CAR T Cell Therapy in Multiple Myeloma

Krina Patel MD MSc Associate Professor Lymphoma Myeloma Department UT MD Anderson Cancer Center

Research: BMS, Janssen, Abbvie, Poseida, Cellectis, PrecisionBio, Allogene, Takeda

Honoraria: BMS/Celgene, Janssen, Oncopeptides, Pfizer, Abbvie, Arcellx

Making Cancer History®

B Cell Maturation Antigen (BCMA)

- BCMA is a cell surface protein expressed on late-stage B cells and plasma cells but virtually absent on naïve and memory B cells¹⁻³
- BCMA is highly expressed on malignant plasma cells in all patients with MM³⁻⁵
 - BCMA ligands, BAFF and APRIL, are detected in increased levels in the circulation of patients with MM^{3,5}
- BCMA is essential for the proliferation and survival of malignant plasma cells³

APRIL, a proliferation-inducing ligand; BAFF, B-cell activating factor; BCMA, B-cell maturation antigen; sBCMA, serum BCMA.

Tai YT, et al. *Immunotherapy*. 2015;7(11):1187-1199.
 Ryan MC, et al. *Mol Cancer Ther*. 2007;6(11):3009-3018.
 Cho S-F, et al. *Front Immunol*. 2018;9:1821. doi:10.3389/fimmu.2018.01821.
 Novak AJ, et al. *Blood*. 2004;103(2):689-694.
 Tai YT, et al. *Blood*. 2014;123(20):3128-3138.

A proliferation-inducing ligand (APRIL): a plasma-cell survival factor, dispensable for B-cell development

• Transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI)

HSPG, i.e., CD138/syndecan-1

CAR T Therapy

Characteristics and Efficacy

Characteristics	Ide-Cel (n=128)	Cilta-cel (n=97)	bb21217	CT103A (n=79)	
Target Cell Dose	450 million	0.75 million/kg	450 million	1 million/kg	
Median Prior Lines o Therapy	of 6	6	6	5	
Triple class refractor	y 84%	88%	69%	16.5%	
Penta class refractor	y 26%	42%	na	na	
Extramedullary diseas	se 39%	13.4%	29%	14%	
Bone marrow disease	e >50% PC = 51%	>60% PC = 21.9%	na	na	
High Risk Cytogeneti	cs 35%	23.7%	39%	35.4%	
Efficacy	Ide-Cel (n=128)	Cilta-cel (n=97)	bb21217	CT103A	
ORR	73%	98%	69%	95%	
CR	33%	80%	39%	58%	
MRD neg (10 ⁻⁵)	26%	58%	67%	94%	
PFS	8.8 (CR = 19 months)	22.8	12.8	71% at 12 mo	
OS	19 months	NR	na	na	

Safety

Toxicity	Ide-Cel (n=128)	Cilta-cel (n=97)	bb21217	CT103A
CRS (all, g3/4)	84% (5%)	95% (5%)	75%(4%)	95%(2.5%)
Median onset CRS	1 day	7 days	2	6 days
ICANS (all, g3/4)	18% (3%)	17% (2%)	15% (4%)	1.3%
Infections (all; g3/4)	69% (22%)	58% (20%)	>G3 = 29%	na
Grade 3/4 neutropenia > 1 month	41%	10%	na	na
Grade 3/4 thrombocytopenia > 1 month	48%	25%	na	na
Delayed neurotoxicity (all;g3/4)	None*	12% (9%)	na	na

Mechanisms of response and resistance

Tumor Related

- Antigen expression levels
- Presence of soluble antigen
- Antigen loss or diminished antigen expression
- Tumor load
- High risk cytogenetics
- Extramedullary disease
- Resistance to effector mechanisms of T cells
- Inhibitory receptors and ligands which suppress T cell function

OS in high risk patient subgroups

Anderson L, et al. ASCO 2021

sBCMA – biomarker?

Sequencing of Therapy - BCMA

EXCEPTIONAL CASE REPORT

Serial treatment of relapsed/refractory multiple myeloma with different BCMA-targeting therapies

Adam D. Cohen,¹ Alfred L. Garfall,¹ Ahmet Dogan,² Simon F. Lacey,¹ Chris Martin,³ Nikoletta Lendvai,² Dan T. Vogl,¹ Matthew Spear,³ and Alexander M. Lesokhin^{2,4}

nature communications

Explore content Y Journal information Y Publish with us Y

nature > nature communications > articles > article

Article | Open Access | Published: 08 February 2021

Biallelic loss of BCMA as a resistance mechanism to CAR T cell therapy in a patient with multiple myeloma

Mehmet Kemal Samur ⊠, Mariateresa Fulciniti, Anil Aktas Samur, Abdul Hamid Bazarbachi, Yu-Tzu Tai, Rao Prabhala, Alejandro Alonso, Adam S. Sperling, Timothy Campbell, Fabio Petrocca, Kristen Hege, Shari Kaiser, Hervé Avet Loiseau, Kenneth C. Anderson & Nikhil C. Munshi ⊠

Nature Communications 12, Article number: 868 (2021) Cite this article

nature medicine

Explore content Y Journal information Y Publish with us Y

nature > nature medicine > brief communications > article

Brief Communication | Published: 22 February 2021

Homozygous *BCMA* gene deletion in response to anti-BCMA CAR T cells in a patient with multiple myeloma

Matteo C. Da Vià, Oliver Dietrich, [...]Leo Rasche 🖂

Nature Medicine 27, 616–619 (2021) Cite this article

Microenvironment Related

- Bone marrow stromal cells
- Immune suppressor cells
- Immunosuppressive molecules
- Type of Bridging therapy
- Lymphodepleting conditioning regimen

Endogenous T cell characteristics

- Absolute T cell count
- Early memory phenotype
- CD4/CD8 ratio
- Impact of prior therapy on T cell fitness

Brudno, et al. JCO 2018

Sequencing of Therapy – Prior to CAR T

Blood advances issues v latest articles guidelines collections v auth

STIMULUS REPORT | OCTOBER 1, 2019

T-cell phenotypes associated with effective CAR T-cell therapy in postinduction vs relapsed multiple myeloma

Alfred L. Garfall, Ehren K. Dancy, Adam D. Cohen, Wei-Ting Hwang, Joseph A. Fraietta, Megan M. Davis, Bruce L. Levine, Don L. Siegel, Edward A. Stadtmauer, Dan T. Vogl, Adam Waxman, Aaron P. Rapoport, Michael C. Milone, Carl H. June, J. Joseph Melenhorst

Check for updates

9—

T CELL

100 JI

Percentage of total T cells

Neuroblastoma

CAR T cell related

- Quality
- Dosing
- Affinity of antigen binding domain
- Costimulatory domain
- Immunogenecity
- Persistence?

T CELL

Ide-Cel PFS

Ide-Cel DOR based on response

Munshi N, NEJM 2021.

CARTITUDE-1: Progression-Free Survival

Presented By: Saad Z Usmani

#ASCO21 | Content of this presentation is the property of the author, licensed by ASCO. Permission required for reuse.

Quartile of exposure

Efficacy and Safety of Idecabtagene Vicleucel (ide-cel, bb2121) in Elderly Patients with Relapsed and Refractory Multiple Myeloma: KarMMa Subgroup Analysis

		Age ≥65 Years (n=45)	Age ≥70 Years (n=20)	All ide-cel Treated (N=128)		
Efficacy Outcomes						
ORR, n (%) [95% Cl]		38 (84) [70.5–93.5]	18 (90) [76.9–100]	94 (73) [65.8–81.1]		
CR rate, n (%) [95% CI]		14 (31) [18.2–46.6]	7 (35) [14.1–55.9]	42 (33) [24.7–40.9]		
PFS, median (95% Cl), mo		8.6 (4.9–12.2)	10.2 (3.1–12.3)	8.8 (5.6–11.6)		
DOR,ª median (95% Cl), mo		10.9 (4.5–11.4)	11.0 (3.9–11.4)	10.7 (9.0–11.3)		
Adverse Events of Interest ^b						
CRS, n (%)	Overall Grade ≥3	40 (89) 2 (4)	20 (100) 2 (10)	107 (84) 7 (5)		
NT, n (%)	Overall Grade ≥3	11 (24) 4 (9)	6 (30) 1 (5)	23 (18) 4 (3)		
CR, complete response; CRS, cytokine release syndrome; DOR, duration of response; NT, investigator-identified						

neurotoxicity; ORR, overall response rate; PFS, progression-free survival.

^aDuration of response among responders.

^bNT was graded according to NCI CTCAE v4.03. CRS was graded according to Lee et al. criteria (*Blood* 2014; 124:188-95).

Allo-715, allo 647

- FCA vs FC for LD treatment
- Dose level 320 million with standard LD of FC
- 5 prior lines of therapy, 100% refractory to last line
- 91% triple refractory, 42% penta-refractory
- Safety 1 patient with grade 3 CRS, neutox 14% grade ½, no GVHD
- 23 patients with infections, 3 with grade 5
- 71% ORR, CR/sCR 25%
- Median DOR 8.3 months

Unmet Need MM Population

• Those who don't have access to appropriate health care or clinical trials

• High risk disease/plasma cell leukemia

• Relapsed refractory with aggressive disease

• Renal failure

• CNS involvement

• Frail Patients/Increased Co-Morbidities

The multiple possible pathways to cure...

- Patient A → CD38 monoclonal ab PI, IMID, dex as induction and CAR T
- Patient B \rightarrow induction and autoSCT + CAR T
- Patient C → induction (+/- ASCT), multi-antigen PD1⁻ CAR T, +/different antigen specific bispecific
- Patient D → induction (+/- ASCT), off the shelf multi-antigen
 CAR T, +/-consolidation/maintenance, cytokines, bispecifics
- Patient E → induction, off the shelf CAR T with repeat infusions or bridge to allogeneic transplant followed by repeat CAR T infusion, +/- maintenance, cytokines, bispecifics

+ Targeted therapies (i.e. venetoclax for t(11;14)) where applicable

Take Home Points

- Multiple mechanisms of response and resistance exist for each type of anti-BCMA therapy. The following are the most important in my opinion:
 - antigen density versus antigen affinity
 - immune cell health
 - tumor load and high risk disease
- Soluble BCMA/BCMA expression should be evaluated in between different anti BCMA therapies.
- Sequencing matters!
 - avoid alkylators prior to CAR T manufacturing and likely prior to bispecific therapy
 - Refer patients early if you save it for later, less patients will actually get treatment.

Thank you to our patients, caregivers and research teams!

Another one of my fabulous patients helping us discover better therapies to fight myeloma!

...

MDANDERSON.ORG Multiple myeloma survivor grateful CAR T cell therapy clinical trial gives her another option

ὐ 🗘 Denene Prophet-Williams and 49 others

MDAnderson Cancer Center

Any questions? kpatel1@mdanderson.org Krina Patel October 7 at 7:48 PM - &

•••

She is a Superwoman who was helping fight COVID at home before having to come to Houston urgently to undergo CART therapy for her myeloma. So happy with the fantastic response she's had. The hope is real!

MDANDERSON.ORG Multiple myeloma survivor: Having additional treatment options gives me hope

ODenene Prophet-Williams and 67 others