
iSBTc Combination Therapies Workshop July 29, 2006

Industry Perspective

Geoff Nichol
Senior VP, Product Development
Medarex

iSBTc Combination Therapies Industry: G Nichol

Business: a three-legged stool

The perfect drug development candidate – early development

- Highly predictive preclinical models
 - Pharmacology ans physiological signal highly parallels that in humans
 - Manifest biomarkers of efficacy and safety
- Demonstration of proof-of-concept in Phase I
 - Biomarkers
 - Obvious physiological signal
- Advantageous dose- and schedule-finding in Phase II
 - Large effect size with rapid onset of effect
 - Treatment-naïve experimental subjects

The perfect drug development candidate – late-stage development

- High signal-to-noise ratio in Phase III
 - Plentiful treatment-naïve subjects
 - Large effect size with rapid onset of effect and inexpensive endpoints
 - Predictable pharmacological, PK and physiological effects
- Established regulatory guidelines
- Large numbers of patients with high unmet needs
- Undisputed, exclusive intellectual property position
- 100% ownership of the development asset with few competitors

Doubly blessed – "ideal combinations" are some of the industry's most successful products

- "Mechanistic" combinations
 - Augmentin (amoxycillin + clavulanate)
 - Bactrim/Septrin (trimethoprim + sulphamethoxazole)
- "Own bundle" combinations
 - Advair (salmeterol + fluticasone)
 - Lotrel (amlodipine + benazepril)
- "Hands across the water" combinations
 - Vytorin (ezetimibe + simvastatin)

Cold hard reality

Doubly cursed: Biological combinations for cancer

The nightmare drug development candidate – early development

- Poorly predictive preclinical models
 - No natural models resembling human disease
 - No identifiable reliable biomarkers
- Little to go on in Phase I
 - No biomarkers
 - No obvious physiological signal
- Disadvantageous dose- and schedule-finding in Phase II
 - Small- to non-existent effect size
 - Multiply-pretreated experimental subjects in poor condition
 - Need to rely on larger controlled studies for proof-of-concept
 - Expensive and/or time-consuming endpoints

The nightmare drug development candidate – late-stage development

- Low signal-to-noise ratio in Phase III
 - Heavily pretreated subjects
 - Modest effect size with late readout eg, survival
 - Pharmacological, PK and physiological effects not obvious
- Demanding, unclear regulatory guidelines
- Patients subdivided by disease and stage
- Disputed and/or shared intellectual property position
- Shared ownership of the development asset

The appeal to industry of biologic combinations in cancer

- Large unmet medical need
 - Most therapies have modest effects
 - Large premium on maximizing efficacy with multiple therapies
- Recent successes just the beginning?
- Promising science
 - Multiple novel mechanisms of action in cancer
 - "Big protein" targets accessible to biological therapies
 - Few off-target effects
 - Expanding/maturing biologics technologies
 - Logical reasons to expect combinations to add/synergize
 - Past tradition of combination therapies
- Highly supportive regulatory and academic infrastructure
- Combinations create an added IP dimension

Challenge #1: Intellectual property

- Ownership of IP is arguably the driving force of academic and industry innovative success
- Some issues
 - IP ownership is a social and political construct under challenge
 - IP is increasingly fragmented and ill-defined
 - Competition for IP ownership can create conflicting goals, eg of industry and academia
 - Development time and cost expansion can erode the value of IP

Challenge #2: Getting along

- How to play the combo game when none of the participants will show its hand?
 - Access to "on-the-shelf" assets
 - Sheer volume of permutations
 - Incentives and disincentives
 - IP
 - Contracts
 - Industry and academia different worlds or getting too much alike?

Challenge #3: Regulation and decisions

- Endpoints
 - For proof-of-principle can you know before Phase III?
 - For approval
- Potency assays
- Pre-clinical safety testing
 - If the toxicology of one agent is difficult to model, try two
- Combinations proof of contribution of components
 - When one or both components are ineffective alone?
 - Pre-clinical
 - Early clinical
 - Late clinical

Challenge #4: Getting things done

- Patient access
 - Numbers are limited
 - Long-term and low-signal-strength outcomes further restrict availability
 - Cancer is not the common cold
- Oversight by IRBs, scientific review and attorneys
 - Time-consuming and burdensome?
- Endpoints are we hitting the Heisenberg Principle?