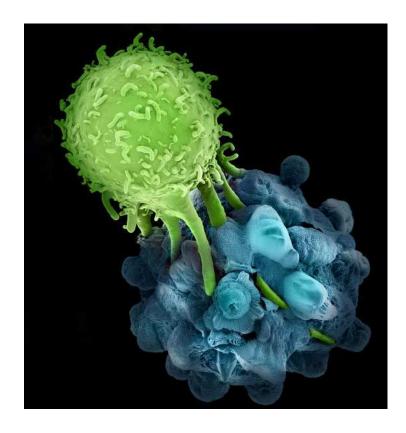
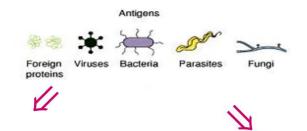
Overview of Adaptive Immunity

Jonathan Powell poweljo@jhmi.edu


Presenter Disclosure Information

Jonathan Powell, MD, PhD

The following relationships exist related to this presentation:

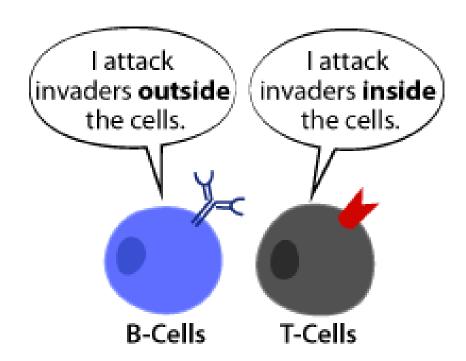

No Relationships to Disclose

The exquisite specificity of the Adaptive Immune Response makes it a powerful modality for the treatment of cancer

2013 Cancer Immunotherapy Trials Network

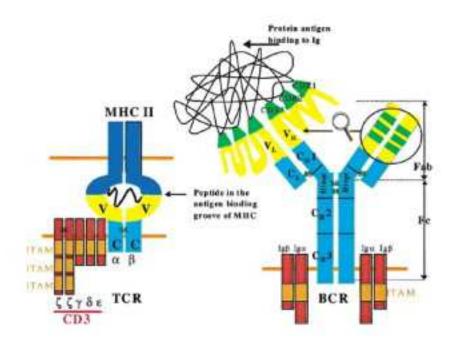
YOUR ACTIVE IMMUNE DEFENSES

Innate Immunity


- invariant (generalized)
- early, limited specificity
- the first line of defense
- 1. Barriers skin, tears
- 2. Phagocytes neutrophils, macrophages
- 3. NK cells and mast cells
- 4. Complement and other proteins

Adaptive Immunity

- variable (custom)
- later, highly specific
- "remembers" infection
- 1. APCs present Ag to T cells
- 2. Activated T cells provide help to B cells and kill abnormal and infected cells
- 3. B cells produce antibody specific for antigen


docstoc

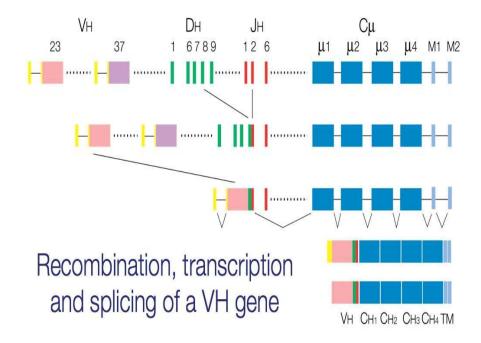
T Cells and B cells make up the Adaptive Immune Response

Ask A Biologist funded in part by the National Science Foundation and NSDL

T Cell Receptors (TCR) recognize antigen presented on the surface of cells while B Cell Receptors (BCR, AKA antibodies) recognize soluble antigen

2 key features of the adaptive immune response

- A vast array of incredibly diverse antigen specific receptors
- Memory, that is the ability to respond rapidly upon rechallenge by the same pathogen

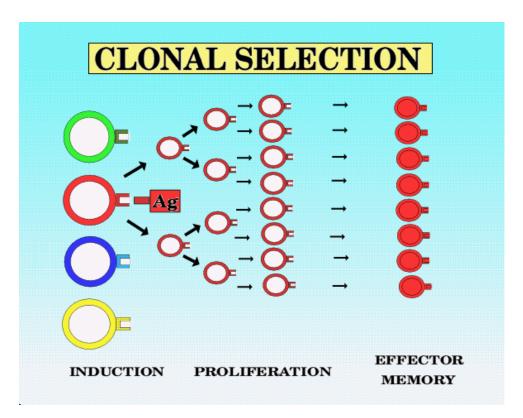


Generation of Diversity

 The diverse number of antigen specific TCR and BCR are NOT encoded by germline genes

 Rather, each receptor is generated through recombining different combinations of genes

Generation of Diversity through recombination

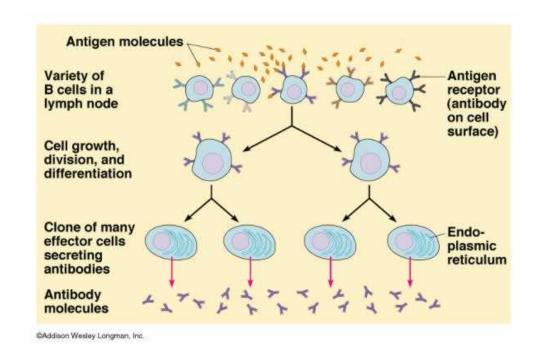

UNIPV, Italy

Do the math

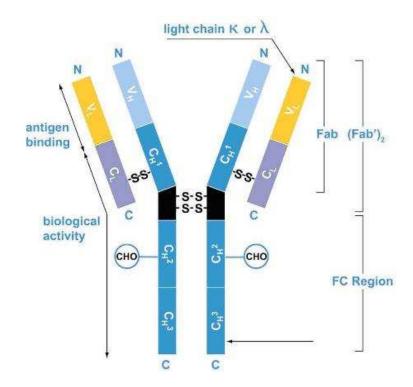
The <u>human genome</u> is presently estimated to contain 20–25 thousand genes. The number of T-cell receptors for antigen (**TCR**s) that we make is estimated at 2.5×10^7 ; the number of different kinds of antibody molecules (**BCR**s) is probably about the same.

Antibodies (BCRs)	Gene Segments	Combinations
Vκ	40	
Jκ	5	200 κ chains
Vλ	31	
Jλ	4	124 λ chains
V_{H}	51	
D_H	25	
J_H	6	7,650 H chains
Any H chain with any L chain (324)		2.5 x 10 ⁶

If there are so many different receptors how does an effective immune response generated?


Steve Cobold

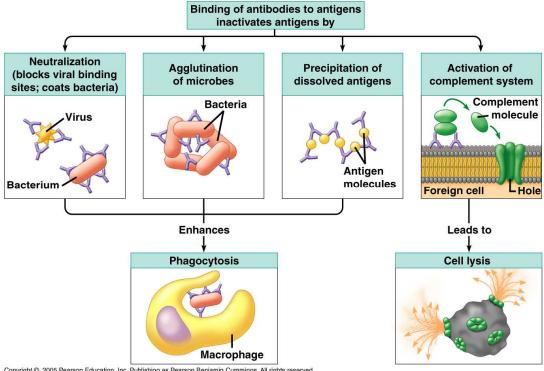
Thus, clonal selection....


• Promotes robust, antigen specific effector responses

Leads to the generation of memory

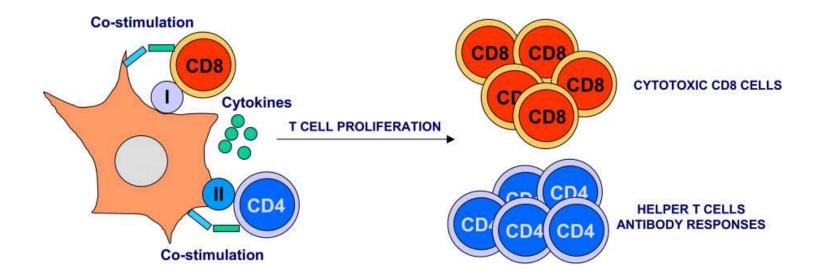
B cells make antibodies

Basic structure of antibodies

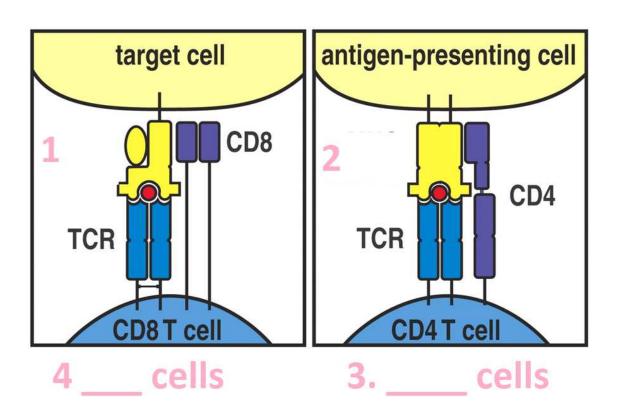


Antibodies come in different flavors

Antibody isotypes of mammals


Name Types		Description	Antibody Complexes
IgA	2	Found in mucosal areas, such as the gut, respiratory tract and urogenital tract, and prevents colonization by pathogens. Also found in saliva, tears, and breast milk.	Y
IgD	1	Functions mainly as an antigen receptor on B cells that have not been exposed to antigens. It has been shown to activate basophils and mast cells to produce antimicrobial factors.	Monomer IgD, IgE, IgG
IgE	1	Binds to allergens and triggers histamine release from mast cells and basophils, and is involved in allergy. Also protects against parasitic worms.	Dimer
IgG	4	In its four forms, provides the majority of antibody-based immunity against invading pathogens. The only antibody capable of crossing the placenta to give passive immunity to fetus.	IgA
IgM	1	Expressed on the surface of B cells and in a secreted form with very high avidity. Eliminates pathogens in the early stages of B cell mediated (humoral) immunity before there is sufficient IgG.	7
			Pentamer IgM

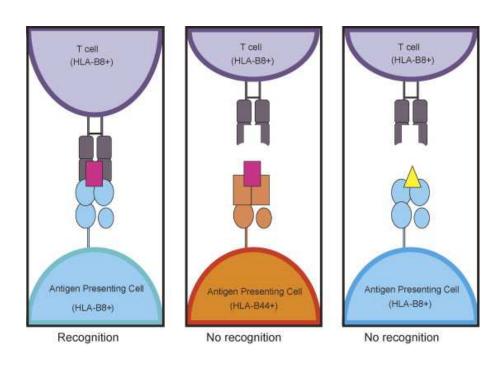
Antibody effector mechanisms



Copyright © 2005 Pearson Education, Inc. Publishing as Pearson Benjamin Cummings. All rights reserved.

T cells come in Two flavors

CD8 T cells recognize antigen presented by MHC class I and CD4 T cells recognize antigen presented by MHC class II



Study Blue

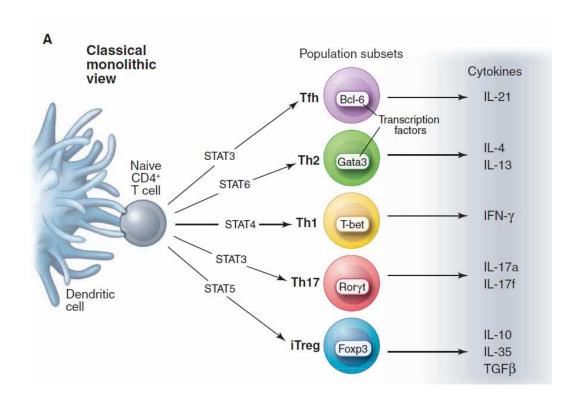
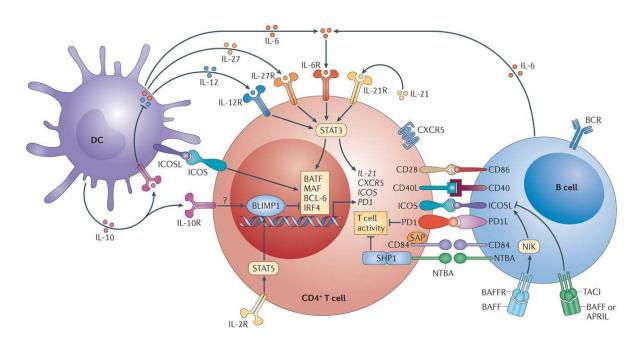
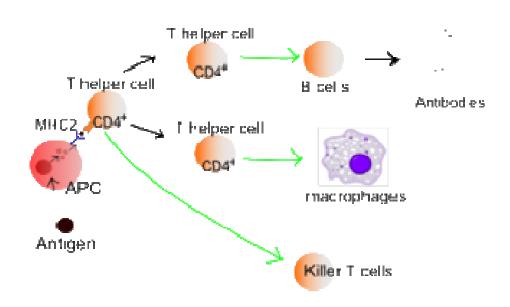

Class I and Class II recognition relates to different functions of CD4 & CD8 cells

Table 2. Characteristics of the antigen processing pathways					
Characteristic	MHC-I pathway	MHC-II pathway			
Composition of the stable peptide-MHC complex	Polymorphic chain α and $\beta 2$ microglobulin, peptide bound to α chain	Polymorphic chains α and $\beta,$ peptide binds to both			
Types of antigen presenting cells (APC)	All nucleated cells	Dendritic cells, mononuclear phagocytes, B lymphocytes, some endothelial cells, epithelium of thymus			
T lymphocytes able to respond	Cytotoxic T lymphocytes (CD8+)	Helper T lymphocytes (CD4+)			
Origin of antigenic proteins	cytosolic proteins (mostly synthetized by the cell; may also enter from the extracellular medium via phagosomes)	Proteins present in <u>endosomes</u> or <u>lysosomes</u> (mostly internalized from extracellular medium			

Briefly, what is meant by MHC restriction?



Different Types of CD4 effector cells


O'Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science. 2010 Feb 26;327(5969):1098-102.

CD4+ T cells "Help" B cells

Nature Reviews | Immunology

CD4+ T cells also "Help" macrophages and CD8+ CTL's

CD8+ T cells kill infected cells But first they must be activated

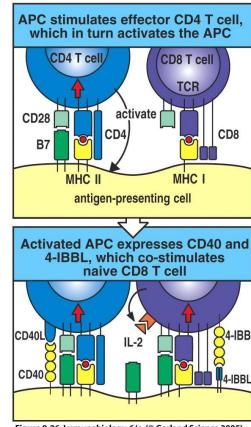


Figure 8-26 Immunobiology, 6/e. (© Garland Science 2005)

Effector CD8+ T cells expand, kill their targets, then die

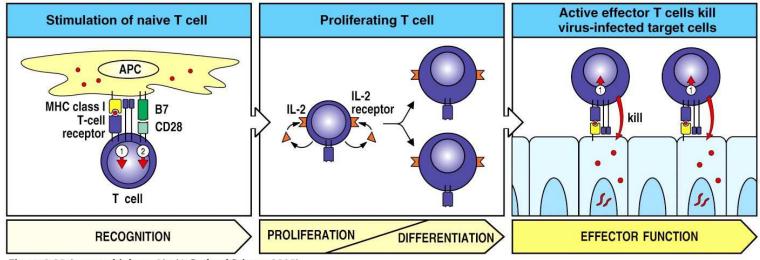
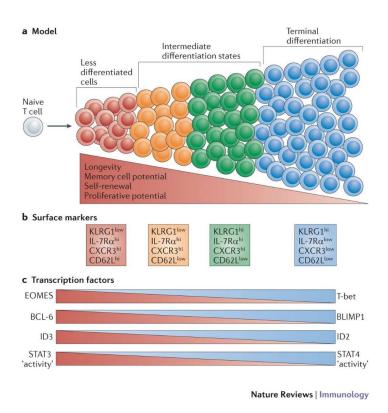
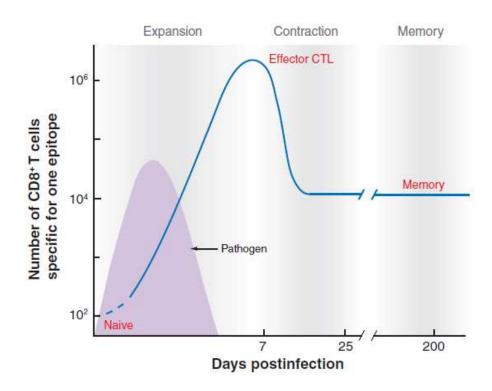




Figure 8-22 Immunobiology, 6/e. (© Garland Science 2005)

Some of the activated CD8+ T cells become long lived memory cells

Generalized CD8+ T cell response

Summary of T cell functions

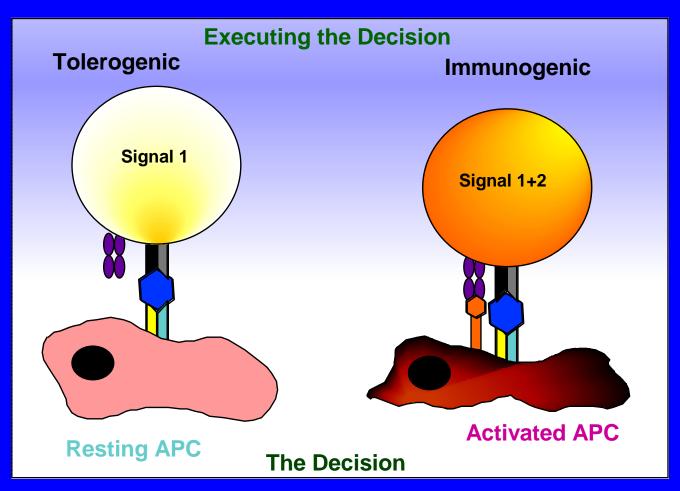
	CD8 cytotoxic T cells	CD4 T _H 1 cells	CD4 T _H 2 cells	CD4 T _H 17 cells	T _{FH} cells	CD4 regulatory T cells (various types)
Types of effector T cell					T	Too
Main functions in adaptive immune response	Kill virus-infected cells	Activate infected macrophages Provide help to B cells for antibody production	Provide help to B cells for antibody production, especially switching to IgE	Enhance neutrophil response Promote barrier integrity (skin, intestine)	8-cell help Isotype switching Antibody production	Suppress T-cell responses
Pathogens targeted	Viruses (e.g. influenza, rabies, vaccinia) Some intracellular bacteria	Microbes that persist in macrophage vesicles (e.g. mycobacteria, Listeria, Leishmania donovani, Pneumocystis carinii) Extracellular bacteria	Helminth parasites	Klebsiella pneumoniae Fungi (Candida albicans)	All types	

Figure 9.1 Janeway's Immunobiology, 8ed. (© Garland Science 2012)

Since the generation of diversity is a stochastic post-germline encoded event, a critical component of the immune response must subsequently be the ability to discern between harmful and innocuous antigens in a tolerance process.

- On the one hand in order to deal with any and all potential pathogens the immune system generates at random a diverse array of receptors.
- On the other hand a mechanism (tolerance) must be in place in order to prevent these receptors from recognizing and destroying the organism it is designed to protect.

Does the immune system recognize Good versus Evil or Self versus Non-self?

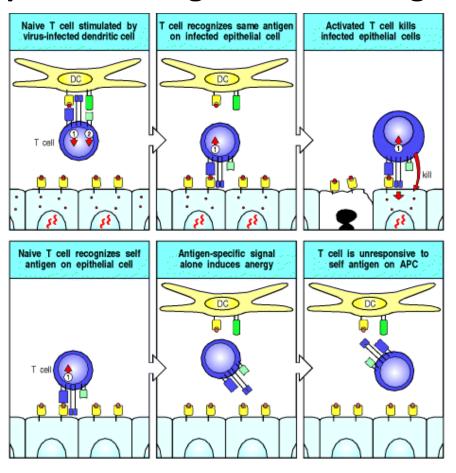

Shifting Paradigms

Old New

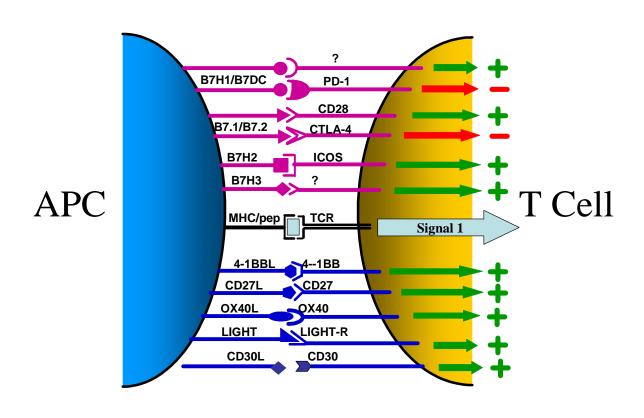
- Self-Non self
- Antigen Driven
- Developmentally
 Determined

- Context Models
- CircumstanceDriven
- Determined by milieu

Executing the Will of APC's

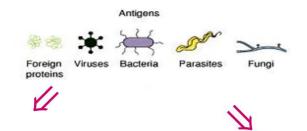

Activated APCs express costimulatory molecules (Signal 2)

 Signal 1: Refers to T cell receptor (TCR) recognition of antigen. Signal 1 alone leads to anergy or deletion.


• Signal 2: Refers to costimulatory molecule engagement (example CD28).

Signal 1+2 leads to full T cell activation.

Consequences of Signal 1 versus Signal 1+2


In reality Signal 2 is the sum of both costimulatory signals AND co-inhibitory signals

Based on what I told you how can we exploit the Adaptive Immune Response to Kill tumors?

- Vaccine to induce clonal selection and memory response
- Passively give antibodies that are directed against tumors
- Grow up large quantities of tumor-specific T cells and then give them back to patient.
- Promote the activation of APC's (Rev up Signal 2)
- Inhibit/ destroy regulatory cells
- Block co-inhibitory signals (Checkpoint Blockade)

YOUR ACTIVE IMMUNE DEFENSES

Innate Immunity

- invariant (generalized)
- early, limited specificity
- the first line of defense
- 1. Barriers skin, tears
- 2. Phagocytes neutrophils, macrophages
- 3. NK cells and mast cells
- 4. Complement and other proteins

Adaptive Immunity

- variable (custom)
- later, highly specific
- "remembers" infection
- 1. APCs present Ag to T cells
- 2. Activated T cells provide help to B cells and kill abnormal and infected cells
- 3. B cells produce antibody specific for antigen

docstoc