

Immunotherapy for the Treatment of Hematologic Malignancies

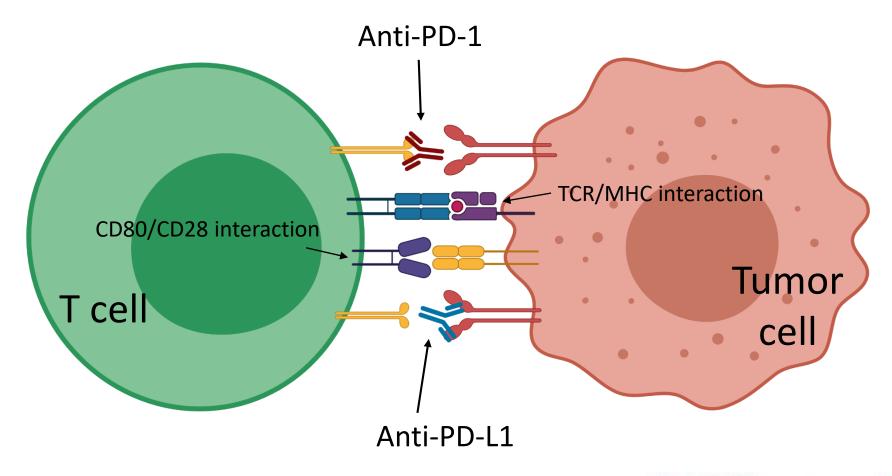
Bradley Hunter, MD, MPH
Director of Immune Effector Cell Therapy
Intermountain Healthcare

Disclosures

- Consulting Fees: Novartis, Kite Pharma (Gilead)
- I will be discussing non-FDA approved indications during my presentation.

Outline: Major immunotherapies under development

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies



Immune checkpoint inhibitors

FDA-approved checkpoint inhibitors: lymphoma

Drug	Indication	Dose
Nivolumab	Classical Hodgkin lymphoma , relapsed after HSCT and brentuximab vedotin or ≥3 previous therapies	240 mg Q2W or 480 mg Q4W
Pembrolizumab	Adult/pediatric refractory classical Hodgkin lymphoma or relapsed after 3 previous therapies	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)
Pembrolizumab	Adult/pediatric refractory primary mediastinal large B-cell lymphoma or relapsed after 2 previous therapies**	200 mg Q3W or 400 mg Q6W adults 2 mg/kg (up to 200 mg) Q3W (pediatric)

^{**}Not recommended for patients with PBMCL that require urgent cytoreductive therapy.

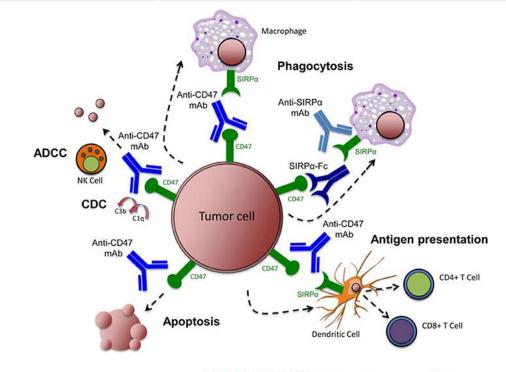
Efficacy of approved checkpoint inhibitors: lymphoma

Study	Treatment	Patient population	Overall response rate	Complete response rate	Landmark OS
CheckMate 205	Nivolumab	Brentuximab vedotin-naïve cHL	65%	29%	1-year: 92%
		Bretuximab vedotin after auto-HCT cHL	68%	13%	1-year: 93%
		Bretuximab vedotin before/after auto-HCT cHL	73%	12%	1-year: 90%
KEYNOTE-087	Pembrolizumab	cHL progressed after ASCT and BV	78.3%	26%	3-year: 86.3%
		cHL after salvage chemo and BV, ineligible for ASCT	64.2%	26%	3-year: 85.7%
		cHL progressed after ASCT without BV treatment	71.7%	31.7%	3-year: 87.6%
KEYNOTE-013	Pembrolizumab	PMBCL with relapse/ineligible for ASCT	48%	33%	1-year: 65%
KEYNOTE-170	Pembrolizumab	PMBCL ineligible for ASCT with progression on ≥ 2 previous therapies	45%	13%	1-year: 58%

cHL: Classical Hodgkin lymphoma; PMBCL: primary mediastinal B cell lymphoma

In development: Immune checkpoint inhibitors in AML

Study	Population	Treatment(s)	ORR	Median OS (months)	Status
NCT02775903	Untreated AML	Azacitidine + durvalumab	20%	13.0	Active, not recruiting
		Azacitidine	23%	14.4	recruiting
NCT02397720	Relapsed/refractory AML	Azacitidine + nivolumab	33%	6.4	Recruiting
		Azacitidine + nivolumab + ipilimumab	44%	10.5	
NCT02768792	Relapsed/refractory AML	HiDAC followed by pembrolizumab	46%	8.9	Active, not recruiting
NCT02845297	Relapsed/refractory AML	Azacitidine + pembrolizumab	31%	10.8	Recruiting
	Newly diagnosed AML, <u>> 65</u> years of age		70.5%	13.1	



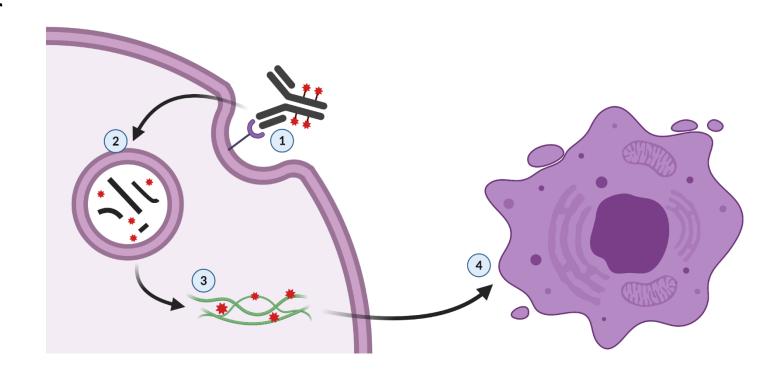
In development: Macrophage checkpoint: CD47

Treatment	Populations	ORR	CRR	Median DOR
Azacitidine +	Untreated MDS	91.7%	50%	NR (>4.9 months)
magroliumab	Untreated AML	63.6%	41%	NR (>5.8 months)

- CD47 is expressed on some cancer cells
- CD47 signaling through SIRPα prohibits macrophage phagocytosis of cancer cells – "don't eat me"
- Blocking interaction of CD47 and SIRPα promotes adaptive immune responses and boosts tumor cell phagocytosis

Outline

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies



Antibody-drug conjugates

- 1. Antibody binds to receptor on tumor cell
- 2. ADC is internalized and broken down
- 3. Drug payload performs its MOA (here, microtubule disruption)
- 4. Apoptosis is induced in target cell

FDA-approved antibody-drug conjugates

Drug	Target antigen	Indication
		Classical Hodgkin lymphoma, relapsed after HSCT or ≥2 previous therapies
Brentuximab vedotin	CD30	Cutaneous anaplastic large cell lymphoma or CD30+ mycosis fungoides ≥ 1 previous therapies
		Classical Hodgkin lymphoma - first line with combination chemo
		Classical Hodgkin lymphoma consolidation after auto-HSCT
Inotuzumab ozogamicin	CD22	Relapsed/refractory/MRD+ B-cell ALL
Polatuzumab vedotin (w/ bendamustine & rituximab)	CD79b	DLBCL ≥ 2 previous therapies
Gemtuzumab ozogamicin	CD33	R/R or newly-diagnosed CD33+ AML in adults or pediatric patients
Belantamab mafodotin	ВСМА	R/R multiple myeloma after > 4 prior therapies

Efficacy of approved ADCs – brentuximab vedotin

Study	Treatment(s)	Patient population	Overall response rate	Complete response rate	Landmark OS
NCT00848926	Brentuximab vedotin	Relapsed/refractory Hodgkin lymphoma after failed auto-SCT	75%	33%	5-year: 41%
NCT00866047	Brentuximab vedotin	Relapsed/refractory systemic anaplastic large cell lymphoma	86%	66%	5-year: 60%
ECHELON-1	Brentuximab vedotin + doxorubicin, vinblastine, and dacarbazine	Previously untreated stage III or IV Hodgkin lymphoma	2-year modified PFS rate: 82.1%		2.1%
	Doxorubicin, bleomycin, vinblastine, and dacarbazine		2-year modified PFS rate: 77.2%		7.2%
AETHERA	Brentuximab vedotin	Unfavorable-risk relapsed or primary refractory classic Hodgkin lymphoma	•		
	Placebo	after auto-SCT	Median PFS: 24.1 months		

Efficacy of approved ADCs

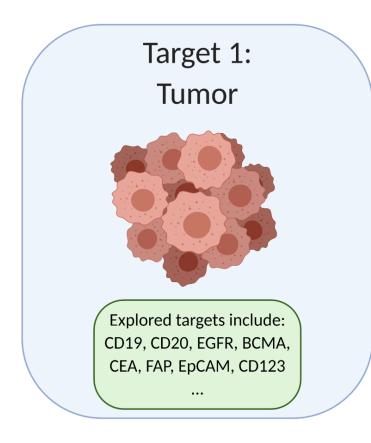
Study	Treatment(s)	Patient population	Key outcomes
INO-VATE	Inotuzumab ozogamicin Standard-of-care chemo	Relapsed/refractory B cell precursor ALL	CR/CRi rate: 73.8% vs 30.9% Median OS: 7.7 vs 6.2 months 2-year OS: 22.8% vs 10%
GO29365	Polatuzumab vedotin + bendamustine & rituximab Bendamustine & rituximab	Relapsed/refractory DLBCL	CRR: 40.0% vs 17.5% Median PFS: 9.5 vs 3.7 months Median OS: 12.4 vs 4.7 months
ALFA-0701	Gemtuzumab ozogamicin + daunorubicin + cytarabine Daunorubicin + cytarabine	De novo acute myeloid leukemia	CR/CRp rate: 81.5% vs 73.6% Median OS: 27.5 vs 21.8 months Median EFS: 17.3 vs 9.5 months
DREAMM-2	Belantamab mafodotin	R/R multiple myeloma after IMiD, PI, and anti-CD38	ORR: 31% Median PFS: 2.9 months

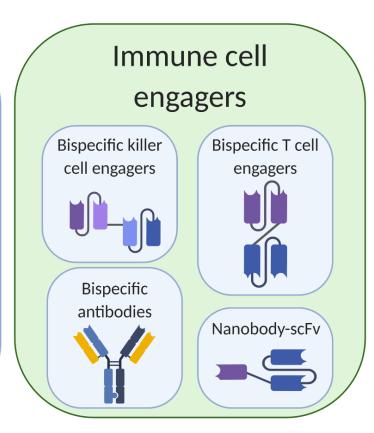
In development: Novel ADCs in clinical trials

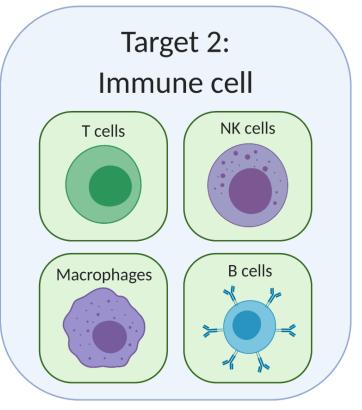
Trial	Indication	Treatment(s)	ADC target antigen	Phase
NCT03544281	R/R multiple myeloma	GSK2857916 + lenaolidomide + dexamethasone	BCMA	2
		GSK2857916 + bortezomib + dexamethasone		
NCT03386513	CD123+ AML, BPDCN or ALL	IMGN632	CD123	1/2
NCT03424603	R/R B cell malignancies	STRO-001	CD74	1
NCT03682796	R/R B cell lymphoma	TRPH-222	CD22	1
NCT04240704	CLL or NHL	JBH492	CCR7	1
NCT03833180	Pre-treated hematologic malignancies	VLS-101	ROR1	1

Outline

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

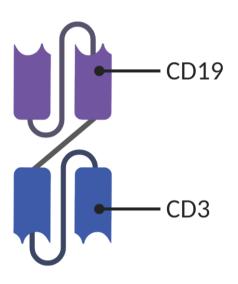






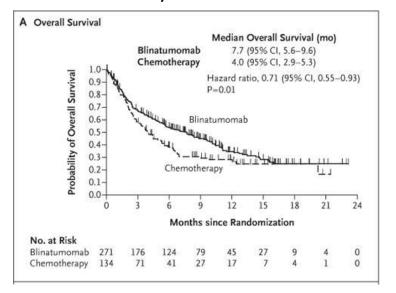
Bispecifics in immunotherapy

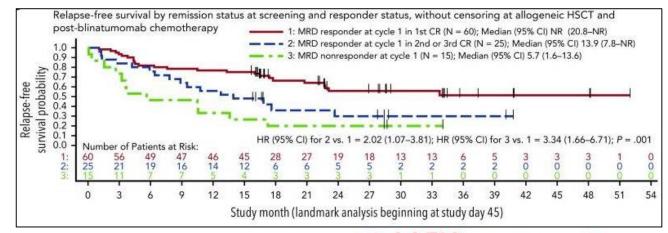
Commonly CD3 on T cells, CD16 for NK and macrophages, etc



Clinical use of immune cell engagers

Drug	Indications
	Relapsed/refractory B-ALL
Blinatumomab	B-ALL in 1^{st} or 2^{nd} complete response with MRD \geq 0.1%




Blinatumomab in R/R B-ALL

R/R B-ALL

Trial	Patient population	Treatment	Key outcomes
NCT02013167	Adults with R/R B-ALL	Blinatumomab	Median OS: 7.7 vs 4.0 months
		Chemotherapy	Median DOR: 7.3 vs 4.6 months
NCT01207388	Adults with MRD+ B-ALL	Blinatumomab	Complete MRD response rate: 78% Median OS: 36.5 months

MRD+ B-ALL

Dosing regimens for blinatumomab

Cycle			Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)
MRD-	Induction cycle 1	Days 1-28	28 mcg/day	15 mcg/m²/day (not to exceed 28 mcg/day)
positive B		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
ALL Consolidation cycles 2-4	Consolidation cycles 2-4	Days 1-28	28 mcg/day	15 mcg/m²/day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Cycle		Patients weighing 45 kg or more (Fixed-dose)	Patients weighing less than 45 kg (BSA-based dose)
	Induction cycle 1	Days 1-7	9 mcg/day	5 mcg/m ² /day (not to exceed 9 mcg/day)
		Days 8-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)
		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
R/R B-	Induction cycle 2	Days 1-28	28 mcg/day	15 mcg/m²/day (not to exceed 28 mcg/day)
ALL		Days 29-42	14-day treatment-free interval	14-day treatment-free interval
	Consolidation cycles 3-5	Days 1-28	28 mcg/day	15 mcg/m ² /day (not to exceed 28 mcg/day)

14-day treatment-free interval

56-day treatment-free interval

28 mcg/day

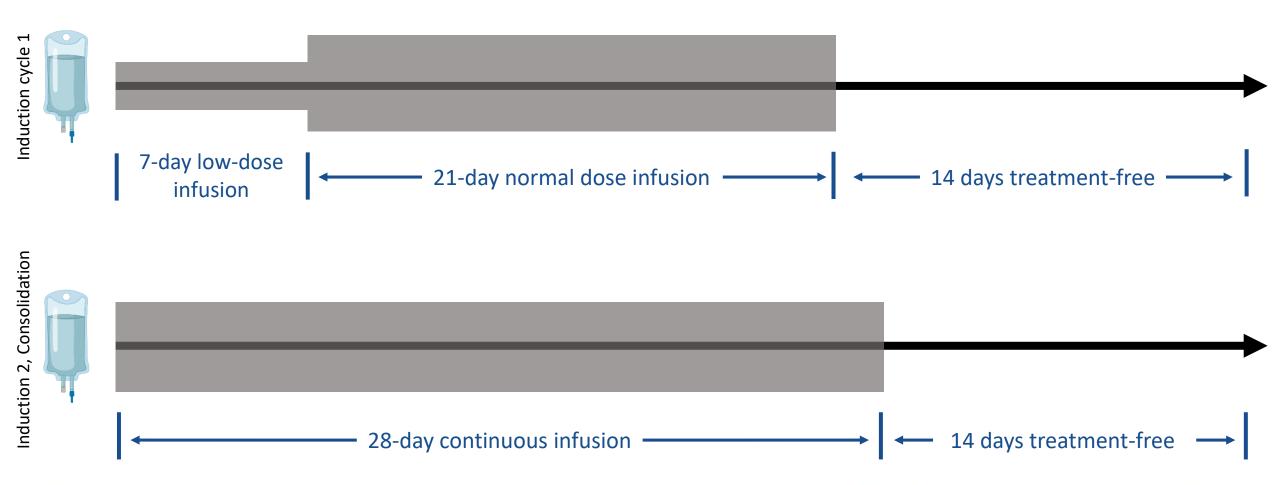
15 mcg/m²/day (not to exceed 28 mcg/day)

14-day treatment-free interval

56-day treatment-free interval

6-9

Continued therapy cycles


Days 29-42

Days 1-28

Days 29-42

Dosing regimens for blinatumomab – R/R B-ALL

Common side effects of T cell engagers

Cytokine release syndrome

- Characterized by initial flu-like symptoms, which progress into a shock-like syndrome with elevation in cytokine levels
- Patients display fever, vascular leakage, and organ dysfunction
- Variable onset and course
- Pre-treatment with dexamethasone required
- Management:
 - IL-6 and IL-6R antagonism
 - Corticosteroids
 - Other cytokine receptor antagonists

B cell aplasia

- Due to current clinical agents targeting CD19, which is expressed by both normal and neoplastic B cells
- May result in hypogammaglobulinemia
- Increased risk of infection
- Managed through administration of intravenous immunoglobulin

Stay tuned: more information on toxicity management later in this program

Neurotoxicity

- Also known as "immune effector cell-associated neurotoxicity syndrome" (ICANS)
- Manifests as confusion, delirium, seizures, cerebral edema
- Largely unknown mechanisms
- Incidence increases with more doses, increased age, more prior therapies
- Management:
 - Supportive care for low-grade
 - Corticosteroids for highergrade

In development: Novel immune cell engagers in clinical trials

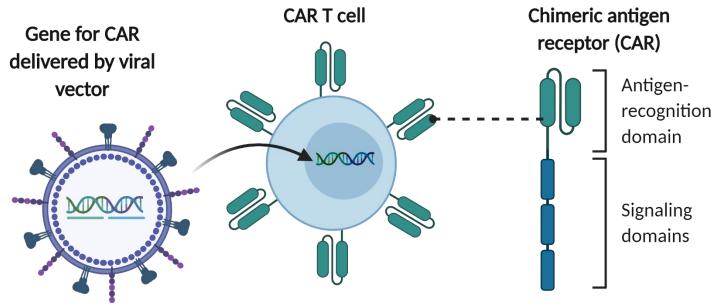
Trial	Indication	Treatment	Target antigens	Phase
NCT03214666	HR myelodysplastic syndromes, R/R AML, systemic mastocytosis	GTB-3550 (TriKE)	CD16, IL-15, CD33	1/2
NCT03516591	High-risk myelodysplastic syndromes	AMV564	CD33, CD3	1
NCT03739606	CD123+ R/R blood cancers	Flotetuzumab	CD123, CD3	2
NCT02730312	CD123+ R/R blood cancers	XmAb14045	CD123, CD3	1
NCT03888105	R/R B cell NHL	Odronextamab	CD20, CD3	2
NCT03309111	Previously treated multiple myeloma	GBR 1342	CD38, CD3	1/2
NCT03761108	R/R multiple myeloma	REGN5458	BCMA, CD3	1/2

Outline

- Immune checkpoint inhibitors
- Antibody-drug conjugates
- Bispecifics
- Cellular therapies

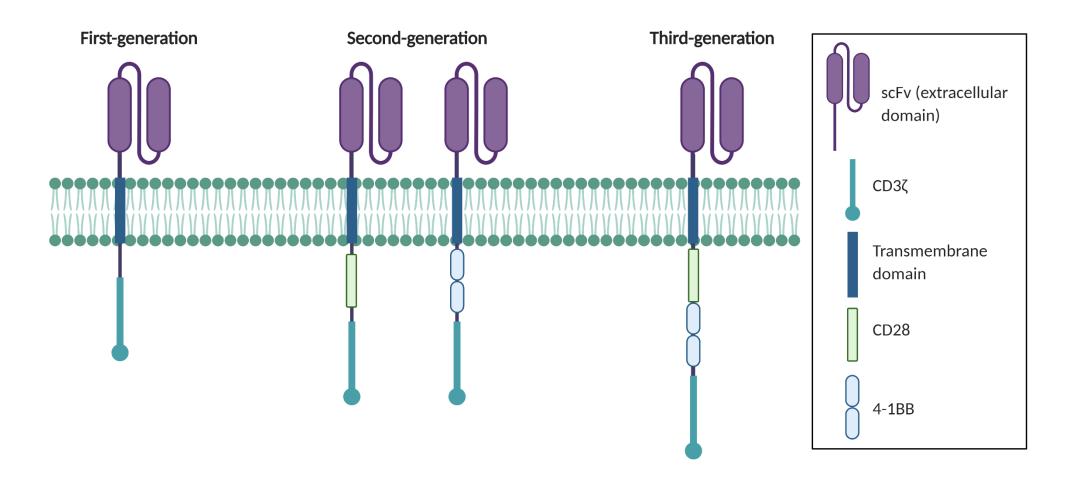
Comparing T cell engagers and CAR T therapy

	CAR T cells	T cell engagers (BiTEs)
Structure	Synthetic gene construct encoding an scFv against tumor antigen linked to activation/costimulatory motifs	Recombinant protein with two specificities: one for tumor antigen and one for T cell antigen (usually CD3)
Effector cell types	Engineered CD8+ and CD4+ T cells	Endogenous CD8+ and CD4+ T cells
Immune synapse	Atypical	Typical
Serial killing	Yes	Yes
Killing mechanisms	Perforin and granzyme B, Fas-Fas-L, or TNF/TNF-R	Perforin and granzyme B
Trafficking	Active	Passive
Clinical applications	Pre-treatment lymphodepletion followed by a single infusion	No lymphodepletion; repeat administration and continuous infusions.
Specificity	Manufactured for each patient	"Off-the-shelf"

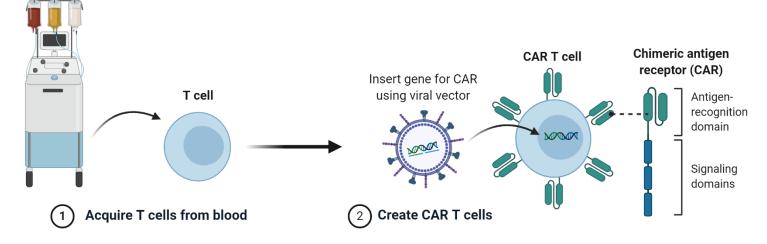


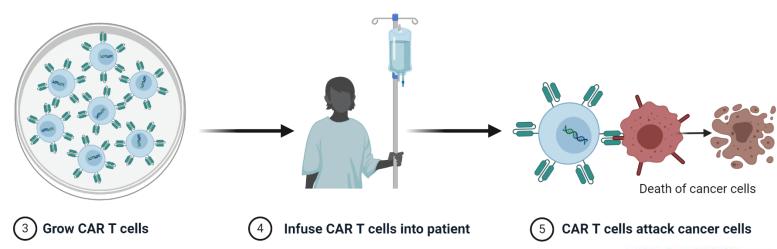
Chimeric antigen receptors

- Overcome immune tolerance
- Targets surface molecules in native conformation
- Independent of antigen presenting cell and MHC complex



Evolution of CAR constructs





CAR T manufacturing and administration

FDA-approved CAR T cell therapies

Drug	Target/co- stimulatory domain	Indication	Dose
Axicabtagene ciloleucel	CD19/CD28	Adults with r/r large B-cell lymphoma, Including diffuse large B-cell lymphoma, primary mediastinal large B-cell lymphoma, high-grade B-cell lymphoma, and DLBCL arising from follicular lymphoma	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)
Tisagenlecleucel	CD19/4-1BB	Patients ≤25 yr with refractory B-cell acute lymphoblastic leukemia or in 2+ relapse	0.2-0.5x10 ⁶ CAR-positive, viable T cells per kg if under 50 kg 0.1-2.5x10 ⁸ CAR-positive, viable T-cells if over 50 kg
Tisagenlecleucel	CD19/4-1BB	Adults with r/r large B-cell lymphoma after 2+ therapies Including DLBCL, high-grade B-cell lymphoma, DLBCL arising from follicular lymphoma	0.6-6.0 x 10 ⁸ CAR-positive, viable T cells
Brexucabtagene autoleucel	CD19/CD28	Adults with mantle cell lymphoma (MCL) who have not responded to or who have relapsed following other treatments	2 x 10 ⁶ CAR-positive, viable T cells per kg bodyweight (up to 2x10 ⁸)

Comparing clinical trials of CAR T therapies

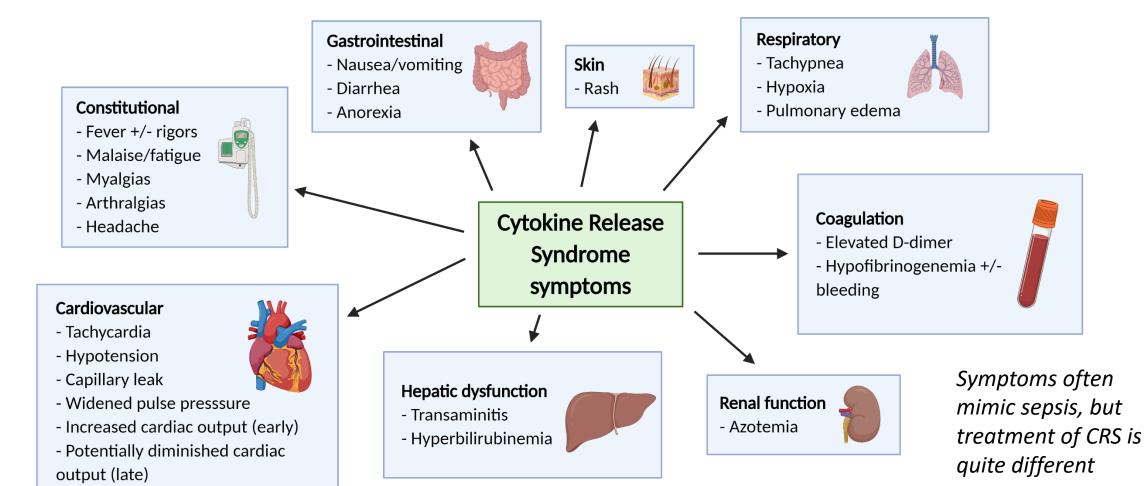
Trial	Indication	Treatment(s)	ORR	Landmark OS	Grade 3+ toxicity rates
ZUMA-2	R/R mantle cell lymphoma	Brexucabtagene autoleucel (KTE- X19)	86% CRR: 57%	1-year: 86%	CRS: 18% NE: 46%
ZUMA-1	Refractory large B cell lymphoma	Axicabtagene ciloleucel	83% CRR: 58%	2-year: 50%	CRS: 11% NE: 32%
JULIET	R/R diffuse large B cell lymphoma	Tisagenlecleucel	52% CRR: 40%	1-year: 49%	CRS: 22% NE: 12%
ELIANA	R/R B cell acute lymphoblastic leukemia	Tisagenlecleucel	82% CRR: 62%	18-month: 70%	CRS: 48% NE: 13%

CAR T side effects

- Cytokine Release Syndrome (CRS)
- Neurotoxicity
 - ICANS: Immune effector cell-associated neurotoxicity syndrome
 - NE: Neurologic events
- B cell aplasia

Macrophage Activation Syndrome (MAS)/HLH

Stay tuned:
more
information
on toxicity
management
later in this
program



CAR T side effects - CRS

Eligibility considerations for CAR

Disease

- Relative stability during CAR T manufacturing (~2-6 weeks)
- Bridging therapy (chemo, RT, steroids, lenalidomide, ibrutinib)
- CNS control

Patient

- Adequate cell counts
- DVT, bleeding, infection, neuro disorders
- Functional status: at screen vs. day of CAR T infusion

Other

- Social support, reimbursement
- Availability of tocilizumab for CRS management

In development: Novel CAR T therapies in clinical trials

Trial	Indication	Treatment	Target antigen	Phase
NCT03651128	R/R multiple myeloma	bb2121	BCMA	3
NCT03971799	R/R pediatric AML	CD33CART	CD33	1/2
NCT04186520	R/R B cell malignancies	CAR-20/19 T cells	CD19, CD20	1/2
NCT04109482	R/R BPDCN, AML, HR MDS	MB-102	CD123	1/2
NCT03287817	Diffuse large B cell lymphoma	AUTO3	CD19, CD22	1/2
NCT02690545	R/R HL and NHL	ATLCAR.CD30	CD30	1/2

Conclusions

- Many immunotherapy options for hematological malignancies
- Checkpoint inhibitors for Hodgkin lymphoma and PMBCL high response rate, excellent tolerance, durable responses if CR
- Blinatumomab and inotuzumab for ALL effective salvage, deeper remissions
- Polatuzumab vedotin for DLBCL effective salvage, potential to become frontline
- CAR T therapy ever-increasing indications; patient selection and toxicity management still concerns

Additional Resources

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³ and Madhay V. Dhodapkar^{44*}

Position article and guidelines

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of multiple myeloma

Nina Shah, ¹ Jack Aiello, ² David E Avigan, ³ Jesus G Berdeja, ⁴ Ivan M Borrello, ⁵ Ajai Chari, ⁶ Adam D Cohen, ⁷ Karthik Ganapathi, ⁸ Lissa Gray, ⁹ Damian Green, ¹⁰ Amrita Krishnan, ¹¹ Yi Lin, ^{12,13} Elisabet Manasanch, ¹⁴ Nikhil C Munshi, ¹⁵ Ajay K Nooka, ¹⁶ Aaron P Rapoport, ¹⁷ Eric L Smith, ¹⁸ Ravi Vij, ¹⁹ Madhav Dhodapkar²⁰

Acknowledgements

Some figures created using Biorender.com

Case Studies

Case Study 1

A 58 year old woman with relapsed diffuse large B-cell lymphoma (DLBCL), prior treatments included R-CHOP, R-GDP followed by autologous stem cell transplant. She is now day 3 of axicabtagene ciloleucel CD19 CAR T-cell therapy. She develops a fever to 38.5 C, as well as a new oxygen requirement, now needing 2L NC O2 to maintain saturation above 92%.

What is the next step in the management for the patient's symptoms?

- A. Anakinra
- B. Glucocorticoids
- C. Tocilizumab
- D. Lumbar puncture

Case Study 1 (contd)

The patient is treated with tocilizumab 8 mg/kg x1 and her fever and oxygen requirement resolves within 8 hours. 2 days later, she becomes disoriented and is unable to perform serial 10s. Additionally, her handwriting is erratic, and she has developed moderate expressive aphasia. A CT of the head, as well as an MRI of the brain are performed which do not show any acute abnormalities. A neurology consult has been initiated.

What is the next step in management?

- A. An additional dose of tocilizumab
- B. Lumbar puncture
- C. Glucocorticoids
- D. Anakinra

Case Study 1 (conclusion)

• The patient is treated with dexamethasone 10 mg every 6 hours for initial management of immune effector cell-associated neurotoxicity syndrome (ICANS). Over the course of the next 48 hours, her confusion improves, although she continues to have some mild aphasia for the next 5 days. Her steroids are tapered, and she is discharged from the hospital 2 days after her neurological toxicity resolved.

Case Study 2

A 24 year-old gentleman with a history of stage IVB Hodgkin lymphoma, presents to your clinic for a 2nd opinion after his oncologist recommended front-line therapy with ABVD.

- 1. What is another option for his disease?
 - A. Brentuximab-AVD
 - B. Brentuximab/bendamustine
 - C. Nivolumab
 - D. Polatuzumab-AVD

Case Study 2

A. Brentuximab-AVD

Brentuximab vedotin is an antibody-drug conjugate that targets CD30, and when internalized, releases the potent microtubule-disrupting agent monomethyl auristatin E (MMAE) which eventually leads to cell death. It's efficacy in the front-line setting was established in the ECHELON-1 trial, where patients with untreated stage III or IV Hodgkin lymphoma were randomized to either ABVD chemotherapy or brentuximab-AVD. The 2-year modified PFS rate was 82.1% in the brentuximab-AVD group vs 77.2% in the ABVD group.

Case Study 2 (contd)

The 24 year-old gentleman receives ABVD chemotherapy. 15 months later, he relapsed and received R-ICE salvage followed by consolidation with autologous stem cell transplant. 12 months after transplant, he relapsed again and received brentuximab monotherapy and was refractory after 3 cycles. He has come to your office today to discuss next steps in the management of his malignancy.

- 1. Which of the following immunotherapy treatments is FDA approved in this setting?
 - A. Pembrolizumab
 - B. CAR T-cell therapy
 - C. Nivolumab
 - D. Both A and C

Case Study 2 (contd)

D. Both A and C

Nivolumab has shown efficacy in the CheckMate 205 study, where patients who had failed brentuximab after autologous stem cell transplant had a ORR of 68% to nivolumab, with 13% of patients achieving CR.

Pembrolizumab has shown efficacy in the KEYNOTE-087 study, where patients who progressed after autologous stem cell transplant and brentuximab had an ORR of 78.3% with 26% of patients achieving CR.

