Genome evolution of SARS-CoV-2

Marta Łuksza Icahn School of Medicine, Mount Sinai, New York SITC, November 13th 2020

Disclosure

There will not be discussion about the use of products for non-FDA approved indications in this presentation.

Mapping the pandemic

Global case numbers since February:

(John Hopkins University, CSSE)

Mapping the evolution

Global sequencing efforts:

- Over 150K genome sequences are currently available

Date

Reconstruction of the evolutionary history

Maximum likelihood inference:

- phylogeny
- timing of mutations
- geographical transmission events
- about 2-3 mutations per month

Example: Mount Sinai sequences from NYC

Inference of the seeding events in NYC

Genetic clade decomposition

Multiple co-circulating clades

An early sweep of a spike mutation, S: D614G

- enhances viral loads in the upper respiratory tract
- no evidence of an antigenic effect

[Plante et al. Nature 2020]

Regional clade decomposition and dynamics

Scenarios of viral evolution

SARS-CoV-2, circulates since late 2019

- Colored by genetic clades

Influenza H3N2, circulates since 1968

- Colored by antigenic advance in the hemagglutinin
- Evolution is driven by
 - antigenic mutations
 - immune interactions

Mapping the immune evolution

Is there an evidence of immune escape?

- Track the evolutionary dynamics of a quantitative trait

Evolution of adaptive immunity

- Computationally predicted T-cell epitopes (netMHC)
- Quantitative trait: the expected number of presented antigens
- evaluated in the European population

Evolution of adaptive immunity

- Computationally predicted T-cell epitopes (netMHC)
- Quantitative trait: the expected number of presented antigens
- evaluated in the European population

Evolution of innate immunity (with Ben Greenbaum)

- Innate immunity: sequence-based scoring of di-nucleotide "forces"
- evaluated in the European population

Evolution of innate immunity (with Ben Greenbaum)

- Innate immunity: sequence-based scoring of di-nucleotide "forces"
- evaluated in the European population

Acknowledgments

Michael Lässig, Denis Ruchnewitz Matthijs Meijers (Cologne University) Karina Skupińska (Flupredict)

Harm Van Bakel (MSSM) Viviana Simon (MSSM)

Benjamin Greenbaum (MSKCC) David Hoyos (MKSCC) Alexander Solovyov (MSKCC)

Simona Cocco, Remi Monasson, Andrea DiGioacchino (CNRS, Paris)

Elodie Ghedin (NIH, NIAID) Allison Rhodin (NIH, NIAID)

Flupredict

Mapping the evolution

