

Immunotherapy of Hematologic Malignancies

Timothy S. Fenske, MD

Medical College of Wisconsin

Disclosures

- Celgene Corporation, Pharmacyclics LLC, Sanofi, Contracted Research
- Celgene Corporation, Sanofi, Fees for Non-CME/CE Services Received Directly from a Commercial Interest or their Agents
- I will be discussing non-FDA approved indications during my presentation.

Patient Selection Criteria for Immune-Based Approaches

- Expression of the desired antigen for CAR-T therapy:
 - e.g. CD19 or BCMA for CAR-T cells
- Disease burden
 - <30% in certain CAR-T trials to minimize the risk of cytokine release syndromes
- Expression of the ligand for checkpoint inhibition
 - e.g. PD-L1 expression for anti-PD-1 therapy
- Presence of co-morbidities:
 - e.g. Presence of active autoimmune diseases which could be worsened

Lymphomas

Several monoclonal antibodies targeting T-cell lymphomas

PD-L1 Expression in Hodgkin's Lymphoma

- Reed-Sternberg cells express both PD-L1 and PD-L2
- Expression of ligands increases with advanced disease
- Unclear whether PD-L1/L2 expression correlates with response to treatment

Anti-PD-1 in Hodgkin's Lymphoma

T cell

Variable	All Patients (N=23)	Failure of Both Stem-Cell Transplantation and Brentuximab (N=15)	No Stem-Cell Transplantation and Failure of Brentuximab (N = 3)	No Brentuximab Treatment (N=5)†
Best overall response — no. (%)				
Complete response	4 (17)	1 (7)	0	3 (60)
Partial response	16 (70)	12 (80)	3 (100)	1 (20)
Stable disease	3 (13)	2 (13)	0	1 (20)
Progressive disease	0	0	0	0
Objective response				
No. of patients	20	13	3	4
Percent of patients (95% CI)	87 (66–97)	87 (60–98)	100 (29–100)	80 (28–99)
Progression-free survival at 24 wk — % (95% CI)‡	86 (62–95)	85 (52–96)	NCI	80 (20–97)
Overall survival — wk				
Median	NR	NR	NR	NR
Range at data cutoff¶	21–75	21–75	32–55	30–50

^{*} NC denotes not calculated, and NR not reached.

 $[\]dagger$ In this group, two patients had undergone autologous stem-cell transplantation and three had not.

[‡] Point estimates were derived from Kaplan–Meier analyses; 95% confidence intervals were derived from Greenwood's formula.

[§] The estimate was not calculated when the percentage of data censoring was above 25%.

[¶] Responses were ongoing in 11 patients.

Anti-PD-1 in Hodgkin's Lymphoma

T cell

The estimate was not calculated when the percentage of data censoring was above 25%.

 \P Responses were ongoing in 11 patients.

Nivolumab in R/R B Cell Malignancies: Efficacy

Types	N	ORR, n (%)	CR, n (%)	PR, n (%)	SD, n (%)
B cell lymphoma	29	8 (28)	2 (7)	6 (21)	14 (48)
DLBCL	11	4 (36)	1 (9)	3 (27)	3 (27)
FL	10	4 (40)	1 (10)	3 (30)	6 (60)
T cell lymphoma	23	4 (17)	0	4 (17)	10 (43)
Mycosis fungoides	13	2 (15)	0	2 (15)	9 (69)
PTCL	5	2 (40)	0	2 (40)	0
Multiple myeloma	27	0	0	0	18 (67)
Primary mediastinal B- cell lymphoma	2	0	0	0	2 (100)

BiTE: Blinatumumab

- Combines the F(ab) of an antibody with an anti-CD3 F(ab)
- Lacks the Cf region
- Requires continuous infusions
- Shown considerable activity in:
 - Follicular NHL
 - DLBCL
 - ALL

Chimeric Antigen Receptor for CD19 (CTL019)

Redirecting the Specificity of T cells

- Gene transfer technology stably expresses CARs on T cells^{1,2}
- CAR T cell therapy takes advantage of the cytotoxic potential of T cells, killing tumor cells in an antigen-dependent manner^{1,3}
- Persistent CAR T cells consist of both effector (cytotoxic) and central memory T cells³
- T cells are non-cross resistant to chemotherapy
- 1. Milone MC, et al. Mol Ther. 2009;17:1453-1464.
- 2. Hollyman D, et al. J Immunother. 2009;32:169-180.
- 3. Kalos M, et al. Sci Transl Med. 2011;3:95ra73.

CAR T-cell therapies in DLBCL

Efficacy and safety

Society for Immunotherapy of Cancer

	CTL019 ¹	КТЕ	-C19 ^{2,3}	JCAR017 ^{4,5}
Disease state	r/r DLBCL	r/r DLBCL	r/r TFL/PMBCL	r/r DLBCL, NOS, tDLBCL, FL3B
Pts treated, n	85	77	24	28
Follow-up, median	NR	8	.7 mo	NR
Efficacy				
ORR (best response)	59%	82%	83%	80%ª
CR (best response)	43%	54%	71%	60 %ª
CR (3 months)	37%	NR	NR	45%
CR (6 months)	NR	31% 50%		NR
Safety				
CRS	31% grade 1/2; 26% grade 3/4	13% grade ≥3		36% grade 1/2; 0% grade 3/4
Neurotoxicity	13% grade 3/4	28%	grade ≥3	4% grade 1/2; 14% grade 3/4

^a20 pts with DLBCL were evaluated for efficacy.

CR, complete response; CRS, cytokine release syndrome; NR, not reported; ORR, overall response rate.

^{1.} Schuster, SJ, et al. ICML 2017 [abstract 007]. 2. Locke FL, et al. AACR 2017 [abstract CT019]; 3. Locke al. ASCO 2017 [abstract 7512]; 4. Abramson al. Blood. 2016;128(22) [abstract 4192]; 5. Abramson JS, et al. ASCO 2017 [abstract 7513].

CAR T-cell therapies in DLBCL

UPENN Single Institution Study

- Results from a single-center, phase 2 study at the University of Pennsylvania showed durable remissions with a single infusion of CTL019 in r/r DLBCL (Cohort A)^{1,2}
 - No patient in CR at 6 months has relapsed (median follow-up, 23.3 months)

Response Rates (N = 15)

	Month 3	Month 6
ORR	7 (47%)	7 (47%)
CR	3 (20%)	6 (40%)
PR	4 (27%)	1 (7%)

CR, complete response; DLBCL, diffuse large B-cell lymphoma; ORR, overall response rate; PR, partial response.

- 1. Schuster SJ, et al. Blood. 2015;126(23):[abstract 183].
- 2. Schuster SJ, et al. Blood. 2016;128(22):[abstract 3026].

Duration of Response (n = 7; CR + PR)

CAR T-cell therapies in FL

UPENN Single Institution Study

FL: ORR at 3 mo. 79%	FL: Best Response Rate 79%		
(N = 14)	(N = 14)		
- CR: 7 (50%)	- CR: 10 (71%)		
- PR: 4	- PR: 1		
- PD: 3	- PD: 3		

- 3 patients with PRs by anatomic criteria at 3 months converted to CRs by 6 months
- 1 patient with PR at 3 months who remained in PR at 6 and 9 months had PD

Duration of Response (n = 11; CR + PR) RD: Median NR 83% responding at median follow-up 14.5 mo.

Chong EA, et al. Blood. 2016;128:abstract1100.

Survival for relapsed/refractory double-hit lymphoma: salvage therapy vs palliative care

Leukemia

Blinatumumab in ALL

Topp, Max S et al., The Lancet Oncology , Volume 16 , Issue 1 , 57 - 66 $\,$

Blinatumumab in ALL

Blinatumumab in ALL

All patients	81/189	_ _	43% (36–50)
Sex			1300 (300 30)
Women	32/70		46% (34-58)
Men	49/119		41% (32-51)
Geographical region			
Europe	39/95		41% (31-52)
USA	42/94		45% (34-55)
Age group (years)			
18 to <35	39/90	-	43% (33-54)
35 to <55	21/46		46% (31-61)
55 to <65	10/28		36% (19-56)
≥65	11/25		44% (24-65)
Previous salvage therapy			
No previous salvage	19/38		50% (33-67)
1 previous salvage	36/77		47% (35-58)
2 previous salvage	15/42		36% (22-52)
>2 previous salvage	11/32		34% (19-53)
Disease state			
Previous HSCT	29/64	<u> </u>	45% (33-58)
No previous HSCT	52/125	<u> </u>	42% (33-51)
No previous HSCT, no previous salvage	12/29		41% (24-61)
No previous HSCT, 1 previous salvage	27/55		49% (35-63)
No previous HSCT, ≥2 previous salvage	13/41		32% (18-48)
Bone-marrow blasts			
<50%	43/59		73% (60-84)
≥50%	38/130		29% (22-38)
		 	

CD-19 CAR-T in ALL

Probability of Event-Free and Overall Survival at Six Months.

Antigen-specific Approaches in ALL

Technology:	CART	ADC	BiTE
Example	CART-19	Inotuzumab (anti-CD22 + toxin)	Blinatumumab (anti-CD3/CD19)
Dosing	One infusion	Every 3 weeks	Continuous 28 days
Complete Response	90%	19%	66%
Survival	78% 6 mos OS	5-6 months median	9 mos median
Major toxicity	Cytokine release	Hepatotoxicity	Cytokine release
Antigen loss relapse?	Yes	No	Yes
Challenges	Complex manufacturing, individualized	Lower response rates	Burdensome infusion

Myeloma

Case Study

Two patients with multiply relapsed myeloma considering participation in a BCMA CAR-T cell trial.

Enrollment BM biopsy shows the following staining

Case Study

Which of the following statements is true?

B.Pt B more likely to suffer from cytokine release syndrome (CRS) following BCMA CAR-T cell therapy

C.CRS is independent of disease burden

D.CRS is only seen in ALL

Efficacy of BCMA CAR-T in Myeloma

Types of Vaccines Used in Myeloma

VACCINE

- Non-Antigen Specific
 - Attenuated measles
 - Whole cell GM-CSF
 - Dendritic tumor fusions

- Antigen Specific
 - Idiotype: RNA, DNA, protein
 - Pulsed dendritic cells
 - Tumor-specific peptides

Resources:

Boyiadzis et al. Journal for ImmunoTherapy of Cancer (2016) 4:90 DOI 10.1186/s40425-016-0188-z

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of hematologic malignancies: multiple myeloma, lymphoma, and acute leukemia

Michael Boyiadzis^{1†}, Michael R. Bishop^{2†}, Rafat Abonour³, Kenneth C. Anderson⁴, Stephen M. Ansell⁵, David Avigan⁶, Lisa Barbarotta⁷, Austin John Barrett⁸, Koen Van Besien⁹, P. Leif Bergsagel¹⁰, Ivan Borrello¹¹, Joshua Brody¹², Jill Brufsky¹³, Mitchell Cairo¹⁴, Ajai Chari¹², Adam Cohen¹⁵, Jorge Cortes¹⁶, Stephen J. Forman¹⁷, Jonathan W. Friedberg¹⁸, Ephraim J. Fuchs¹⁹, Steven D. Gore²⁰, Sundar Jagannath¹², Brad S. Kahl²¹, Justin Kline²², James N. Kochenderfer²³, Larry W. Kwak²⁴, Ronald Levy²⁵, Marcos de Lima²⁶, Mark R. Litzow²⁷, Anuj Mahindra²⁸, Jeffrey Miller²⁹, Nikhil C. Munshi³⁰, Robert Z. Orlowski³¹, John M. Pagel³², David L. Porter³³, Stephen J. Russell⁵, Karl Schwartz³⁴, Margaret A. Shipp³⁵, David Siegel³⁶, Richard M. Stone⁴, Martin S. Tallman³⁷, John M. Timmerman³⁸, Frits Van Rhee³⁹, Edmund K. Waller⁴⁰, Ann Welsh⁴¹, Michael Werner⁴², Peter H. Wiernik⁴³ and Madhav V. Dhodapkar^{44*}

Immunotherapy case #1

Classical Hodgkin lymphoma

Sequence of events

- 27 yr old male, diagnosed at age 21 with classical Hodgkin lymphoma
- March 2011: Initial presentation with n/v, weight loss, fevers, night sweats. Stage IV-B disease, high risk (4/7 on IPS)
- March Aug 2011: ABVD x 6 cycles with partial response
- Nov 2011 Jan 2012: ICE x 3 with partial response but persistent disease on PET. Autologous PBSC collection
- Feb March 2012: GVD x 2 cycles: progression
- March May 2012: COPP x 2 cycles: good PR
- May June 2012: BEAM /auto HCT. July 2012: Progression
- Aug Nov 2012: Brentuximab x 5 doses with good PR after 3 cycles

Response to brentuximab

Sequence of events

- Dec 2012: RIC AlloHCT (FCR conditioning)
- June 2013: relapsed lymphoma AND liver GVHD. GVHD treated with sirolimus. HL retreated with brentuximab but developed severe neuropathy after 2-3 doses.
- Oct 2014 Dec 2014: Lenalidomide + Bendamustine. Dec 2014: Progression, including extensive liver involvement.
- Jan 2015: One cycle of Gem/Cis/Dex given but severe cytopenias limited further treatment.
- Feb 2015: Start nivolumab.
- May 2015: Complete remisison by PET. Continued nivolumab through remainder of 2015 and all of 2016.
- Oct 2015: Vitiligo. Start nb-UVB treatment
- Oct 2016: Some progression of disease. Added lenalidomide 10 mg po qd
- Feb 2017: Overall improvement in disease burden. Continue Lenalidomide + nivolumab

ADRAR PONSE TO CRIVE LIMINOTHERAPY

progression on a long based regimen in the

Oct 2015 (8 months on nivolumab)

Flank

Left arm

Right arm

Aug 2016 (after nbUVB therapy)

Immunotherapy case #2

Classical Hodgkin lymphoma

44 yr old male with cHL s/p multiple relapses, autoHCT, alloHCT, DLI, RT, brentuximab, Len, benda, TGR-1202...

Prior to nivolumab

Response to nivolumab

Starting to progress, after 10 mo on

6 months after adding lenalidomide 10mg QD

Immunotherapy case #3

Low grade B-cell non-Hodgkin lymphoma

Sequence of events

- 82 yr old female, noted right submandibular mass.
- CT neck showed right parotid mass. CT CAP showed diffuse adenopathy
- right submandibular needle biopsy: extranodal marginal zone lymphoma
- She had some fatigue and abdominal bloating along with some night sweats, so treatment was recommended
- Despite large disease burden, given her age, treated with single agent rituximab (as opposed to rituximab + chemotherapy), followed by maintenance rituximab (one dose every 8 weeks for 2 years)

Pre-treatment

After 4 weekly doses of rituximab

After 2 years of maintenance rituximab

Pre-treatment

After 4 weekly doses of rituximab

After 2 years of maintenance rituximab

Pre-treatment

After 4 weekly doses of rituximab

After 2 years of maintenance rituximab

