Impact of Obesity on Immunotherapy: Both the Good and the Bad

William J. Murphy, Ph.D. Distinguished Professor UC Davis School of Medicine

Preclinical Modeling of Cancer Immunotherapy: Issues in "in vivo veritas"

Preclinical modeling needs to better reflect children patient demographics

Variables in Clinical and Preclinical Modeling

Obesity Epidemic: Common, Serious, Costly and Still on the Rise

• Prevalence in USA:

- Nearly 38% in adults
- Higher among middle-aged (40-59 yrs: 40.2%) and older (>60 yrs: 37.0%)
- Health Risks:
- Increased risk of morbidity from hypertension, type 2 diabetes, stroke, gallbladder disease, osteoarthritis, sleep

Therefore, the arising pandemic of obesity will likely change the phenotype of a "typical" patient seen in the clinic

What is the impact of age and obesity on cancer immunotherapy outcome in preclinical mouse models?

What are the immune effects, tumor progression and impact on immunotherapy efficacy/toxicities?

Aged Mice Succumb to Multi-organ Failure and Cytokine Storm Following Systemic Immunostimulatory Therapy

Obesity and Immune Status: "Inflammaging"

- Increased "meta-inflammation" in obesity results in excessive pro-inflammatory responses following systemic immunostimulation (i.e. cytokines, LPS, etc...) which is mediated primarily by macrophages
- What are the effects of obesity on T cell responses when checkpoint blockade to PD1/PDL1 is applied?

Anti-PD-1 Monotherapy Therapy Treatment Schema

Control and DIO C57BL/6

Increased Efficacy of PD-1 Blockade in B16-bearing DIO Mice

PD-1 Blockade Results in Increased T cell Infiltration in DIO Mice Compared to Tumor-bearing Control Diet Mice

PD-1 Blockade Inhibits Visceral B16 Metastases in DIO Mice

Variable	Overall (n=250)	BMI < 30	BMI ≥ 30 (n=81)
BMI Mean (SD)	27.4 (7.3)	23.4 (3.6)	35.7 (6.2)
	()		
BMI Range	15 -56.6	15 - 29.9	30.0 - 56.6
Age Mean (SD)	61.7 (13.7)	62.6 (14.6)	59.70 (11.52)
Age Range	23, 91	23, 91	36, 87
Sex			
M (%)	114 (45.6)	80 (47.3)	34 (42.0)
F (%)	138 (54.4)	89 (52.7)	47 (58.0)
Cancer Type			
Lung (%)	55 (22.0)	44 (26.0)	11 (13.6)
Melanoma (%)	45 (18.0)	23 (13.6)	22 (27.2)
Ovarian (%)	20 (8.0)	17 (10.1)	3 (3.7)
Other (%)	130 (52.0)	85 (50.3)	45 (55.6)

ECOG			
0 (%)	70 (28.00)	48 (28.4)	22 (27.2)
1 (%)	134 (53.6)	87 (51.5)	47 (58.0)
2 or More (%)	46 (18.4)	34 (20.1)	12 (14.8)
Prior Therapy			
1 (%)	44 (17.6)	24 (14.2)	20 (24.7)
2 (%)	91 (36.4)	66 (39.1)	25 (30.9)
3 or More (%)	115 (46.0)	79 (46.7)	36 (44.4)
irAE (%)	52 (20.8)	32 (18.9)	20 (24.7)
irAE type			
Colitis	23	13	10
Pnuemonitis	11	8	3
Thyroid	14	9	5
Colitis + Thyroid	4	2	2

Obesity Promotes the Efficacy of PD-1/PD-L1 Blockade

Obesity Promotes the Efficacy of PD-1/PD-L1 Checkpoint Blockade in Cancer Patients

Hematopoietic Stem Cell Transplantation (HSCT)

- Hematopoietic stem cell transplantation (HSCT), both autologous and allogeneic, is a potential curative treatment for a variety of hematologic diseases, including leukemias/lymphomas.
- Allogeneic HSCT is associated with graft-versus-host disease (GVHD) which is a significant cause of morbidity. GVHD results from the immunological attack by donor allogeneic T cells on genetically-disparate and immunocompromised recipient tissues. It is also associated with the beneficial graft-versustumor (GVT) effects resulting in lower relapse compared to autologous HSCT
- There are 2 types of GVHD: acute (rapid and inflammatory) and chronic (delayed and fibrotic) with distinct pathogenesis and outcomes.
- The impact of obesity on alloHSCT outcomes is not clear.

Obesity resulted in increased acute gut GVHD and mortality in a MHC-mismatched alloHSCT model

Obesity amplifies aGVHD "Cytokine Storm"

DIO vs. control

Minor MHC-mismatch chronic skin GVHD model has DIO recipients instead showing lethal aGVHD

Obesity (>30 BMI) results in poorer outcome in adult patients post-alloHSCT

вмі	# patient	Age	Relationship with donors	Conditioning	Disease
< 30	22	18-70	Unrelated	Non-myeloblative (13), Full preparation (9)	Acute myeloid leukemia (10), Acute lymphoid leukemia (2), Myelodysplastic Syndromes (4), non-Hodgkin lymphoma (2), others (4)
> 30	15	31-71	Unrelated	Non-myeloblative (8), Full preparation (7)	Acute myeloid leukemia (6), Acute lymphoid leukemia (3), Myelodysplastic Syndromes (3), Chronic myeloid leukemia (2), B-cell/Small lymphocytic lymphoma (1)

Impact of Obesity on Immunotherapy Efficacy

Impact of Obesity on Immunotherapy Efficacy

Cancer immunotherapy targeting PD-1/PD-L1

Impact of Obesity on Immunotherapy Efficacy

CONCLUSIONS: It is essential to incorporate human modifying factors in preclinical modeling as markedly different effects can result depending on the immunotherapy applied.

Acknowledgments

NIH R01 CA214048

Tisch Cancer Institute Other labs in UCD Murphy Lab – UC Davis Robert B. Rebhun Arta M. Monjazeb Sita S. Withers Robert J. Canter Dennis J. Hartigan-O'Connor Lam T. Khuat Gema Méndez-Lagares Ziming Wang Alice F. Tarantal Cordelia Dunai R. Rivkah Isseroff Catherine T. Le **Emanual Maverakis** Jesus I. Luna Alexander Merleev Weihong Ma Karen Kelly Kevin M. Stoffel Ian R. Sturgill NIH R01 CA095572

Past Lab Members:

Annie Mirsoian Steve K. Grossenbacher Ethan G. Aguilar Christine M. Minnar

University of Oklahoma

Raid Aljumaily Sami Ibrahimi Sarbajit Mukherje, Michael Machiorlatti Sara K. Vesely

James Ferrara Harvard Medical School Dan L. Longo University of Minnesota

Bruce R. Blazar Thomas S. Griffith Shernan Holtan **Daniel Knights Robin Shields-Cutler**

Yale University

Kurt A. Schalper

