T cell statistics and the element of
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The DNA of the cells of the adaptive immune system undergoes stochastic gene
editing to provide the diversity needed to deal with pathogens. Copious data on
this diversity are being provided by high-throughput sequencing. Using a
statistical inference framework we can quantify how “surprising” it is to see any
given T cell sequence in a blood or tissue sample. This approach reveals “hidden
variables”, such as the generation probability of any T cell sequence, that
enable novel modes of analyzing immune function. Emerging cancer data sets
provide an ideal field for application of analyses based on these ideas.

Work with Zach Sethna & Yuval Elhanati (Princeton), T. Mora (ENS) & A. Walczak
(ENS). Data provided by H. Robins (FHCRC), V. Balachandran (MSKCC).




TCR Diversity from Stochastic Genome Editing

“VDJ Recombination” of germline DNA produces a unique TCR (BCR) gene in
each new T or B cell created in the bone marrow. This amazing process is

effected by the same suite of DNA repair enzymes for T- and B- cells.
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DNA editing is implemented by
— distinct stochastic “events”: gene
choice, deletions, insertions. If result
is “out of frame”, cell may try again!
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mi: —  Our first goal is to infer the detailed

statistics of these generative events
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Output of VDJ rearrangement can be "observed” via
high-throughput sequencing technology

- _ Robins, H. et al. Comprehensive assessment of T-cell
n3 %_ 8 receptor beta-chain diversity in alpha-beta T cells.
end of read start of read BIOOd l |41 4099_4|07 (2009)

Acquire ~1076 ~100 bp reads (per blood sample) covering the highly variable CDR3 region of the gene.
Data is a list of unique sequences plus occurrence numbers (indicative of clone size of that sequence)

NB: ~20% of reads are fossils of Productive vs Nonproductive?

“failed” VDJ recomb events. A
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Our goal is to characterize the statistics of these different sequence repertoires: what is the prob-
ability that any given sequence gets made by a stem cell; what is the probability that it is selected to
become a mature T cell; how do these statistics differ from individual to individual?
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Many generation scenarios for one TCR sequence

scenarios:
VD, J,...—F
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Scenario E for generating a read o is a set of vV, D, J
values for a set of “actions”. Goal is to infer - dell“//; delﬁ dellll?% dell%%
. . : a a a a
a pdf for the generative scenarios. Need to CDR3 * § balV, palJ, b » P
. insV' D, insDJ
assume a plausible structure for that pdf:
(331, e 7xinsVD)7 (”yh ‘e 7y7insDJ)
precomb (geenario) = P(V )een
Pyen () = E Precomb (scenario) N.B. Many “scenarios” can yield

the same sequence read o.

P,en(0) is the net probablllty that the read o is produced in a single stem cell event. It is
a measure of the “surprise” value of 0. We want to evaluate it for any sequence.
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Infer the "best" generative model, given the data

We use an iterative procedure to find the component pdfs that maximize the
likelihood of the observed non-productive sequence repertoire {o}. This eliminates
selection effects and reveals the stochastic machine operating at the stem cell level.
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scenario

non-productive only! ER S, weights probabilities
e — e W1 1
— — — W2 \
RO = W4 Eq. [1]
EE S;
— —w calculate
S2 - — — W33 distributions
. — W4 (P (V)
ER S; Wo (P(D,J))w
S 3 —— W3:2 (P (delV IV ))w

- W3 3
— Wiy

Precomb(scenario) = P(V)P(D, J)P(deletions!|V/) P(insertionsD.J)...

Pyen () = Z Preeomb (scenario) Explicit forms for the scenario
fosasrics: pdfs 2 access to P, of any o
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Probability

Inferred component pdf's are quasi-universal
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VD and D] insertions are independent and identically distributed

Nucleotide statistics are captured by dinucleotides and identical
on the opposite strands for VD and D)

Observed tri-nucleotide frequencies
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Peak at 4 insertions may have to do with structure
of TdT enzyme that inserts random single bases .....
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Probability

T Cell Generative Model: Gene Dependent Deletions

Overall average:
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Conditioned on specific genes:
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Evidence of sequence dependent nuclease activity

Extremely consistent across individuals
Blue lines: Crude model (no distance effects) explains
some of the variation (r?=0.7)
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Generative Model Quantifies Diversity/Entropy

Shannon entropy is a good measure of sequence repertoire diversity:
Sseq = — ), Pgen(0)10g Pgen(0)

Can’t compute it directly: sequence data only sparsely samples the distribution.
Instead we compute the entropy of recombination events, and then correct for
convergent recombination: multiple scenarios (E) that give the same sequence:

(S(Elo)) Correction ~5 bits (estimated
ag

Sseq = S b —
seq Fecom during inference procedure)

Net of 47 bits can be parsed into contributions from different event types:

Nucleotide Sequence : 47 bits CepiE:
Recombination Events : 52 bits
Gene : 9 bits Insertions : 30 bits Deletions : 13 bits

Number of potential unique TCRfs ~ 10%: vastly larger than number of unique
T cells in an individual human. Comparison with mouse is interesting ...
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Some T cells are much more equal than others

Every nt sequence o has its “surprise value” P, .(0), or its probability
of generation in a one-shot recombination event. We can compute it
for any sequence (histogram plots for real T cell repertoires are below)

0.18
The salient feature of these Naive gf:;upggjgcﬁve
. . 0.16
histograms is the enormous range Memory productive
of the distribution. Some T cells 0.14}
are much more likely than others. il Human
:'% .
: . g— Note the enormous range
Itis worth hoting that Nclonotype ” E " of the Pgen distribution?
10 >
10*° for human. Hence, many T S 008
cell segs have P, so big that they g
will be found in every individual! 008r
As a corollary, there are many low 0.04 |
P.., S€quences that will be unique ol
to their owner. Consequences?
0 1 J
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Pyennt distributions for man vs. mouse

Pgen Comparison

0.6 ‘
—Mature Mus

05! — Embryonic Mus il
—Human

o
AN
T

|

Pgen histograms for the actual T
cell clones of individual animals.
Consistent within each species ...
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Sequences are are more “probable” in mouse than in human. At the same time N ,,01,0e ~107 for
mouse and ~ 10° for human. This has the serendipitous result that in both cases there are specific

T cell sequences with P, so big that they will be found in every individual!
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Shared nt sequences are a test of P, (o)

We know the generation probability of any given sequence and can assess the chance
likelihood for two individual (human) samples (sizes N; and N,) to share n sequences:

i = N1N2(Pgen)o where (Pgen)o = 3., P2, (0) ~3.4£0.1 x 1071
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In first approximation, this looks good: only unsurprising sequences are shared.

We take this as evidence that our inference of Pgen is reasonably accurate.

Note that we are talking here about sharing of unproductive, unselected, seqgs!
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But we should be more interested inP_,, ,,(0)!

Functional specificity is actually conferred by the aa, not nt, sequence of the
CDR3 region. Codon degeneracy means Pgen_aa > Pgen_nt. By how much?

To get Pgen_aa we must sum
Pgen_nt over all nt versions of the
same aa seq. Non-trivial, but can
be done; the data distribution
moves up about 2 powers of ten!

Given the size of human, there are
many CDR3 aa sequences that will
appear at least once in each and
every individual. Thus there will be
many “public” CDR3 aa sequences.
Is this just randomness at work, or
does it have real significance?
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Normalized Pgen_aa distributions
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Shared CDR3 aa sequences as P, ,(0) stress test

Our methods allow us to generate T cell repertoires of any size; we can test whether
real and synthetic statistics agree. For instance, we can test sharing of CDR3 aa
sequences between multiple individuals. We tried it out on data from 14 mice:
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Now we must deal with the issue of selection! We can generate samples of in-frame
CDR3 seqs, but thymic selection will delete many of them on functional grounds. We

—— generated, survial prob = 0.12
generated, no selection
+ data

How many distinct
CDR3aa’s for a given no.
of distinct nt seqs?
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What fraction of CDR3 seqs
are simultaneously found in
different numbers of mice?

The same decimation
factor (.12) gives a close
match to sharing data

2 4 6 8 10 12 14
number of mice sharing

find that random decimation of generated sequences (keep ~12%) works very well.
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Finally, many CDR3's react to the same antigen

These statistically common CDR3 sequences are rich in T cell sequences known to

respond to common antigens (Friedman). Look at one particular example in mouse.

Venturi observed that a certain mouse influenza epitope elicited a T cell response that has a
restricted motif: CASXGGXNTGQLYF. We can look for such sequences in T cell repertoires
from lab mice. They are there even if these mice have never been exposed to this antigen:

Thymus Sequence Count Pgen Blood Sequence Count Pgen
CASTGGPNTGQLYF 1 1.19E-05 CASSGGPNTGQLYF 1 3.08E-05
CASVGGANTGQLYF 1.19E-05 CASRGGPNTGQLYF 3.08E-05

CASTGGANTGQLYF 1.19E-05  CASSGGANTGQLYF 3.08E-05

1

1

1 1.19E-05 out of 32495 9.23E-05
1 1.19E-05

5

out of 82147 5.94E-05

W R R

Since we know Pgen_aa for any CDR3, we can learn the frequency of random
generation of the motif itself. We find that it is ~10*, consistent with its rate of
occurrence in real samples. Since mouse has ~10’ clonotypes, this is very public!

What we really need is Pgen(epitope): the probability that a Tcell capable of
responding to the epitope of interest can be generated. This requires a deeper
understanding of cross-reactivity. Clearly very relevant to immunotherapy.
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Connecting to immunotherapy?

A missing link in our understanding of immune function is the existence of a model for
the affinity between a T cell receptor and the peptide epitopes it has to scan.
Relevant data is accumulating, but we don’t have a clear idea of how much is enough.

There is an interesting abstract question here: can you design a function (epitope + T
cell -> affinity) that meets the requirements of a working immune system? Recognize
all pathogens, no autoimmune problems, statistically realistic T cell repertoires etc ...?

The data being developed by Balachandran et al provide a rich resource for studying
this problem. With Greenbaum/Luksa, we are using the ideas laid out here to sharpen
our ability to identify CDR3 clusters reacting to specific neo-antigens. The goal is to
use intelligent statistics to do better than just identifying common T cells between
tumor and blood, say. This is a work in progress ... the data is just coming in.

The basic immunotherapy idea has an important statistical question at its core: will a
patient’s immune repertoire possess T cells that can recognize a typical set of tumor

neo-antigens? Always, sometimes, or hardly ever? The goal of our theoretical exercise
is to answer this question ... Its certainly worth trying.
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