Combination Therapy

Advances in Cancer Immunotherapy – Aug 22, 2014 Bartosz Chmielowski, MD, PhD Assistant Clinical Professor Melanoma-Sarcoma Program Division of Hematology – Medical Oncology University of California Los Angeles

Objectives

- To understand the rationale for the combination of immunotherapies with other forms of therapy
- To explore preclinical data on combination of immunotherapy and targeted therapy
- To provide updated data on the combination of anti-CTLA4 and anti-PD1 therapy
- To summarize currently ongoing clinical trials in multiple malignancies

The Basic Concept of Combination Therapy

- Concept 1: both A and B show activity
- Is A+B more efficacious than A followed by B?
- Is A+B more toxic than A followed by B?
- Concept 2: A is active, B shows minimal to no activity as a single agent
- Can B enhance the activity of A?

Possible Combinations

- Immunotherapy + targeted therapy
- Immunotherapy + immunotherapy
- Immunotherapy + chemotherapy

Modified from Ribas et al. Clinical Cancer Research 2012

BRAF inhibitors as immune sensitizing agents

• BRAF inhibitors could sensitize the immune system by:

- Increase tumor antigen and MHC expression
- Increase tumor infiltrating lymphocytes
- Improve immune effector cell function by inducing paradoxical MAPK activation on T cells
- Improve the tumor microenviroment by decreasing expression of immune suppressive cytokines and immune regulatory ligands

1.Kono M. Mol Cancer Res 2006 2. Sapkota B. Oncoimmunology 2013. 3. Boni A. Cancer Res 2010. 4. Frederick DT. Clin Cancer Res 2013. 5. Long GV. Pigment Cell Melanoma Res 2013. 6. Wilmott JS. Clin Cancer Res 2012. 7. Cooper ZA. Oncoimmunology 2013. 8. Comin-Anduix B. Clin Cancer Res 2010. 9. Koya Cancer Research 2012. 10. Sumimoto H. J Exp Med 2006. 11 Khalili JS. Clin Cancer Res 2012. 12. Yamamoto R. Cancer Sci 2009. 13. Berthon C. Cancer Immunol Immunother 2010. 14 Knight DA. J Clin Invest 2013. 15.Liu CCR 2013. 16. Gray-Schopfer VC. Cancer Res 2007. 17. Landsberg, Nature 2012.

Ribas & Wolchok, Curr Opin Immunol 2013 Hu-Lieskovan, Robert, Homet & Ribas JCO 2014

Courtesy of Dr. A. Ribas

SM1: A BRAF^{V600E}-driven melanoma syngeneic to

immunocompetent C57BL/6 mice

Goel, Haluska et al. Oncogene. 2009

Richard Koya,

MD. PhD

Courtesy of Dr. A. Ribas

Enhanced in vivo antitumor activity pmel-1 ACT + dabrafenib

and/or trametinib

Siwen Hu-Lieskovan, MD, PhD Stephen Mok

Courtesy of Dr. A. Ribas

Increased tumor infiltrating T cells pmel-1 ACT dabrafenib and/or trametinib

Liver toxicities with ipilimumab + vemurafenib phase 1 testing

 Table 1. Data for Patients with Grade 3 Elevations in Alanine Aminotransferase (ALT) and Aspartate Aminotransferase (AST) Levels While

 Receiving Combination Therapy with Vemurafenib and Ipilimumab.*

Study Cohort and Patient No.	No. of Doses of Ipilimumab before ALT–AST Elevation	Time to Onset of ALT-AST Elevation after First Dose of Ipilimumab	Treatment	Time to Resolution of ALT-AST Elevation	Toxicity Relapse with Repeated Ipilimumab
First cohort					
4	1	21 days	Glucocorticoids; vemurafenib discontinued for 5 days and then restarted with dose reduc- tion; ipilimumab permanently discontinued	4 days	NA
5	2	36 days	Glucocorticoids; vemurafenib discontinued for 4 days and then restarted with dose reduc- tion; ipilimumab continued (2 doses)	6 days	No
6†	1	21 days	Glucocorticoids; vemurafenib discontinued for 5 days and then restarted with dose reduc- tion; ipilimumab continued (1 dose)	6 days	No
8	1	19 days	Glucocorticoids; vemurafenib discontinued for 4 days and then restarted with dose reduc- tion; ipilimumab continued (1 dose)	12 days	Yes
Second cohort					
10	1	15 days	Glucocorticoids; vemurafenib discontinued for 7 days and then restarted with dose reduc- tion; ipilimumab permanently discontinued	10 days	NA
16‡	1	13 days	Vemurafenib and ipilimumab permanently dis- continued	20 days	NA

* The first cohort started with a run-in period of 1 month of single-agent vemurafenib (960 mg orally twice daily), followed by four infusions of ipilimumab (3 mg per kilogram of body weight every 3 weeks) and concurrent twice-daily doses of vemurafenib. The second cohort received a lower dose of vemurafenib (720 mg twice daily) together with the full dose of ipilimumab. NA denotes not available.

† This patient also had a grade 2 increase in the total bilirubin level.

‡This patient also had a grade 3 increase in the total bilirubin level.

Ribas A et al. N Engl J Med 2013;368:1365-1366

The NEW ENGLAND JOURNAL of MEDICINE

Courtesy of Dr. A. Ribas

Anti-PD1 Ab and targeted therapy

NCT02130466

Pembrolizumab in patients with renal cell carcinoma

- An open-label, 2 part study of **pazopanib** and/or **pembrolizumab** in treatment naïve subjects with advanced RCC. Part 1 consists of a Phase I dose escalation followed by an expansion cohort. Part 2 is a randomized 3-arm Phase II study.
- A Phase 1B, Open Label, Dose Finding Study To Evaluate Safety, Pharmacokinetics And Pharmacodynamics Of Axitinib In Combination With pembrolizumab In Patients With Advanced Renal Cell Cancer

Nivolumab in patients with renal cell carcinoma

- A Phase 1 Study of Nivolumab (BMS-936558) Plus Sunitinib, Pazopanib or Ipilimumab in Subjects With Metastatic Renal Cell Carcinoma
- A Phase 1B, Open Label, Dose Finding Study To Evaluate Safety, Pharmacokinetics And Pharmacodynamics Of Axitinib In Combination With MK-3475 In Patients With Advanced Renal Cell Cancer

Anti-PDL1 Ab and targeted therapy

MEDI4736 binds to PD-L1 and blocks its interaction with PD-1 and CD80

NCT02027961

MEDI4736 in patients with lung cancer

- A Phase I, Open-Label, Multicentre Study to assess the safety, tolerability, pharmacokinetics and preliminary anti-tumour activity of **gefitinib** in combination with MEDI4736 (anti PD-L1) in Subjects with Non-small cell lung cancer (NSCLC).
- Multi-arm, Phase Ib, Open-Label, Multicentre Study to Assess the Safety, Tolerability, Pharmacokinetics and Preliminary Anti-tumour Activity of AZD9291 in Combination With Ascending Doses of Novel Therapeutics in Patients With EGFRm+ Advanced NSCLC Who Have Progressed Following Therapy With an EGFR TKI. Group A: AZD9291 + MEDI4736

Anti-CTLA4 + anti-PD1 antibodies

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Nivolumab plus Ipilimumab in Advanced Melanoma

Jedd D. Wolchok, M.D., Ph.D., Harriet Kluger, M.D., Margaret K. Callahan, M.D., Ph.D., Michael A. Postow, M.D., Naiyer A. Rizvi, M.D., Alexander M. Lesokhin, M.D., Neil H. Segal, M.D., Ph.D., Charlotte E. Ariyan, M.D., Ph.D., Ruth-Ann Gordon, B.S.N., Kathleen Reed, M.S., Matthew M. Burke, M.B.A., M.S.N., Anne Caldwell, B.S.N., Stephanie A. Kronenberg, B.A., Blessing U. Agunwamba, B.A., Xiaoling Zhang, Ph.D., Israel Lowy, M.D., Ph.D., Hector David Inzunza, M.D., William Feely, M.S., Christine E. Horak, Ph.D., Quan Hong, Ph.D., Alan J. Korman, Ph.D., Jon M. Wigginton, M.D., Ashok Gupta, M.D., Ph.D., and Mario Sznol, M.D.

N Engl J Med 2013;369:122-33.

Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL)

> Mario Sznol,¹ Harriet Kluger,¹ Margaret K. Callahan,² Michael A. Postow,² RuthAnn Gordon,² Neil H. Segal,² Naiyer A. Rizvi, ²Alexander M. Lesokhin,² Michael B. Atkins,³ John M. Kirkwood,⁴ Matthew M. Burke,¹ Amanda Ralabate,¹ Angel Rivera,¹ Stephanie A. Kronenberg,² Blessing U. Agunwamba,² William Feely,⁵ Quan Hong,⁵ Suba Krishnan,⁵ Jedd D. Wolchok²

¹Yale University School of Medicine and Yale Cancer Center, New Haven, CT, USA; ²Memorial Sloan-Kettering Cancer Center, New York, NY, USA; ³Georgetown-Lombardi Comprehensive Cancer Center, Washington, DC, USA; ⁴University of Pittsburgh Medical Center, Pittsburgh, PA, USA; ⁵Bristol-Myers Squibb, Princeton, NJ, USA

PRESENTED AT THE 2014 ASCO ANNUAL MEETING. PRESENTED DATA IS THE PROPERTY OF THE AUTHOR.

Objectives

- To report updated safety, survival, and clinical activity of initial concurrent cohorts 1-3 (N=53) with additional follow-up of ~ 1 year
- To report responses in a new cohort (cohort 8) of 41 patients using Phase 2/3 dosing regimen (last patient, first treatment Nov. 2013)

Concurrent Therapy

CA209-004 Phase I Study: Dose Cohorts

		Dose (I	mg/kg),	Treatment Schedule		
Regimen Cohort No.	Ň	Nivolumab	Ipilimumab	Induction	Maintenance	
Concurrent 1 2 2a 3	14 17 16 6	0.3 1 3 3	3 3 1 3	Nivo Q3W x 8 + IPI Q3W x 4	Nivo + IPI Q12W x 8	
8*	41	1	3	Nivo Q3W x 8 + IPI Q3W x 4	Nivo 3 mg/kg Q2W (Max. 48 doses)	
Sequenced 6 7	17 16	1 3	Prior Prior	Nivo Q2W (Max of 48 doses)		
*Insufficient follow-up at this data collection to report survival endpoints						
Presented by: Presented by:						
Presented By Mario Sznol at 2014 ASCO Annual Meeting						

Activity Summary: Concurrent and Sequenced Cohorts from 004

Nivolumab (mg/kg) + IPI (mg/kg)	N	ORRª, %	CR, %	Aggregate Clinical Activity Rate	≥80% tumor burden reduction at 36 wks⁵, %		
Concurrent Cohorts 1-3	53	42	17	70	42		
0.3 + 3	14	21	14	57	36		
1+3	17	53	18	65	53		
3+1	16	44	25	81	31		
3 + 3	6	50	0	83	50		
1 + 3 [Cohort 8]°	40	43	10ª	53	28		
Sequenced	33	31	3	44	31		
^a per RECIST, [CR+PR]/N x 100; ^b Best overall response; ^c Cohort 8: Phase 2/3 trial; last patient, first dose Nov 2013. ^d 2 confirmed and 2 unconfirmed responses							
n: no. response-evaluable pts.							
ASCO							
Presented by:					PRESENTED AT: 50 ANNUAL		

Presented By Mario Sznol at 2014 ASCO Annual Meeting

SCIENCE & SOCIE

Response in Target Lesions

Safety Overview

Concurrent Cohorts 1-3 n=53		Cohort 8 n = 41		All Concurrent n=94	
Any Gr	Gr 3/4	Any Gr	Gr 3/4	Any Gr	Gr 3/4
96	62	95	61	96	62
43	9	34	20	39	14
30	15	12	12	22	14
79	4	73	15	77	9
17	4	22	2	19	3
6	6	0	0	3	3
Other					
6	4	2	2	4	3
6	2	2	2	4	2
26	19	15	10	21	15
21	6	12	7	17	6
	Conc Coho n= Any Gr 96 43 30 79 17 6 17 6 26 26 21	Concurrent Cohorts 1-3 Any Gr Any Gr 96 62 43 9 30 15 79 4 6 6 6 4 6 19 26 19 21 6	Concurrent Cohorts 1-3 n = 3 Cohorn = n = 3 Any Gr Gr 3/4 Any Gr 96 62 95 43 9 34 30 15 12 79 4 22 6 6 0 6 4 2 26 19 15 21 6 12	Concurrent Cohorts 1-3 $n=33$ Cohort 8 $n=41$ Any GrGr 3/4Any GrGr 3/49662956143934204393420301512127947315174222660064226191510216127	Concurrent Cohorts 1-3 $n=53$ Cohort 8 $n=41$ An Concurrent $n=41$ Any GrGr 3/4Any GrGr 3/4Any Gr9662956196439342039301512122279473157717422219660036422461271021261915102121612717

Presented by:

- No new safety signals with 22 months of followup for the initial concurrent cohorts
- 22/94 (23%) patients discontinued treatment due to treatment-related adverse events
- 1/94 drug-related death in trial; fatal multi-organ failure (as a result of colitis) in cohort 8

ASCC

ANNUAL

PRESENTED AT:

ORR by BRAF Status for Concurrent Cohorts

ORR by PD-L1 Status (5% cutoff)

Overall Survival for Concurrent Therapy by Dose Cohort

Survival Endpoints for Concurrent and Sequential Therapy by Dose Cohort

Nivolumab (mg/kg) + IPI (mg/kg) [n]	1-yr OS rate, % [Pts at Risk]	2-yr OS rate, % [Pts at Risk]	Median OS, mo	Median PFS, Weeks
Concurrent Cohorts 1-3 [53]	85 [44]	79[19]	40	27
0.3 + 3 [14]	57 [8]	50 [7]	27	13
1 + 3 [17]	94 [15]	88 [9]	NR	36
3 + 1 [16]	94 [15]	NC	NR	58
3 + 3 [6]	100 [6]	NC	NR	34
Cohort 8 [41]	NC	NC	NR	37
Sequenced [33]	70 [23]	NC	NR	23

n: no. treated pts.

NC, not calculated/insufficient follow-up; NR, not reached

Presented by:

PRESENTED AT:

ASCO

ANNUAL

Phase 3 Trial - CheckMate 067

- 915 patients
- Stratified based on PD-L1 expression

Interferon- α and anti-PD1 antibody

• the potential additive anti-tumor effect of the combination IFNα and anti-PD1

Terawaki S et al J Immunol. 2011 Mar 1;186(5):2772-9.

Interferon- α and pembrolizumab in melanoma and RCC

NCT02089685

Immunotherapy and chemotherapy

 A Multi-arm Phase I Safety Study of Nivolumab in Combination With Gemcitabine/Cisplatin, Pemetrexed/Cisplatin, Carboplatin/Paclitaxel, Bevacizumab Maintenance, Erlotinib, Ipilimumab or as Monotherapy in Subjects With Stage IIIB/IV Nonsmall Cell Lung Cancer (NSCLC)

Other combinations

- Ipilimumab + Talimogene laherparepvec (Tvec) in melanoma
- Pembrolizumab + Talimogene laherparepvec (Tvec) in melanoma
- Nivolumab + dasatinib in CML
- Nivolumab + anti-KIR antibody in solid tumors
- Nivolumab + anti-LAG-3 antibody in solid tumors
- Nivolumab + IL-21 in solid tumors
- aldesleukin + ziv-aflibercept in melanoma
- aldesleukin + vemurafenib in melanoma
- Adoptive cell transfer therapy and ipilimumab in melanoma

Question 1

• The following mechanisms of sensitization of the immune system by BRAF inhibitors have been described, EXCEPT

A. Increase in tumor antigen and MHC expression

B. Increase in tumor infiltrating lymphocytes

C. Improvement of immune effector cell function by inducing paradoxical MAPK activation on T cells

D. Inhibition of tumor angiogenesis through VEGF-MAPK pathway

E. Improvement of the tumor microenviroment by decreasing expression of immune suppressive cytokines and immune regulatory ligands

Question 2

• The phase 1 clinical trial of the combination of vemurafenib and ipilimumab in patients with metastatic melanoma was stopped early because

A. Of poor accrual

- B. Increased liver toxicity
- C. Increased gastrointestinal toxicity
- D. Increased dermatologic toxicity
- E. Increased frequency of the development of brain metastasis

Question 3

• The updated data on the phase 1 trial of 53 patients treated with anti-PD1 antibody, nivolumab, and anti-CTLA4 antibody, ipilimumab concurrently show the 1-year survival rate of

A. 15% B. 25% C. 40% D. 65% E. 85%