

In-depth education focused on your specialty. www.sitcancer.org/aci | #LearnACI

T cell immunotherapies for metastatic solid cancer

Simon Turcotte MD, MSc, FRCSC

Pancreatic, Hepatobiliary and Liver Transplant Surgeon and Scientist Head, cell and gene therapy clinical research program Co-director, HPB fellowship program University of Montreal Hospital Center (CHUM) Canada

© 2024 Society for Immunotherapy of Cancer

Disclosures

- Research grants:
 - Iovance Biotherapeutics, Turnstone Biologics, Alethia Bio, BMS
- Scientific advisory:
 - Turnstone Biologics
- PI of clinical studies sponsored by :
 - GSK, Iovance Biotherapeutics, Turstone Biologics, Triumvira Immunologics
- I will be discussing FDA approved and non-FDA approved indications during my presentation.

© 2024 Society for Immunotherapy of Cancer

Pre-Test Question 1

For metastatic solid cancer, what type of T cell immunotherapy has generally been associated with the highest and most durable responses?

- A. CAR (chimeric antigen receptor) -engineered T cells
- B. TCR (T-cell receptor) -engineered T cells
- C. TIL (Tumor infiltrating T lymphocytes)
- D. TAC (T cell antigen coupler) –engineered T cells

© 2024 Society for Immunotherapy of Cancer

www.sitcancer.org/aci | #LearnACI

Pre-Test Question 2

Among the following severe complications, which one is more frequently seen with TIL (Tumor infiltrating T lymphocytes) immunotherapy?

- A. Cytokine-release syndrome
- B. Bacteremia and infections
- C. Auto-immune toxicities
- D. Ventilation support for hypoxia

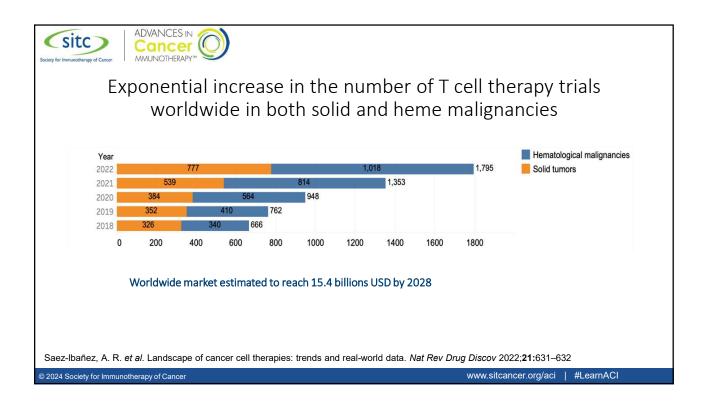
© 2024 Society for Immunotherapy of Cancer

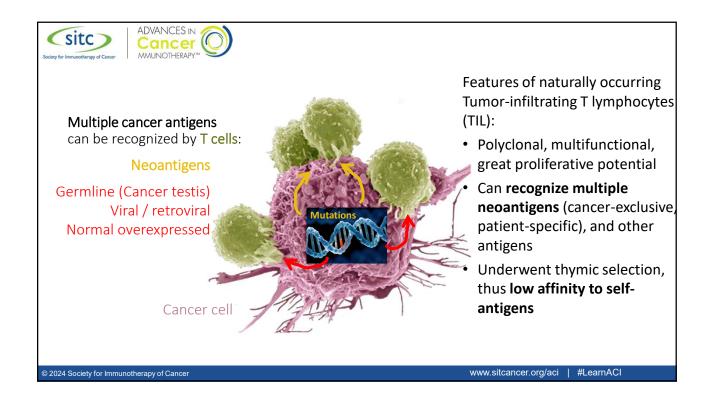
Presentation outline

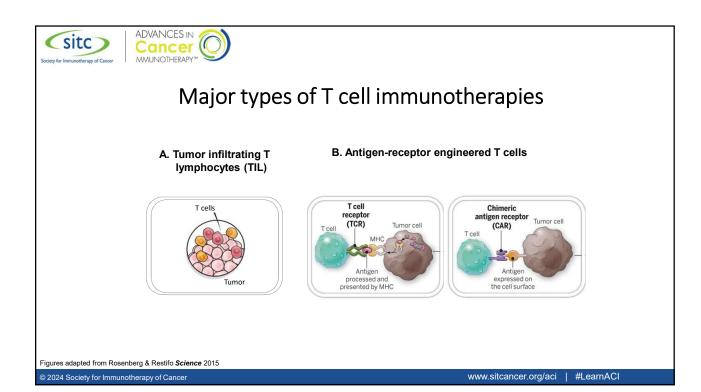
- 1. General introduction to T cell immunotherapy
- 2. Overview of TIL (tumor-infiltrating T lymphocyte) immunotherapy
- 3. Overview of gene-engineered (CAR and TCR) immunotherapy
- 4. Take home messages

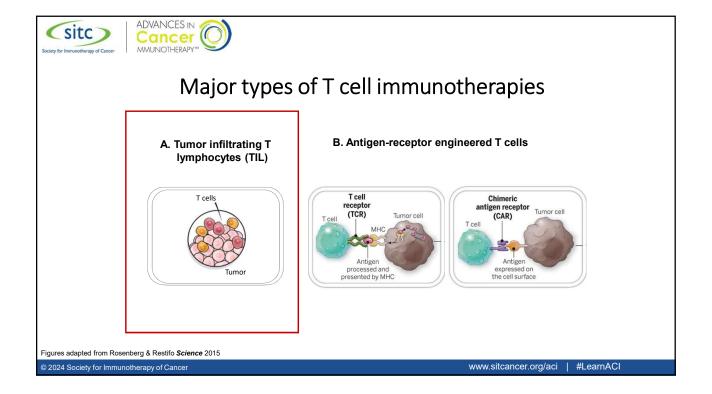
© 2024 Society for Immunotherapy of Cancer

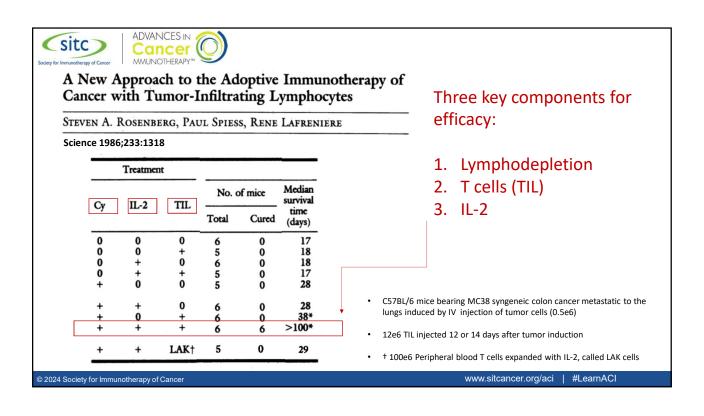
www.sitcancer.org/aci | #LearnACI

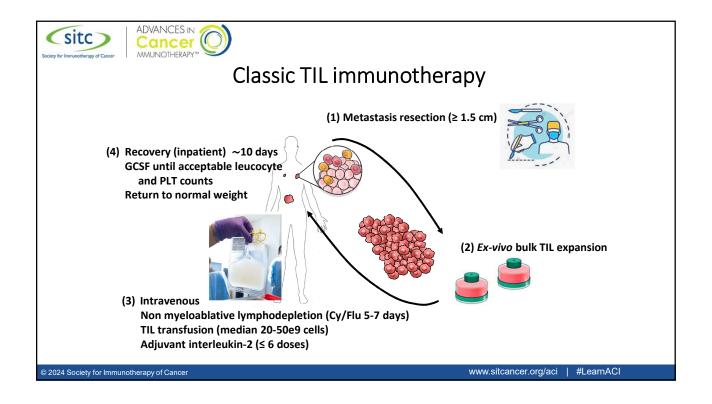


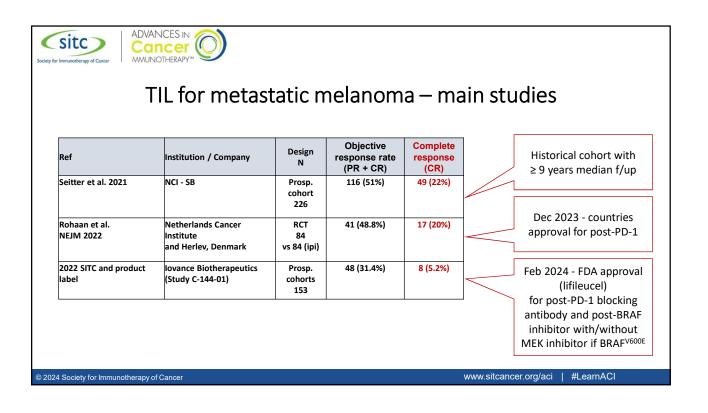

T cell immunotherapy: transfusion of autologous T cells capable of recognizing and destroying cancer cells

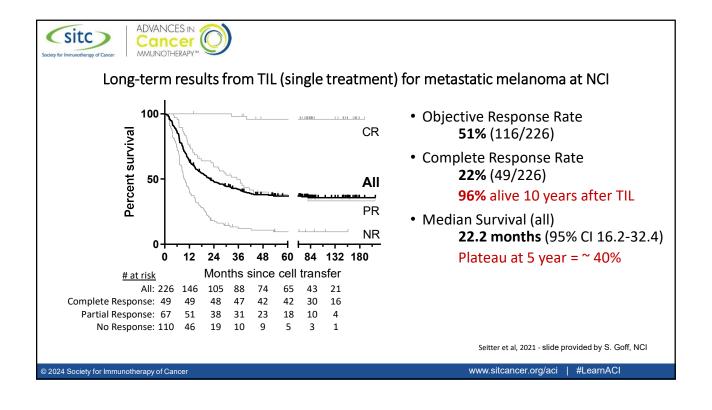


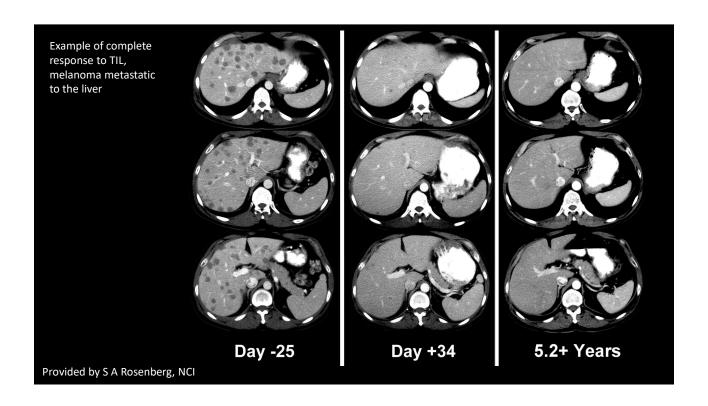

Walter and Eliza Hall Institute, 23-May-2016 https://www.eurekalert.org/pub_releases/2016-05/waeh

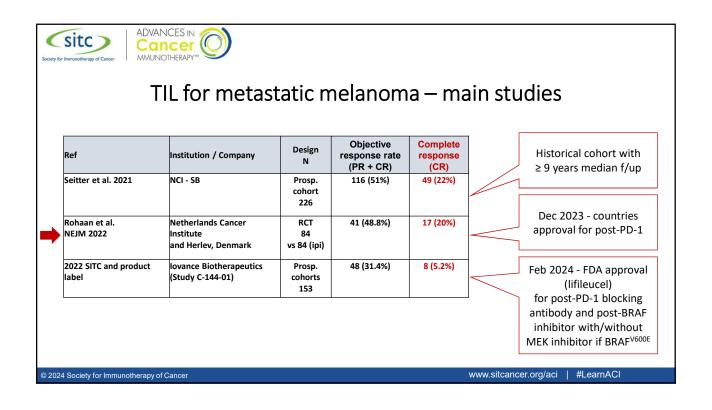

2024 Society for Immunotherapy of Cancer

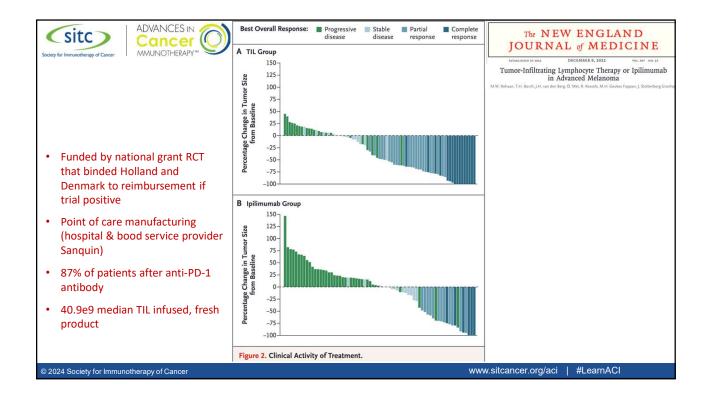


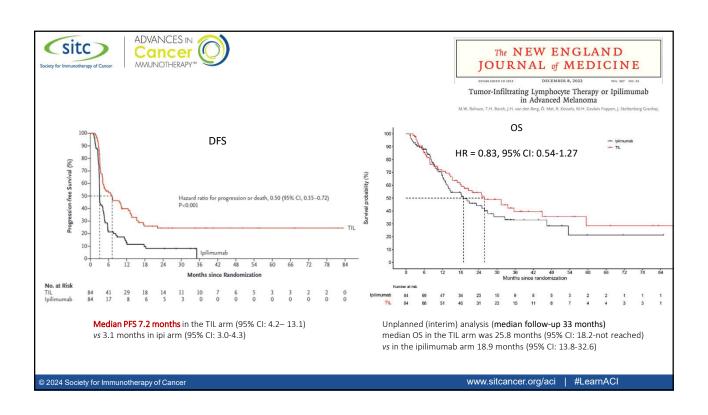


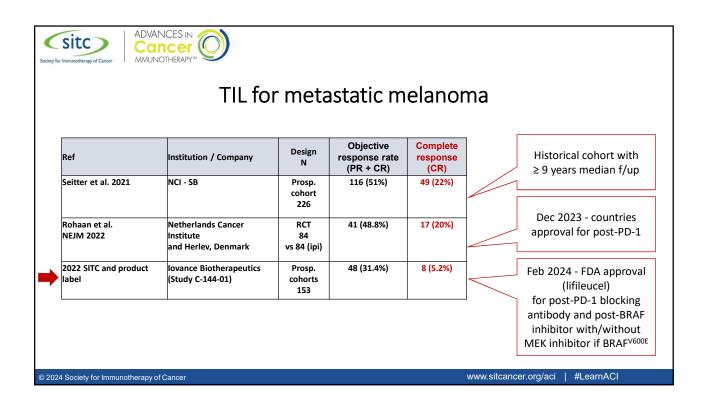


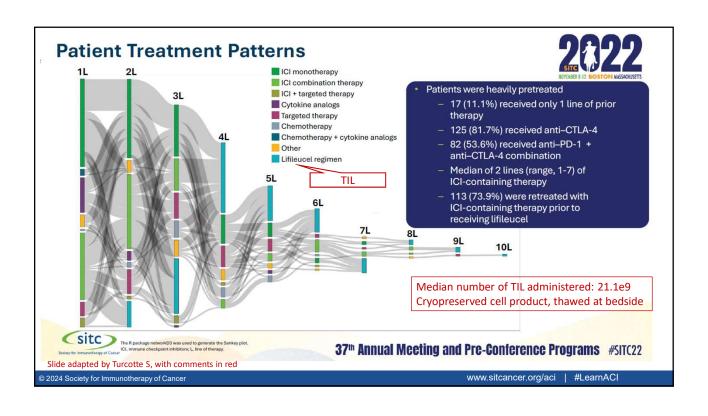


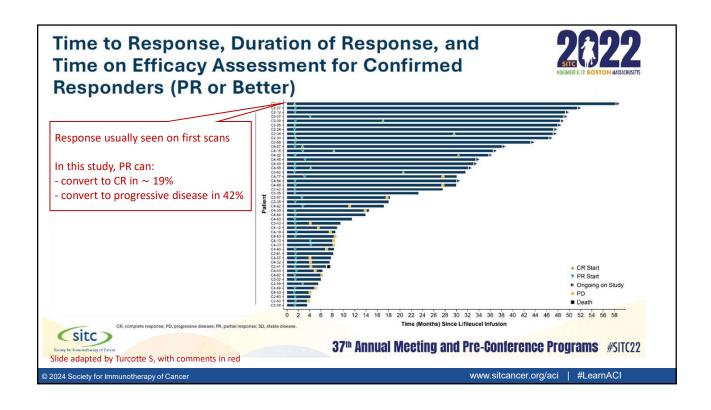


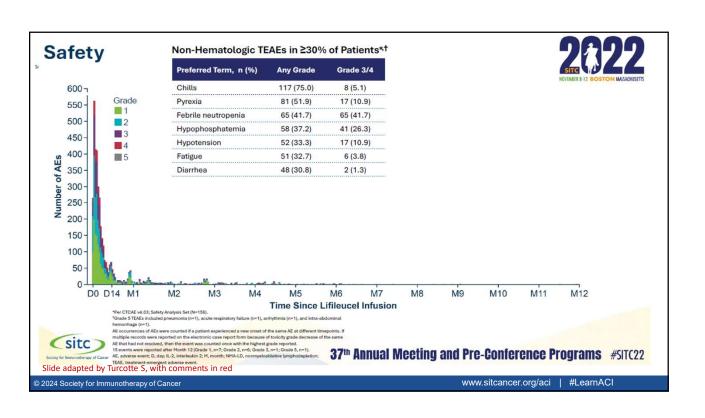


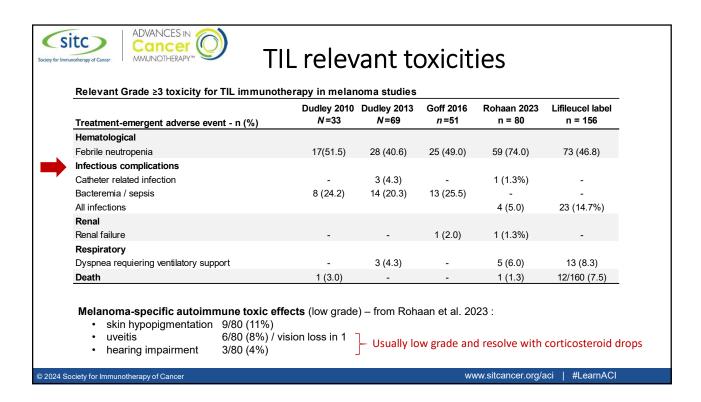


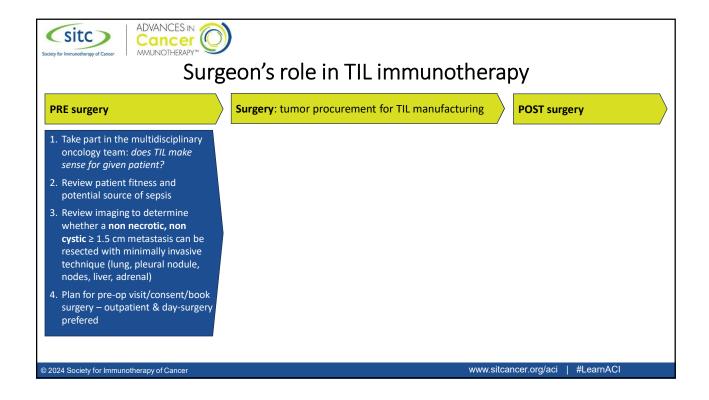












Surgeon's role in TIL immunotherapy

PRE surgery

1. Take part in the multidisciplinary oncology team: does TIL make sense for given patient?

- 2. Review patient fitness and potential source of sepsis
- 3. Review imaging to determine whether a non necrotic, non cystic ≥ 1.5 cm metastasis can be resected with minimally invasive technique (lung, pleural nodule, nodes, liver, adrenal)
- 4. Plan for pre-op visit/consent/book surgery - outpatient & day-surgery prefered

Surgery: tumor procurement for TIL manufacturing

1. Ensure OR staff trained and aware of specific procedures

- 2. Review shipment instructions (forms, labels, containers, transport media, transport container on site, waybill)
- 3. Perform metastasectomy: aim for minimal margins (enucleation, R1 okay) and minimize normal tissue injury
- 4. Perform back table tissue prosection:
 - · No sterility breach!
 - Trim off normal tissue
 - Send small piece for immediate frozen section to confirm cancer cellularity, and standard FFPE
 - Bulk of remaining tumor, cut in smaller piece as indicated, placed in transport media in pre-identified container
- 5. Verify shipment logistics and sign forms
 - Parafilm sealed container in double layer plastic bags
 - · Temp-conditioned transport box & associated waybill

© 2024 Society for Immunotherapy of Cancer

www.sitcancer.org/aci |

#LearnACI

Surgeon's role in TIL immunotherapy

PRE surgery

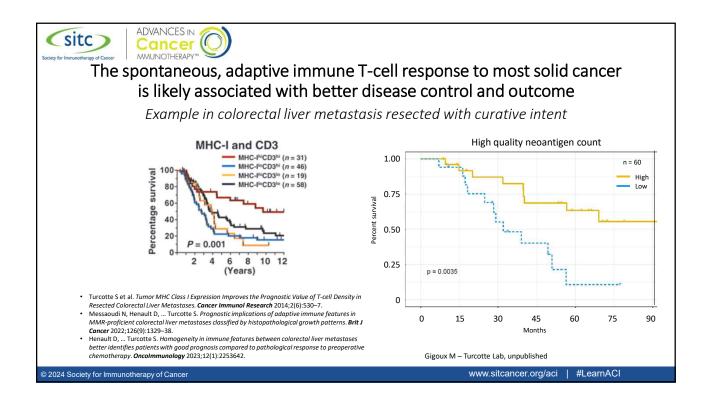
- 1. Take part in the multidisciplinary oncology team: does TIL make sense for given patient?
- 2. Review patient fitness and potential source of sepsis
- 3. Review imaging to determine whether a non necrotic, non cystic ≥ 1.5 cm metastasis can be resected with minimally invasive technique (lung, pleural nodule, nodes, liver, adrenal)
- 4. Plan for pre-op visit/consent/book surgery - outpatient & day-surgery prefered

Surgery: tumor procurement for TIL manufacturing

- 1. Ensure OR staff trained and aware of specific procedures
- 2. Review shipment instructions (forms, labels, containers, transport media, transport container on site, waybill)
- 3. Perform metastasectomy: aim for minimal margins (enucleation, R1 okay) and minimize normal tissue injury
- 4. Perform back table tissue prosection:
 - · No sterility breach!
 - · Trim off normal tissue
 - Send small piece for immediate frozen section to confirm cancer cellularity, and standard FFPE
 - · Bulk of remaining tumor, cut in smaller piece as indicated, placed in transport media in pre-identified container
- 5. Verify shipment logistics and sign forms
 - · Parafilm sealed container in double layer plastic bags
 - · Temp-conditioned transport box & associated waybill

POST surgery

POST surgery


- 1. Two weeks post-op visit: recovery and wound healing
- 2. Communicate with cell therapy team to plan for lymphodepletion
- 3. Review final path report

© 2024 Society for Immunotherapy of Cancer

And for non-melanoma cancers?

© 2024 Society for Immunotherapy of Cancer

Selected promising results with classic TIL in non-melanoma

Indication	First author		Institution / Company	N	OR	(%)	CR	(%)	2y OS (%)
Cervical Late stage	Stevanović	2015	NCI-SB	18	5	28%	2	11%	-
Cervival Late stage	Jazaeri	2019	lovance	27	12	44%	3	11%	-
NSCLC 2nd line after progression xPD-1	Creelan	-	Moffitt Cancer Center	16	3/13	23%	1/13	4%	38%
NSCLC After 2 prior lines	Schoenfeld	2021 SITC	lovance	28	6	21%	1	3.6%	-

89

29%

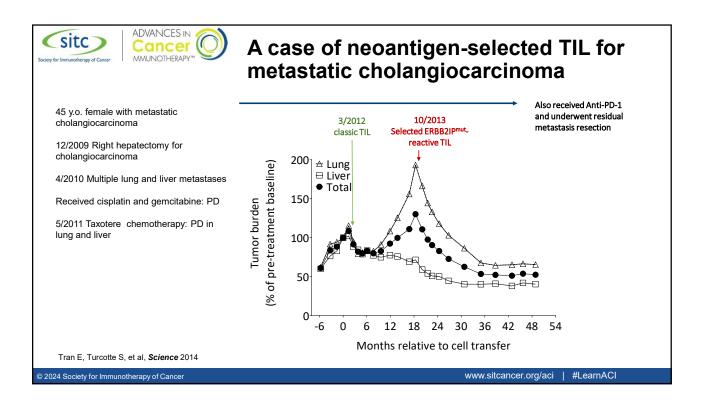
Table 1 | Selected TIL candidates in and approaching the clinic

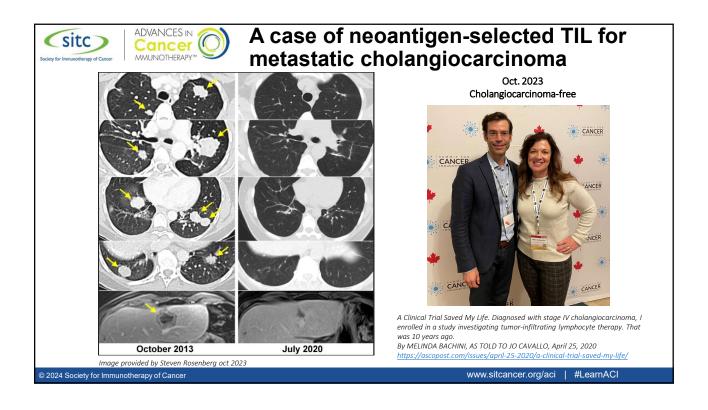
9%

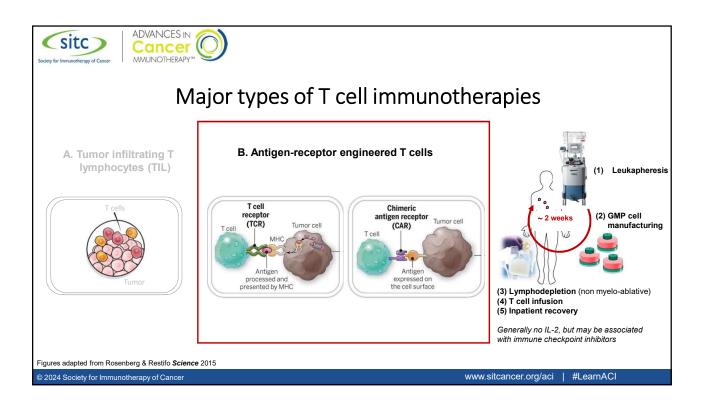
© 2024 Society for Immunotherapy of Cancer

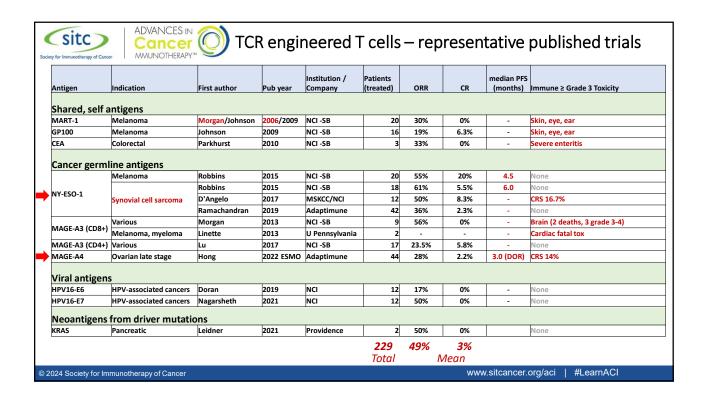
www.sitcancer.org/aci | #LearnACI

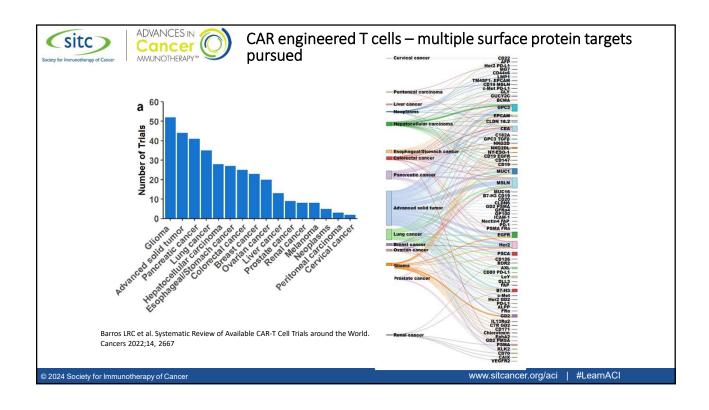
Means




Next gen TIL in active development


Candidate	Sponsor	Properties	Lead indication	Trial status
Lifileucel/LN-144	lovance	TIL	Melanoma	BLA
TILs	NKI	TIL	Melanoma	MAA planned
LN-145	lovance	TIL	NSCLC, HNSCC	II
ATLO01	Achilles	Neoantigen-reactive TILs	Melanoma, NSCLC	1/11
NEXTGEN-TIL	VHIO	Neoantigen-reactive TILs	pantigen-reactive TILs Solid tumours	
TIDAL-01	Turnstone	Neoantigen-reactive TILs	Breast, CRC, uveal melanoma	1
BNT221	BioNTech	Neoantigen-reactive T cells from peripheral blood	Melanoma	Ĭ
LN-145-S1	lovance	PD1-selected TIL	Melanoma, HNSCC II	
IOV-4001	lovance	PD1-inactivated engineered TIL Melanoma, NSCLC I		1/11
KSQ-001EX eTIL	KSQ	SOCS1-inactivated engineered TIL	Solid cancers	I to start
KSQ-004EX eTIL	KSQ	Regnase-1/SOCS1 dual-inactivated engineered TIL	Solid cancers	Preclinical
CISH-inactivated TILs	Intima	CISH-inactivated neoantigen- reactive engineered TILs	Solid cancers	1/11
ITIL-306	InstilBio	Anti-folate receptor alpha CoStAR-boosted engineered TIL	Ovarian, NSCLC and RCC	Û
OBX-115	Obsidian	IL15-boosted engineered TIL (IL2 free)	Melanoma	
iTCR	NCI	TIL-derived TCRs engineered into peripheral T cells	Metastatic cancer	П
LYL-845	Lyell	Epigenetically reprogrammed TILs	Melanoma, NSCLC, CRC	1
AGX-148 plus PH-762	AgonOx/ Phio	CD8-positive TILs plus PD-1 silencing siRNA	Solid tumours	Ť


Mullard A. Tumour-infiltrating lymphocyte cancer therapy nears FDA finish line. Nat Rev Drug Discov 2024;23(1):3-7.


© 2024 Society for Immunotherapy of Cancer

Antigen	Indication	First author	Pub year	Institution / Company	Patients (treated)	ORR	CR	median PFS (months)	Toxicity
	Breast	Morgan	2010	NCI -SB	1	-	-	-	Cardiac, CRS (death)
HER-2	Sarcomas	Ahmed	2015	Frankfurt, Germany	19	0	0	-	No significant cardiac tox
	Glioblastoma	Ahmed	2017	Frankfurt, Germany	17	1	0	-	
	Biliary and pancreatic	Feng	2018	Beijing	11	1	0	4.8	
Mesothelin	Malignant pleural disease (lung, berast, mesothelioma)	Adusumilli	2021	MSKCC	27	10.5% (2/19)	2 PET CR	-	
	Pancreatic	Beatty	2018	U Pennsylvania	6	0	0	best 5.4	no CRS
	mesothelioma, ovarian, pancreatic	Haas	2019	U Pennsylvania	15	0	0	2.1	no on-target tox (pleuritis, pericarditis, or peritonitis)
PSMA + dominant-neg TGF-B receptor	Prostate	Narayan	2022	U Pennsylvania	13	0*	0	-	38% CRS > grade 2
GD2	H3K27M-mutated diffuse midline gliomas	Majzner	2022	Stanford	4	3/4 « radiol resp »	0	-	On-target neurotox
CLDN18.2	Mainly gastric	Changsong	2022	Peking University Cancer Hospital	37	48.6%	0%	3.7	95% CRS all < grade 3, Jaundice 22%
CLDN6 +mRNA vaccine	Testicular (n=13) and various	Mackensen	2022 ESMO	U of Erlangen, Germany	22	33%	4.8%	-	45% CRS (grade 3 or less)

Take home messages

- 1. TIL is the first effector T cell immunotherapy to enter standard of care for metastatic solid cancer
 - Melanoma refractory to first line immunotherapy & BRAF+/- MEK inhibitors
 - Other indications likely to respond to 1st gen TIL: NSCLC and cervical cancer
- 2. Surgeons have pioneered TIL immunotherapy and play a critical role to enable patient access to this therapy
 - · Identify appropriate patients amenable to metastasectomy with low morbidity
 - Appropriate tumor procurement => key for TIL manufacturing
 - · Multiple research opportunities for developing next-gen TIL
- 3. TCR/CAR-engineered T cells likely to become standard of care for niche indications (e.g. NY-ESO TCR for synovial sarcoma)

© 2024 Society for Immunotherapy of Cancer

www.sitcancer.org/aci |

#LearnACI

Post-Test Question 1

For metastatic solid cancer, what type of T cell immunotherapy has generally been associated with the highest and most durable responses?

- A. CAR (chimeric antigen receptor) -engineered T cells
- B. TCR (T-cell receptor) -engineered T cells
- C. TIL (Tumor infiltrating T lymphocytes)
- D. TAC (T cell antigen coupler) –engineered T cells

© 2024 Society for Immunotherapy of Cancer

Post-Test Question 2

Among the following severe complications, which one is more frequently seen with TIL (Tumor infiltrating T lymphocytes) immunotherapy?

- A. Cytokine-release syndrome
- B. Bacteremia and infections
- C. Auto-immune toxicities
- D. Ventilation support for hypoxia

© 2024 Society for Immunotherapy of Cancer

www.sitcancer.org/aci |

#LearnACI

