-629. 2. Kim K, et al. Poster presented at: 62nd ASH Annual Meeting; December 5-8, 2020 (virtual). 3. DiNardo CD, et al. Blood. 2019;133(1):7-17.

S American Society *of* Hematology

--Sallman ASH 2020

Broad Magrolimab Development Plan in Hematological Malignancies and Solid Tumor Indicaitons

	ACTIVE PROGRAMS				
	Discovery	Planning	Phase 1	Phase 2	Registrational Trial
MDS	1L Higher Risk MDS: Magrolimab 2L Low Risk MDS: Magrolimab +	+ Azacitidine Azacitidine			Ongoing
	R/R MDS: Magrolimab + Azacitia				In planning
	1L TP53 Mutant Unfit AML: Mag	rolimab + Azacitidine			
٦	R/R Unitt AML. Magrollmab + Az	ucitiume			
A	AMI Study #1				
	AML Study #2				
	3L DLBCL: Magrolimab + Rituxim	ab			
HN	2L SCT Ineligible DLBCL: Magrolin	nab + Rituximab + Gem/Ox			
	NHL Study				
5					
Σ	MM Study				
ς.	Solid Tumor Study #1				
nor Dor	Solid Tumor Study #2				
n ⁻ u	Solid Tumor Study #3				
	Solid Tumor Study #4		1		

AML: acute myeloid leukemia; CRC: colorectal cancer; DLBCL: diffuse large B-cell lymphoma; Gem: gemcitabine; MDS: myelodysplastic syndrome; MM: multiple myeloma; NHL: non-Hodgkin's lymphoma;; R/R: relapsed/refractory; SCT: stem cell transplant

TTI-621 (Pfizer*) CD47-Binding Fusion Protein

o TTI-621 is a wild type SIRPα-IgG1 Fc fusion protein

- Binds to human CD47 with micromolar affinity (Petrova Clin Cancer Res 2017)
- IgG1 provides a potent prophagocytic signal via Fc-gamma receptors on effector cells
- Minimal binding to human RBCs, but it does bind to human leukocytes and platelets
- Ph 1 trial of weekly intravenous TTI-621 initiated Jan 2016 (NCT02663518)
 - AEs include mild to moderate infusion related reactions but no clinically significant anemia
 - DLT thrombocytopenia initially noted at 0.3 mg/kg, but later dose intensification allows for higher dosing, currently exploring 2.0 mg/kg
 - Revised DLT definition for thrombocytopenia
 - Intratumor injection also explored

622 & 621: TWO NOVEL CD47 BLOCKING AGENTS WITH BUILT-IN ACTIVATING SIGNALS

--Trillium Corp Presentation June 2021

621 (IV) HAS GOOD TOLERABILITY AND MANAGEABLE TOXICITIES

Related Adverse Events n (%)	Part n=	s 1-3 218	Par n=	rt 4 24	Total n=242	Related Adverse Events ≥Gr3	KEY POINTS
Grade	1-2	3-4	1-2	3-4			
IRR	87 (40)	6 (3)	9 (38)	3 (13)	105 (43)	Part 1-3 Part 4	Acceptable tolerability with
Thrombocytopenia	17 (8)	48 (22)	2 (8)	<mark>6 (25</mark>)	73 (30)	Part 1-3 Part 4	transient and manageable toxicities
Chills	48 (22)		2 (8)		50 (21)	Part 1-3 Part 4	IBBs occur mostly at first dose and
Fatigue	34 (16)	2 (1)	2 (8)		38 (16)	Part 1-3 Part 4	are very manageable with
Anemia	10 (5)	20 (9)			30 (12)	Part 1-3 Part 4	prophylactic treatment
Pyrexia	26 (12)		1 (4)		27 (11)	Part 1-3 Part 4	No dose dependent increase in
Nausea	23 (11)		2 (8)		25 (10)	Part 1-3 Part 4	frequency of thrombocytopenia, but
Diarrhea	19 (9)	1 (0.5)	2 (8)		22 (9)	Part 1-3 Part 4	drop without clinical bleeding
Neutropenia	4 (2)	15 (7)	3 (13)		22 (9)	Part 1-3	Mild chills and fever reflective of
Headache	16 (7)		3 (13)		19 (8)	Part 1-3 Part 4	active effector function
Vomiting	14 (6)	1 (0.5)	1 (4)		16 (7)	Part 1-3 Part 4	All other related AEs occurred in
Hypotension	10 (5)	10 (5) 2 (0.9) 12 (5) Par		Part 1-3 Part 4	<5% of patients		
							Parts 1-3: Dose escalation/initial

10 20 30 40 50 60

PATIENTS (%)

IRR = Infusion Related Reaction; Based on data in clinical database as of 12 April 2021; data are subject to change Part 4: Dose optimization with redefined platelet DLT grading

expansion

621 (IV) MONOTHERAPY ACTIVITY OBSERVED IN T AND B-CELL LYMPHOMA INDICATIONS

Indication	Response evaluable n	CR	PR	OR
CTCL	62	2 (3%)	10 (16%)	12 (19%)
PTCL	22	2 (9%)	2 (9%)	4 (18%)
DLBCL	7	1 (14%)	1 (14%)	2 (29%)

Based on the data in clinical database as of 12 Apr 2021; data are subject to change prior to final database lock

622 MONOTHERAPY ACTIVITY OBSERVED IN MULTIPLE LYMPHOMA INDICATIONS, WITH 33% ORR

At doses 0.8-18 mg/kg

Indication	Response evaluable N	CR	PR	OR
DLBCL	11	1 (9%)	2 (18%)	3 (27%)
PTCL	6	0 (0%)	2 (33%)	2 (33%)
CTCL	4	1 (25%)	2 (50%)	3 (75%)
FL	3	0 (0%)	1 (33%)	1 (33%)
HL	3	0 (0%)	0 (0%)	0 (0%)
TOTAL	27	2 (7%)	7 (26%)	9 (33%)

Based on the data in clinical database as of 12 Apr 2021; data are subject to change prior to final database lock

IN R/R DLBCL, 622 & 621 OBSERVED COMPARABLE MONOTX ORRs AS MAGRO & ALX148 IN COMBINATION WITH RITUXAN

No head-to-head data*

*These trials were not designed to be head-to-head, so direct comparisons are not possible

PIPELINE: INITIATING P1B/2 STUDIES IN NINE SETTINGS

		COMBINATION		STAGE OF D	EVELOPMENT		STATUS	
PROGRAM	INDICATION	AGENT	PRECLINICAL	IND EARLY-STAGE I Enabling Clinical		LATE-STAGE CLINICAL		
	MM	Carfilzomib+dex					Trillium	First patient dosed
	AML p53 mut.	Azacitidine					Trillium	Enrolling
622	AML unfit	Aza+Ven					Trillium	Enrolling
022	DLBCL (IST)	PD-1					Mayo Clinic	Finalizing protocol
	Ovarian	Chemotx					Trillium	Design stage*
	[Solid tumor #2]	[TBA]					Trillium	Design stage*
	PTCL	[Monotx]					Trillium	P2 design stage*
621	DLBCL (IST)	PD-1					Mayo Clinic	Finalizing protocol
	Leiomyosarcoma	Doxorubicin					Trillium	Protocol submitted to FDA

Additional • 622 Q2/3W dose escalation study in lymphomas (enrolling)

studies:

621 Q2/3W dose escalation study in CTCL (enrolling)

• 622 & 621 in combination with daratumumab P1b/2 IST in multiple myeloma (finalizing protocol); Memorial Sloan Kettering

*Study design to be announced later this year

Abbreviations: Aza+Ven – Azacitidine + Venetoclax; AML – Acute Myeloid Leukemia; DLBCL – Diffuse Large B-Cell Lymphoma; IST – Investigator-Sponsored Trial; MM – Multiple Myeloma; PTCL – Peripheral T-Cell Lymphoma; TBA - To Be Announced

--Trillium Corp Presentation April 2021

TTI-621 and TTI-622 SIRPα-Fc Fusion Proteins Targeting CD47

- Activity observed as monotherapy in CTCL/PTCL and as monotherapy and in combination with rituximab in DLBCL
 - Monotherapy activity of the Fc-enhanced TTI-621 is not surprising, but early data with Fc-attenuated TTI-622 is interesting
- TTI-621 Initial dose limiting thrombocytopenia appears to be managed by dose adjustments
 - Now exploring dosing of 2.0 mg/kg
 - Minimal anemia: Gr 3+ anemia 9% (20/214 in early dose escalation studies)
- TTI-622, SIRPα-IgG4 Fc fusion protein also in clinical trials
 - Minimizes ADCC activity to decreased thrombocytopenia
 - Clinical activity differentiation from TTI-621 is unclear, but broad development plan in progress in hematological malignancies and solid tumors
 - Behind magrolimab in hrMDS, AML, but (perhaps) not in multiple myeloma

Evorpacept (ALX148; ALX Oncology): A Unique High Affinity SIRPα Fusion Protein

- $\circ\,$ Potently and selectively binds CD47 to blocks its interaction with SIRPa
- Picomolar binding affinity for CD47 is greater than wild-type SIRPα constructs (i.e., TTI-621/622)
- Molecular weight is half the size of a typical antibody allowing higher molar concentrations to be delivered to tumor
- Fc domain is modified to eliminate binding to all Fc gamma receptors minimizing toxicity
- Fc domain retains binding to neonatal Fc receptor for pharmacokinetic half-life extension

--Lakhani et al, SITC 2018

TARGETING CD47 AS CHECKPOINT: ALX ONCOLOGY'S APPROACH

and block CD47-SIRP α interaction

High dose allows full blockade of CD47 and maximizes activity of combo drug

Monotherapy activity expected to be modest, predominantly in combination development

--ALX Oncology Corp Presentation Jan 2021

7

Cell Reports

Dual Targeting of Innate and Adaptive Checkpoints on Tumor Cells Limits Immune Evasion

Xiaojuan Liu,^{1,2,5} Longchao Liu,^{3,5} Zhenhua Ren,³ Kaiting Yang,¹ Hairong Xu,¹ Yan Luan,⁴ Kai Fu,⁴ Jingya Guo,¹ Hua Peng,¹ Mingzhao Zhu,^{1,2,*} and Yang-Xin Fu^{1,3,6,*}

Dual Targeting of CD47/SIRPα and T-Cell Immune Checkpoints shows enhanced antitumor activity

--Liu Cell Reports 2018

30

ALX148 DEMONSTRATES CONSISTENT TOLERABILITY PROFILE

Treatment related adverse events*	ALX148 + Herceptin + Cyramza + chemo (N=14)		ALX148 + (N=	ALX148 + Herceptin (N=30)		ALX148 + Keytruda + chemo (N=5)		Keytruda 52)	ALX148 + Rituxan (N=33)	
	Total n (%)	≥Grade 3	Total n (%)	≥Grade 3	Total n (%)	≥Grade 3	Total n (%)	≥Grade 3	Total n (%)	≥Grade 3
Fatigue	2 (14.0%)	-	9 (30.0%)	-	-	-	6 (11.5%)	-	4 (12.1%)	-
Rash	3 (21.0%)	-	-	-	-	-	5 (9.6%)	-	8 (24.2%)	-
AST increased	-	-	-	-		-	9 (17 3%)	-	_	-
Platelets decreased	-	-	5 (16.7%)	2 (6.7%)	-	-	4 (7.7%)	2 (3.8%)	-	-
ALT increased	-	-	-	-	-	-	7 (13.5%)	1 (1.9%)	-	-
Pruritus	2 (14.0%)	-	3 (10.0%)	-		-	5 (9.6%)	-	2 (6.1%)	-
Pyrexia	-	-	3 (10.0%)	-	-	-	3 (5.8%)	-	-	-
Decreased appetite		-	3 (10.0%)	-			2 (2.8%)	-	_	
Anemia	-	-	2 (6.7%)	-	-	-	5 (9.6%)	1 (1.9%)	2 (6.1%)	1 (3.0%)
Infusion reaction	-	-		-	-	-	4 (7.7%)		-	-
Neutropenia / Neutrophil count decr	-	-	2 (6.7%)	2 (6.7%)	10.	-	2 (3.8%)	1 (1.9%)	2 (6.1%)	2 (6.1%)
Nausea	-	-	2 (6.7%)	-	-	-	2 (3.8%)	-	2 (6.1%)	-
Alkaline phosphatase incr	-	-	-	-	-	-	3 (5.8%)	-	-	-
Arthralgia	-	-	-	-	-	-	3 (5.8%)	-	-	-
WBC decreased	-	-	-	-	-	-	3 (5.8%)	-	-	-
Myalgia	-	-	-	-	-	-	2 (3.8%)	-	2 (6.1%)	-
Diarrhea	3 (21.0%)	-	-	-	-	-	-	-	-	-
Urticaria	3 (21.0%)	-	-	-	-	-	-	-	-	-

Treatment related adverse events occurring in ≥2 subjects in all histologies at 10 & 15 mg/kg QW.

*Data cut off: April 1, 2020 for combination cohorts of ALX148 plus Keytruda and Herceptin; October 1, 2020 for combination cohorts of ALX148 plus Rituxan, Keytruda and chemotherapy (5FU, platinum) and Herceptin and chemotherapy (ramucirumab, paclitaxel).

Tolerability profile enables broad combination potential

--ALX Oncology Corp Presentation Jan 2021

CLINICAL ACTIVITY OF ALX148 + TRASTUZUMAB + RAMUCIRUMAB + PACLITAXEL IN PATIENTS WITH GC

CLINICAL ACTIVITY OF ALX148 COMBINATIONS IN RESPONSE EVALUABLE PATIENTS WITH ≥2L HER2 POSITIVE GC CANCER

Population	N (EVAL)	ORR (%) [95% CI]	DOR (m) [95% Cl]	PFS (m) [95% Cl]	PFS rate at 6 m	OS (m) [95% Cl]	0S rate at 12 m	Follow up (m) [95% Cl]
≥2L Gastric (ALX-10 mg/kg or 15 mg/kg + tras/ram/pac)	18	72.2 [49.1% ; 87.5%]	NR	9.1 [3.8 ; NR]	74.5%	NR	75.8%	10.5 [4.8 ; 12.5]
Gastric (ALX-10 mg/kg + TRP)	3	66.7 [20.8% ; 93.9%]	NR	NR	100%	NR	66.7%	14.3 [12.0;NR]
Gastric (ALX-15 mg/kg + TRP)	15	73.3 [48.1% ; 89.1%]	NR	NR	68.3%	NR	80.8%	9.4 [4.2 ; 12.5]
≥2L Gastric tras/ram/paclitaxel Rha et al ASCO 2021 ³	50	52	5.1	7.4	-	13.6	-	22.9
3L Gastric Enhertu DESTINY 01 ¹	126	41	11.3	5.6	43%	12.5	52%	
≥2L Gastric ramucirumab/paclitaxel RAINBOW-ASIA Region3 ²	109	34	10.	5.5		12.1		7.9
≥2L Gastric (ALX-10 mg/kg + tras)	19	21.1 [8.5% ; 43.3%]	8.7 [5.6; NR]	2.2 [1.9 ; 5.5]	16.7%	8.1 [3.4 ; 12.6]	38.2%	27.0 [NR]
≥3L Gastric Irinotecan or Paclitaxel DESTINY 01ControlArm ¹	62	11.3	3.9	3.5	21%	8.4	29%	

¹Enhertu product insert, and Shitara et al, NEJM June 18, 2020; ²Wilke et al, Lancet October 2014; ³ Rha et al #4063 ASCO 2021

ESMO-GI 2021 17

--ALX Oncology Corp Presentation Jan 2021

ALX PIPELINE

Indication		cation	Combination Agent	Discovery	IND Enabling	Phase 1	Phase 2	Phase 3	Fast Track	Collaboration Partner
		HNSCC	Keytruda (ASPEN-03)							
ıdies	IORS	Cell Carcinoma	Keytruda + 5FU + Platinum (ASPEN-04)							S MERCK
on Stu	D TUN	GC Gastric/Gastroesophageal Junction Cancer	Herceptin (ASPEN-01)							
oinatio	SOLI		Herceptin + Cyramza + Paclitaxel (ASPEN-06)							Lilly
t Com	Breast Cancer		Zanidatamab							zyme works
pa cep'	JGY	MDS Myelodysplastic Syndromes	Azacitidine (ASPEN-02)							
Evor	NATOLO	AML Acute Myeloid Leukemia	Azacitidine + Venclexta (ASPEN-05)							
	HEN	NHL Non-Hodgkin's Lymphoma	Rituximab (ASPEN-01)							
ALTA- 002 *		Advanced Cancer								TALLAC

*SIRPa Toll-like receptor agonist antibody conjugate (TRAAC)

--ALX Oncology Corp Presentation Jan 2021

4

Other Agents With Emerging Clinical Data

o Lemzoparlimab (I-Mab/Abbvie)

- Anti-CD47 IgG4 mAb targeting huCD47 but spares RBCs
- Preliminary Clinical Data (Mehta ASH 2021) from Ph 1 study in solid tumors/lymphoma
 - Minimal cytopenias
 - Activity in r/r NHL with rituximab: ORR 57% (3 CR + 1 PR in 7 patients; DLBCL + Indolent lymphoma)

Letaplimab (IBI-188; Innovent)

- Anti-CD47 IgG4 mAb
- Preliminary Clinical Data (Company Presentation January 2022) from Ph 1b study with azacytidine in hr MDS patients
 - Activity in 12 patients with hrMDS: ORR 83.3% (2 CR, 2 marrow CR+Heme Improvement, 2 HI, 4 mCR)

Other CD47/SIRPa Targeting Agents With Emerging Clinical Data

• Other Anti-CD47 Agents in Active Clinical Development (excluding bispecific molecules)

- AO176 (Arch Oncology)
- ZL-1201 (Zai Labs)
- IMC-002 (ImmuneOncia Therapeutics)
- Ligufalimab (AK117; Akeso)
- Anti-CD47 Agents Presumed to Not Be in Active Development
 - CC-90002 (Celegene/BMS): IgG4 anti-CD47 mAb
 - SRF231 (Surface Onc): IgG4 anti-CD47 mAb
 - TI-061 (Arch Onc): IgG4 anti-CD47 mAb
- Anti-SIRPa Agents in Development
 - CC-95251 (BMS)
 - GSI-189 (Gilead)

CD47 Targeting Agents in Clinical Development

Sponsor	Gilead (acquired Forty Seven)	Pfizer (acquired Trillium Therapeutics)		ALX Oncology	I-Mab/ AbbVie	Innovent	Arch Oncology	Zai Lab	ImmuneOncia Therapeutics
Compound name	Magrolimab (Hu5F9-G4)	TTI-621	TTI-622	Evorpacept (ALX148)	Lemzoparlimab (TJ011133 or TJC4)	Letaplimab (IBI-188)	AO-176	ZL-1201	IMC-002
Type of molecule	mAb	WT SIRPα fusion protein	WT SIRPα fusion protein	High affinity SIRPα fusion protein	mAb	mAb	mAb	mAb	mAb
Class	IgG4	IgG1	IgG4	Inactive Fc	IgG4	IgG4	IgG2	IgG4	N/A
Clinical start date	August 2014	January 2016	May 2018	February 2017	May 2019	January 2019	February 2019	June 2020	June 2020
Study stage (highest)	Ph 3	Ph 1b/2	Ph 1b/2	Ph 2	Ph 1/2	Ph 2 with Ph 3 planned in 1H 2022	Ph 1/2	Ph 1	Ph 1
Indications	MDS, AML Heme, solid tumors	DLBCL, PTCL, Leiomyo- sarcoma	Lymphoma, myeloma, AML, MDS, Ovarian, Solid tumors	HNSCC, Gastric, Breast, MDS, AML, NHL	MDS & AML (China & US), NHL, Myeloma, and solid tumors (WW)	MDS, AML, solid tumor, lymphoma	Solid tumor Multiple myeloma	Lymphoma, solid tumor	Solid tumors, lymphomas

Conclusions

- Targeting CD47, a dominant "don't eat me" signal for macrophages, is a promising novel strategy for treating cancer, especially hematological malignancies
 - Now a validated therapeutic target, although no approved agents in this class as of yet

• CD47 blockade can be well tolerated with an acceptable safety profile

- Activity observed both as monotherapy and in combinations with antitumor antibodies, checkpoint inhibitors, and chemotherapeutics that can augment prophagocytic signals
 - Strongest signals emerging in combination regimens
- Promising clinical activity in patients with hrMDS, AML, refractory NHL, CTCL/PTCL and solid tumors
- Harnessing the power of the innate immune system and first responder cells such as macrophages has the potential to extend the impact of cancer immunotherapies