Biomarkers: How to Select the Correct Patient for Which Therapy

Gregory A Daniels MD PhD UC San Diego Moores Cancer Center

Disclosures

• None

Goals

- Appreciate the value and limitations of biomarkers in selecting therapy.
- Understand the difference between prognostic and predictive biomarkers.
- Have a general overview of biomarkers in cancer therapy.
- Discuss possible biomarkers in immune therapy.

Key Concepts

- Biomarkers should be practical-cost, timing, reproducible
- Biomarkers ideally reflect therapeutic mechanisms of action and select the subset of patients most likely to respond
- Ideally, biomarkers provide a clear yes/no stratification and a basis for combination therapy

How to Select Therapies?

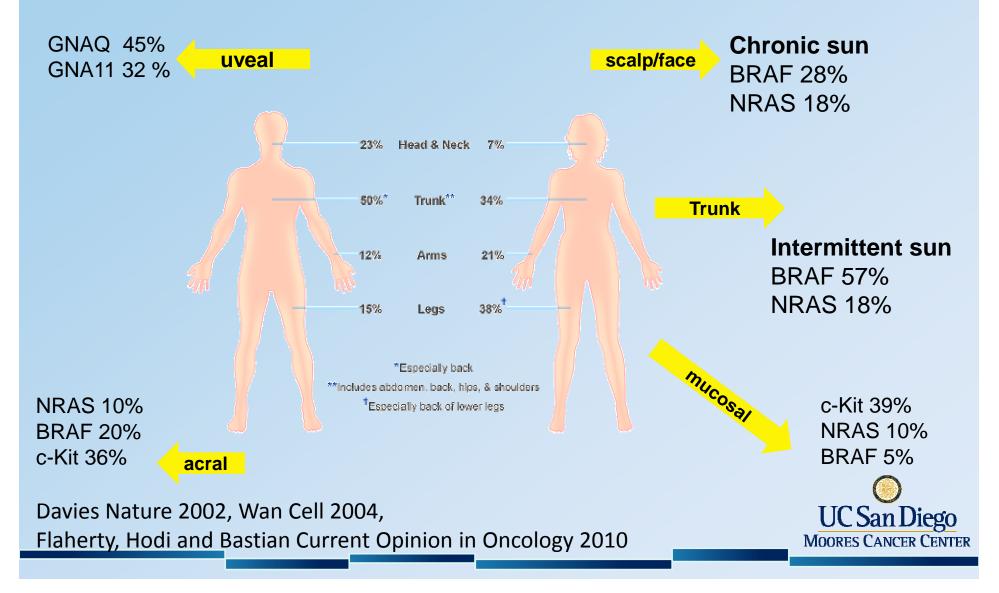
Genomics

- Targeted agents based upon somatic mutations
- Tumor types—ie Vismodigen in BCC
- Clinical
 - Pace of disease, tumor burden and performance status
 - Tumor types—ie IL2 for melanoma, RCC

Types of Biomarkers

Now

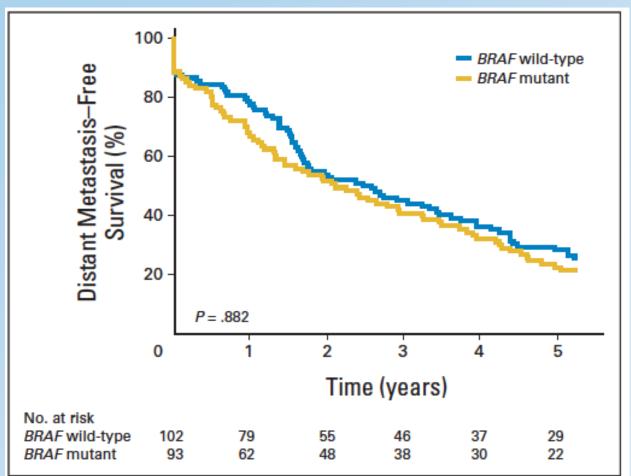
- Peripheral blood
 - Cytokines
 - Cell subtypes
 - Clonal frequency
- Tissue
 - IHC
 - Expression profiles
 - Genomics

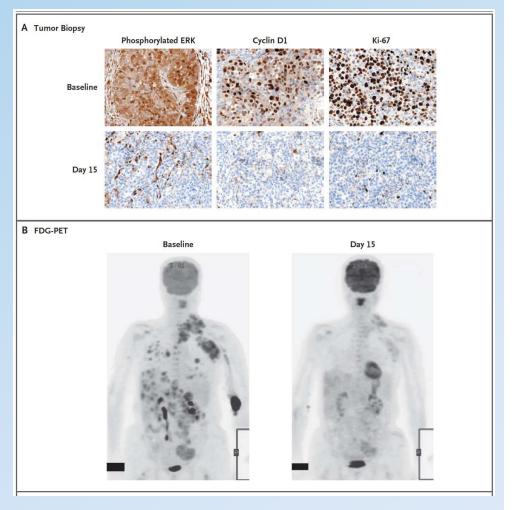

Developing

- Single cell networking profiling
- Multispectral imaging on tissue sections Single cell networking profiling
- Non-invasive immune phenotyping

Longo J Immunol 2012

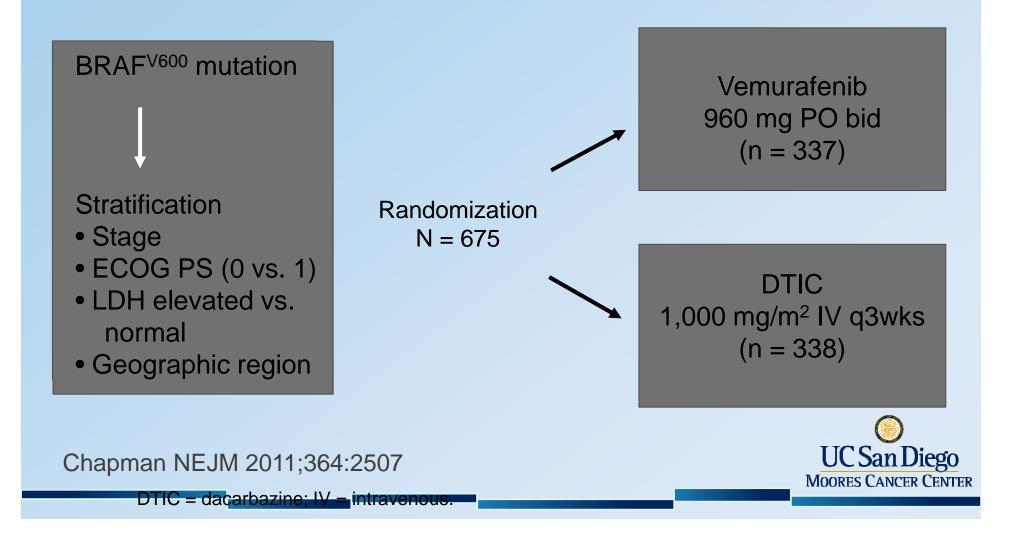
Patter of Somatic Mutations Reflects Causal Origins

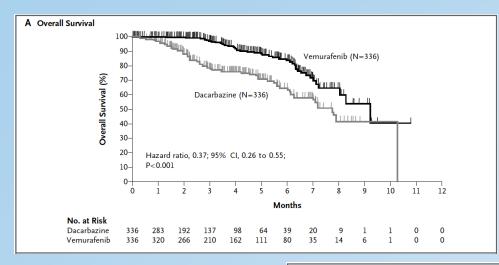


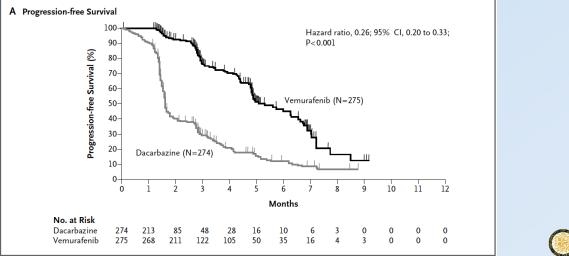

Fig 1. Disease-free interval from diagnosis of first-ever melanoma to first distant recurrence.

Long JCO 2011

BRAF Mutations Predictive of Response


- Somatic mutation
 - Early event that drives phosphorylation of the ERK pathway
 - Testing done on fresh or fixed tumor samples
- Inhibits BRAF V600E or V600K mutated proteins
- Stops cell proliferation


Flaherty NEJM August 2010



Phase 3 Trial Comparing Vemurafenib to DTIC in Patients With V600 Mutated BRAF Melanoma

Improved Progression Free and Overall Survival

UC San Diego

MOORES CANCER CENTER

Chapman NEJM 2011;364:2507

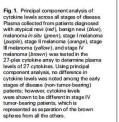
Immune Biomarkers "Issues"

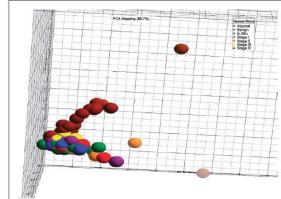
 Systemic-can one measure peripheral changes that guide therapy? Cytokines, VEGF, T cell markers, etc

Tumor microenvironment

- Primary tumor
- Metastasis
- Dynamic, response to therapy, heterogeneity, location
- Measurements related to mechanism of action

Systemic Changes with Cancer Progression


Clinical category	Total patients	Age, mean ± SD (range)	% Female	Assayed immune variables				
				Cell subset	Plasma cytokines	Tetramer	T-cell function assay	RNA array
Benign nevi	34	51 ± 12 (21-71)	68	26	34	7	2	0
Atypical/dysplastic	25	52 ± 16 (25-84)	44	22	16	11	1	0
In situ melanoma	36	61 ± 16 (26-84)	36	30	35	16	3	0
Stage I	45	54 ± 17 (21-82)	44	36	44	16	4	0
Stage II	16	55 ± 17 (22-81)	44	11	12	9	0	0
Stage III	16	53 ± 19 (23-83)	44	14	16	6	1	0
Stage IV	37	56 ± 14 (28-85)	43	32	30	27	16	24


Table 1. Study patient population distributed by clinical category, age, sex, and assayed immune variables

Nevala CCR 2009

Systemic Changes in Melanoma Patients

Higher levels of IL4, IL5, IL10 and IL13 in Stage IV melanoma patients

Higher circulating Treg cells and PD1 positive T cells

Decrease in functional recall antigens

General "Th2" bias with stage progression

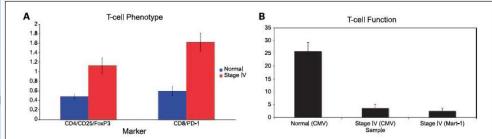


Fig. 2. Assessment of T-cell phenotype and function in healthy donors and stage IV melanome patients. The number of Tcells exhibiting the FoxP3 (regulatory T cells) or PD-1 phenotype in peripheral blood was determined in healthy donors and stage IV melanome patients (A). Frequency of FoxP3-positive cells was measured by three-color flow cytometry: CD4-PC5, CD25-PE, and FoxP3-Akea Flour 488. Mean ± SD percentage of FoxP3-positive cells was determined from the CD4 and CD25 double-positive population. Mean ± SD frequency of PD-1* cells was measured from the CD4 and the to PB* positive cells was compared among normal volunteers and patients with stage IV melanome (B).

Nevala CCR 2009

General Shift in Immune Regulation as Tumors Advance

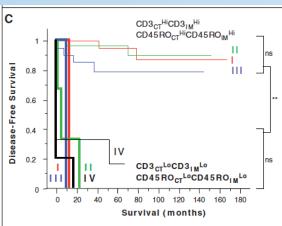
- Melanoma patients have a bias for "Th2" state
- Higher VEGF levels may mark and contribute to this state
- Peripheral measures also suggest a general dysfunction
 - Higher PD1 positive cells
 - Reduction in functional recall antigens
- Multiple examples of systemic marker changes as tumors progress

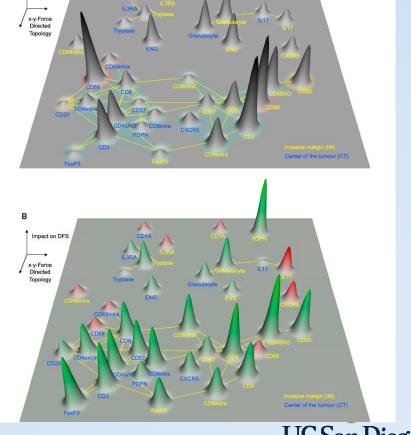
Tumor Microenvironment

- Primary tumors
- Metastatic lesions

Immune Score Prognostic in Primary CRC

- Leukocyte infiltration is a characteristic of almost all malignant tumors and these infiltrates include tumor associated macrophages, neutrophils, mast cells, NK cells, lymphocytes.
- Tumor progression depends upon the host immune response
- Immune 'contexture'=nature, functional orientation, density and location influence risk of relapse in primary tumors.

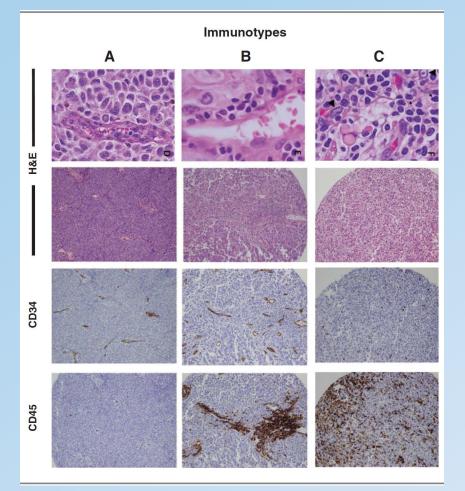


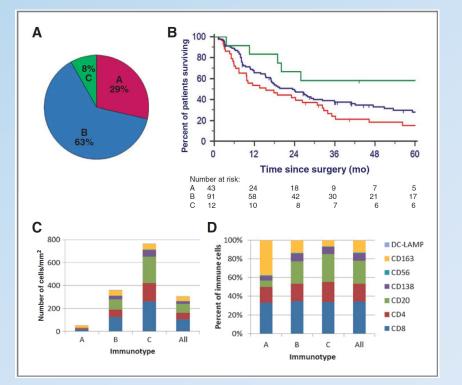

Galon Science 2006

Immune Response Prognostic

Cell density

 Type, density and location of immune infiltration predicts response in patients with colorectal CA patients





Galon Science 2006

Bindea Cell Immunity 2013 UC San Diego

Metastatic Melanoma

Erdag Cancer Research 2012

GIST

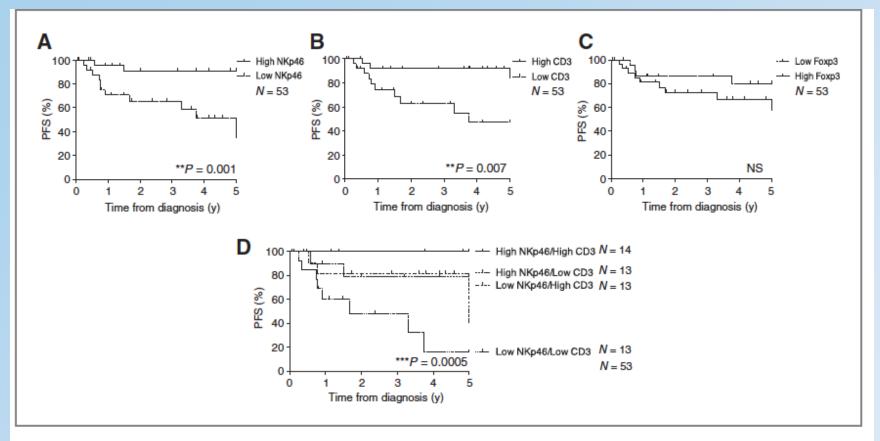


Figure 5. Prognostic value of T and NK cell infiltrates in localized GIST. A–C, PFS of 53 patients with localized GIST according to the median values of NKp46, CD3, or Foxp3⁺ cells infiltrating the tumor at diagnosis (left, middle, and right). D, Kaplan–Meier curves of PFS obtained by stratifying the entire cohort of primary GIST into 4 groups according to the median of NKp46⁺ and CD3⁺ cells. Multivariate analyses are presented in Table 1.

UC San Diego

MOORES CANCER CENTER

Rusakiewicz Cancer Research 2013

Cell Populations Predict Outcome

- Increases tumor associate neutrophils is associated with worse outcomes
- Independent predictor of DFS and OS
- Seen in multiple tumor types

Wang J of Translational Med 2014

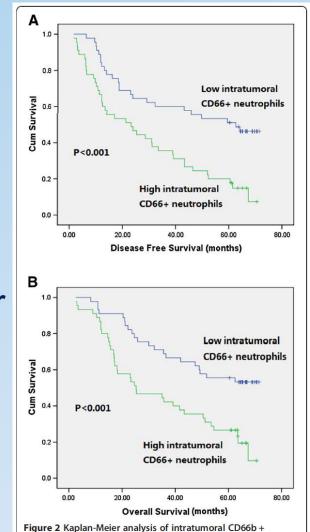


Figure 2 Kaplan-Meier analysis of intratumoral CD66b + neutrophils of 90 patients with esophageal squamous cell carcinoma. Increased intratumoral neutrophils were significantly associated with decreased disease-free survival (A) and overall survival (B).

Challenges with Characterizing TME

- Sampling tumors
 - Cell populations vary per location of the tumor
 - Invasive
- Quantitative assessments
 - Time consuming
 - Counting
 - Controls
 - Reproducibility
- Dynamic
- Multiple cell populations

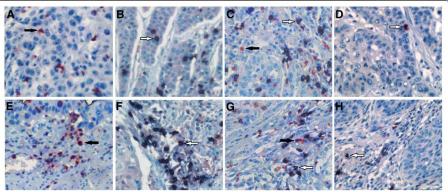
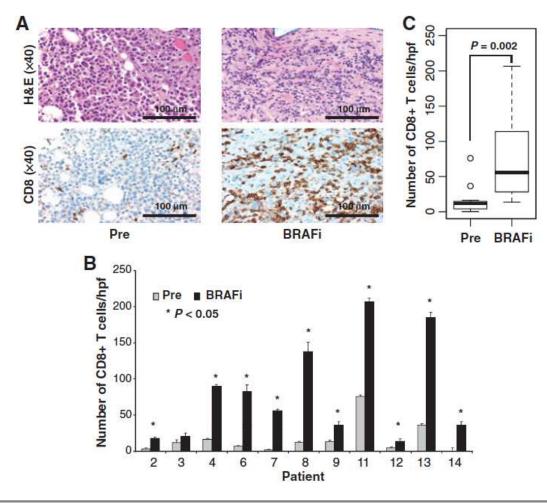
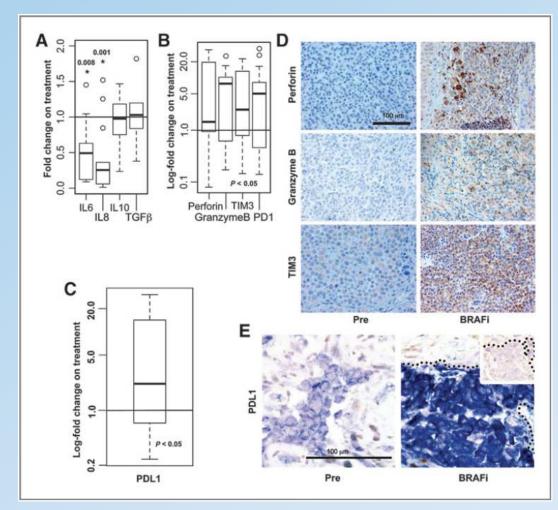


Figure 1 Representative examples of immunostaining of CD66b + neutrophils (in red) or CD8+ lymphocytes (in black) from intratumoral (A, B, C, D) or peritumoral (E, F, G, H) areas of esophageal squamous cell carcinoma (x400). A, E infiltrated mainly by CD66b + neutrophils (black arrow); B, F infiltrated mainly by CD8+ lymphocytes (white arrow); C, G infiltrated by both CD66b + neutrophils and CD8+ lymphocytes; D, H infiltrated by low density of the inflammatory cells.

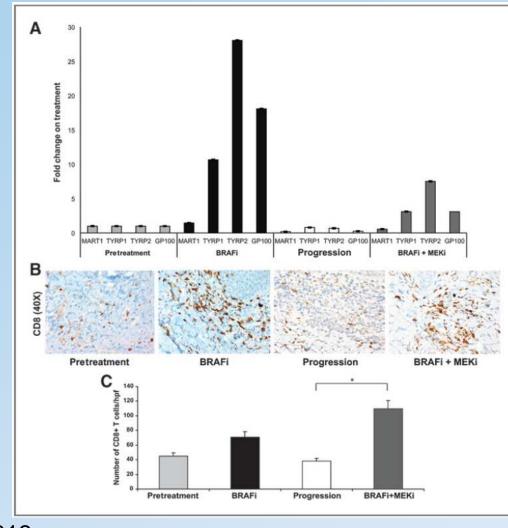

Wang J of Translational Med 2014

Tumor Microenvironment

Changes associated with therapy

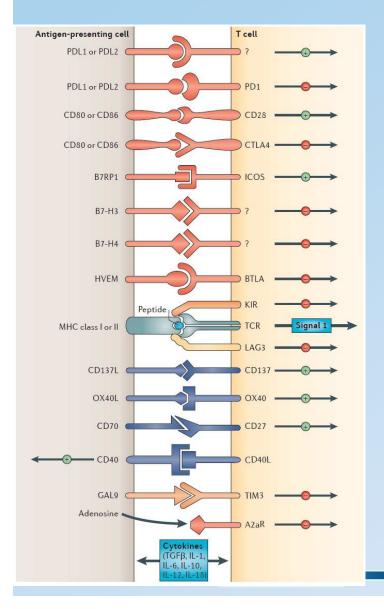

BRAF Inhibition is Associated with Increase in CD8 T-cell Infiltrate

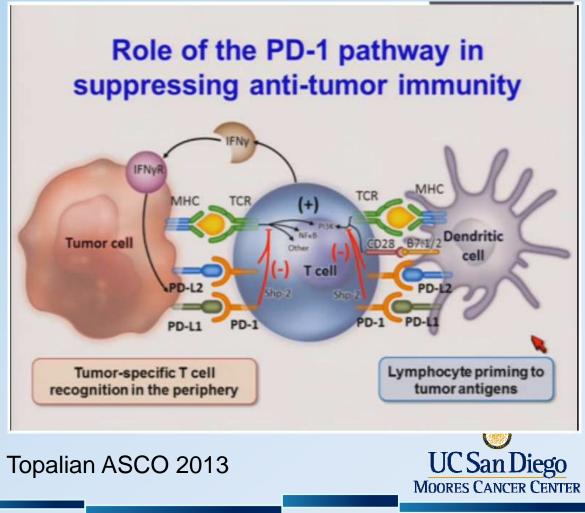
Frederick CCR 2013


BRAF Inhibition is Associated with Expression of T Cell Exhaustion Markers

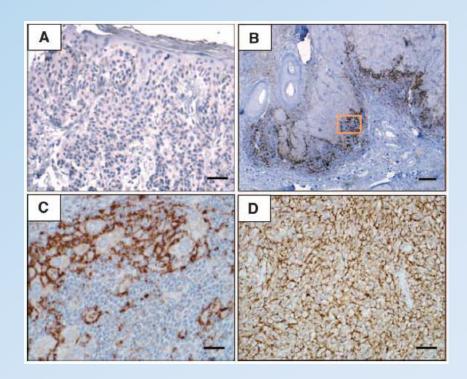
Frederick CCR 2013

T cell Depletion Associated with Progression


Frederick CCR 2013

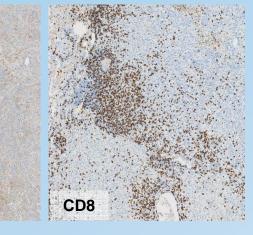

Tumor Micoroenvironment

Biomarkers related to mechanism of action


Immune Check Points

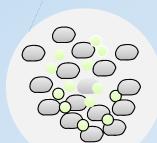
PDL1 Expression

- PDL1 (B7-H1) expressed by melanocytes adjacent to IFN secreting T cells
- Expression of PDL1 associated with improved survival
- ?PDL1 marks a successful immune response?



Taube Science Translational Medicine 2012

Adaptive Regulation of Tumor PD-L1 Expression May Be an Indicator of Local TILs Attacking Tumor


Anti-PD-L1

Baseline

 T-cells and PD-L1+ tumor cells co-localize

 Focal PD-L1 expression may represent interface between cancer cells and immune cells (antitumor T-cell attack may be controlled by tumor PD-L1 or PD-L1 expressing tumor cells immune cell expression)

PD-L1

 T-cell mediated killing of tumor cells leads to T-cell proliferation and activation

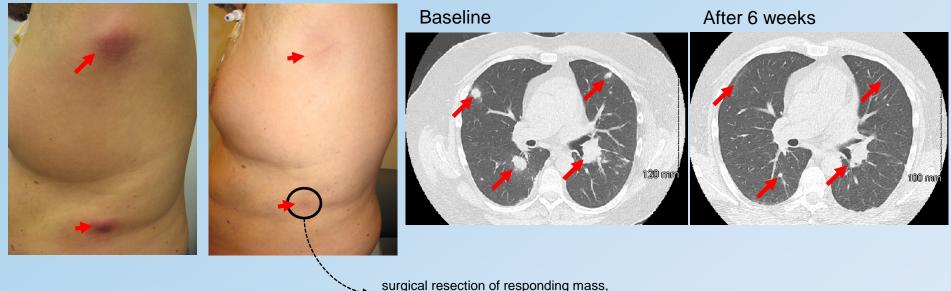
On-Tx

 Activated T-cells release IFN_y and may induce PD-L1 expression in neighboring tumor cells UC San Diego MOORES CANCER CENTER

Melanoma

John D Powderly ASCO 2013

PD-L1

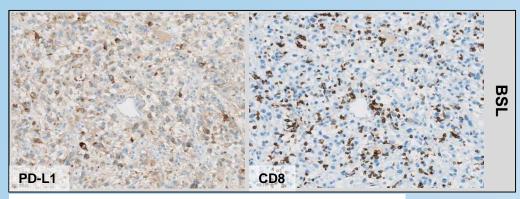

Tumor cells

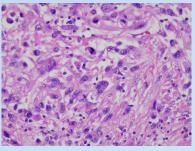
TIL/Immune cells

Serial Biopsy in a PD-L1+ RCC Patient with a Rapid Response to MPDL3280A (antiPDL1)

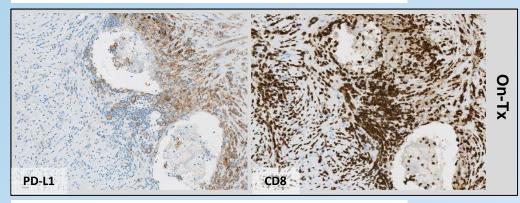
Baseline

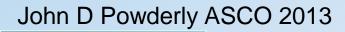
After 4 weeks

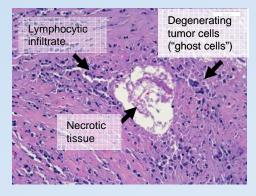



0.75 x 0.75cm at time of resection

51 yo male with RCC s/p L nephrectomy, Sunitinib, XRT T9, Temsirolimus Tumor PD-L1+

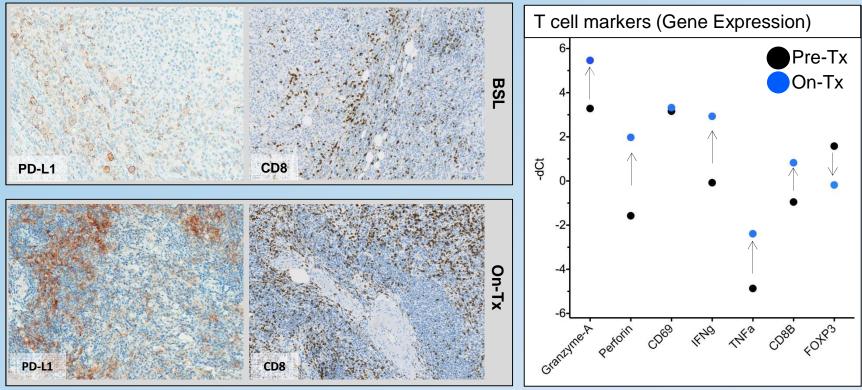

Serial Biopsy in a PD-L1+ RCC patient with a Rapid Response to MPDL3280A (antiPDL1)




Baseline H&E: RCC

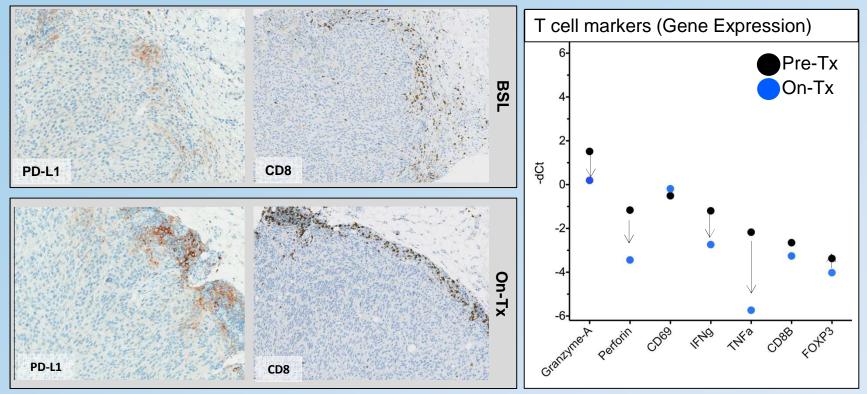
Biomarkers at baseline: PD-L1+ Frequent CD8+ T-cells

Biomarkers at week 4: PD-L1+ Dense CD8+ T-cell infiltrate



On-treatment H&E: dense lymphocytic infiltrate and *no viable* tumor cells seen

MPDL3280A Increased T-cell Activation in PD-L1+ Patient Responding to Treatment


Possible MoA of response to MPDL3280A:

Melanoma

- Pre-existing intra-tumoral CD8+ T-cells
- Increase trafficking or proliferation of intra-tumoral CD8+ cells
- Increased T-cell activation and cytotoxicity (e.g. Granzymes and Perforin production)

PD-L1- Patient Not Responding to MPDL3280A Exhibits Low Frequency of Intratumoral T-cells

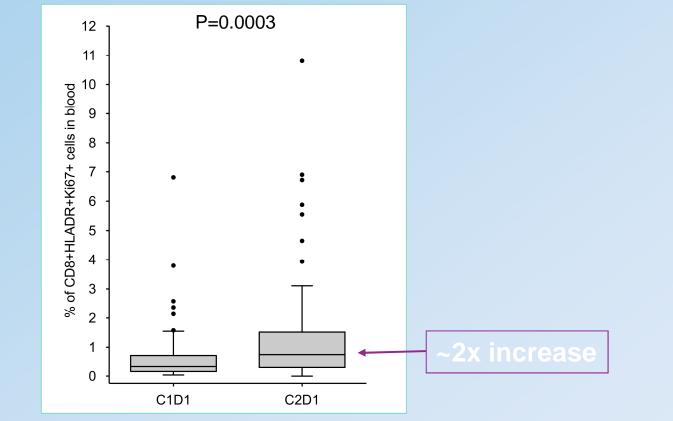
Possible MoA of resistance:

Melanoma

- CD8+ T-cells remain at the edge of the tumor (possible impaired trafficking)
- No increase in T-cell cytotoxicity
- No T cell recognition of cancer antigens in this patient

Adaptive Increase in PD-L1 Expression is Prominent in Patients Responding to MPDL3280A

Summary of responses to MPDL3280A in paired biopsies:


Max SLD Decrease [†]	Increase in tumor PD-L1*
>30% reduction	4/4 (100%)
0-30% reduction	2/6 (33%%)
0-20% increase	1/10 (10%)
>20% increase	0/4 (0%)
Unevaluable SLD (due to tumor excision**)	2/2 (100%)

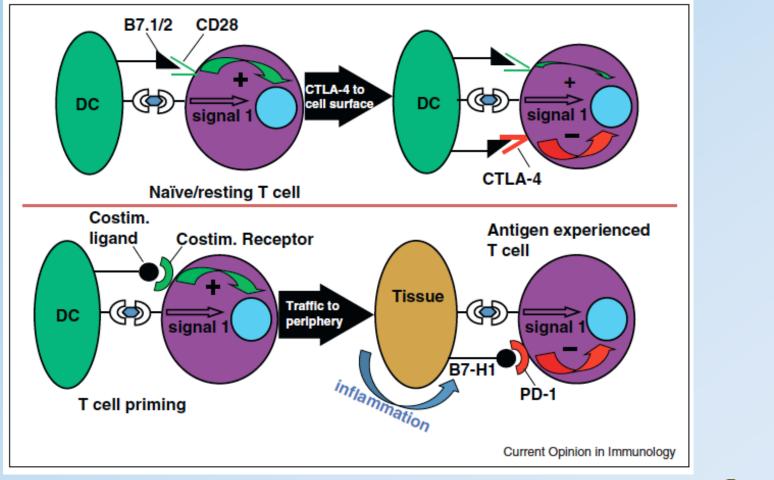
- # of patients with increased PD-L1 expression following Tx with MPDL3280A, including sterilized tumor with PD-L1+ immune cells; Increase in tumor PD-L1
- †at any time point in study
- ** excision of responding tumor for purposes of biomarker analysis rendered the patient UE for max SLD change

MPDL3280A Leads to Increased Frequency of Activated T-cells in Blood

Proliferating activated T-cells (CD8+/HLA-DR+/Ki67+) are more frequent at C2D1 in blood

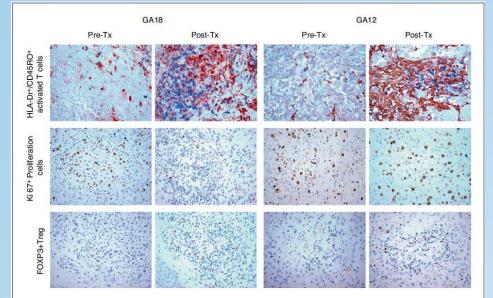
UC San Diego

MOORES CANCER CENTER


 Activated T-cell proliferation in blood may serve as a pharmacodynamic biomarker of MPDL3280A treatment

Why Does Initial PDL1 Expression Fail to Predict Response?

PDL-1 expression and response rate							
	N	PDL1 + Positive	PDL1 - Negative				
Nivolumab (Topalian, NEJM, 2012)	42	9/25 (36%)	0/17 (0%)				
Nivolumab (Weber #9011)	44	8/12 (67%)	6/32 (19%)				
MPDL3280A (Hamid #9010)	30	4/15 (27%)	3/15 (20%)				
Nivolumab/ Ipilimumab (Callahan #3003)	27	4/10 (40%)	8/17 (47%)				
Nivolumab (Grosso #3016)	34	7/16 (44%)	3/18 (17%)				
Presented by: Waiter J. Urba, MD, PhD		PRESENTED AT	ASC Annual 13 Meeting				


Immune Modulation

Topalian Current Opinion in Immunology 2012

Immune Biomarker

Characterization of immune infiltrate 1 to 2 months after first doses of Tremilimumab

- T-cell infiltrates did not differentiate clinical response.
- CTLA4 blockade leads to frequent immune responses to CTLA4 blockade with infrequent clinical evidence of tumor regression.

Huang Clinical Cancer Research 2011

Predictive Markers

- Dynamic
- Will vary with tumor type
- Require interrogation of the microenvironment
- Multiple immune modulators are becoming available that can be utilized in a rationale sequence and/or combination

Phenotyping Immune Cell Subsets

- Immune histochemistry limited to one stain per section
- FACS of solid tumors
 - Lack spatial definition
 - Need for nonfixed tissue
- Expression analysis
 - Loss of cellular data

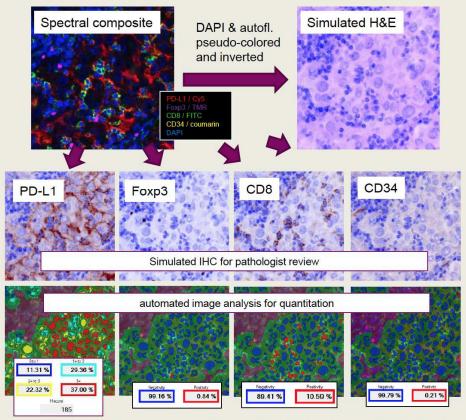
 Ideally need to understand complex multimarker phenotypes

Technologies to Assess TME

Imaging

- Not invasive, dynamic
- Resolution, number of markers
- Liquid biopsy
 - Minimally invasive, dynamic
 - Resolution
- Functional assays
 - Costly
 - Limited to measurable targets

Spatial Phenotyping


- Multiplex staining of a single section
- Multispectral imaging to allow quantitation and separation of chromogens or fluorophores
- Training based upon morphologic image analysis
- Automation

Mansfield http://www.mlo-online.com March 2014

Quantitative IHC

Example - PD-L1 in melanoma

- Quantitative
- Spatial information
- Dynamic microenvironment monitoring
 - Biopsy at clinical changes
 - Impact of therapy

Samples courtesy Bernie Fox, Providence Cancer Center, OR; PD-L1 Antibody (Clone E1L3N) courtesy Cell Signaling Technology, Inc

Images courtesy of Cliff Hoyt, Kristin Lane and Chichung Wang, melanoma samples courtesy Bernie Fox, Providence Cancer Center, OR, PD-L1 Antibody (Clone E1L3N) courtesy Cell Signaling Technology, Inc.

Take Away

- Given the multiple mechanisms underlying ineffective chronic inflammation, markers may vary between tumor types and even within individuals.
- Immune changes are dynamic and relational implying that predictive biomarkers may need to be assessed over time

Questions?

