

IMMUNOTHERAPY™

What's Next for Cancer Immunotherapy?

Breelyn A. Wilky, MD

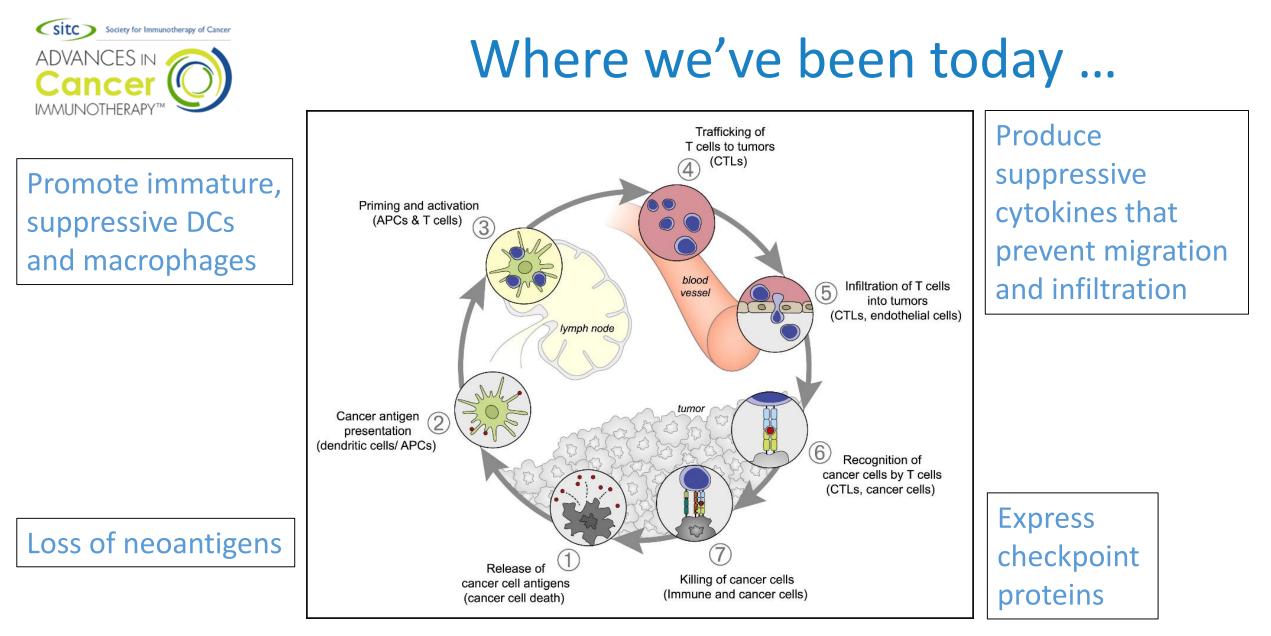
Associate Professor, Director of Sarcoma Translational Research

University of Colorado Anschutz Medical Campus

Society for Immunotherapy of Cancer

Disclosures

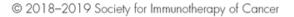
- Research Funding: Merck, Pfizer, Agenus
- Other Consulting: Agenus, Lilly, Janssen, Novartis
- I will be discussing non-FDA approved indications during my presentation.



Overview – The Future of Immunotherapy

- Frontier #1 Better Biomarkers!
- Frontier #2 Better Preclinical Testing!
- Frontier #3 Novel Targets and Novel Combinations

Precision Immunotherapy as the Ultimate Goal



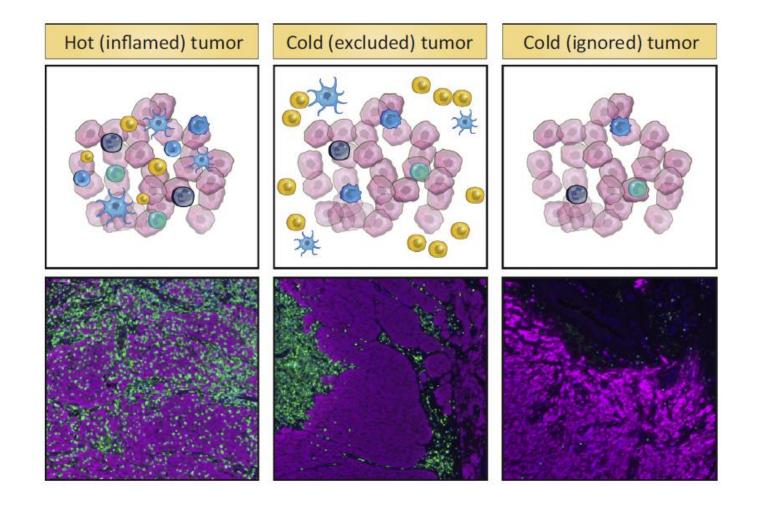
sito

Society for Immunotherapy of Cancel

Association of Community Concer Center

Strategies for Immunotherapy

	Target	Therapeutic Strategies
	Tumor-specific antigens that can be recognized by the immune system	Vaccines, Chemotherapy/Radiation, Oncolytic Viruses, Epigenetic Agents, Microbiome
CE	Effective antigen presentation/recognition	Macrophage/DC Polarizing Agents, Oncolytic Viruses, Innate Immunity Enhancers
	Antigen-specific T cell production	Adoptive T Cell Therapy, Autologous TIL engineering, selection and expansion
	Improve T cell migration into the tumors	Microenvironment (TKI & Cytokine Inhibitors/Inducers, Chemotherapy, Radiation, Oncolytic Viruses), CTLA-4, Dual Checkpoint/TGF-β traps
	T cells are activated rather than suppressed	Stimulatory Agonists, Engineered T cells, Metabolic Therapies, Microbiome, Bispecific Antibodies
	Counteract immunosuppression	Checkpoint inhibitors, anti-T-regulatory cells, Dual Immunomodulators



Understanding Hot and Cold Tumors

- HOT (inflamed) active immune response but suppressed.
- COLD (excluded). Immune response is limited by microenvironmental factors
- COLD (ignored or desert). No recognition of the tumor as foreign by immune system.

Van der Woode et al, Trends Cancer 2017

Biomarkers of Response/Resistance to Checkpoint Inhibitors

Response

High tumor mutational burden

Checkpoint protein expression (PD-L1)

High quantities of infiltrating CD8+ T cells

Low circulating neutrophil:lymphocyte ratio

Higher diversity of gut microbiomes

High expression of immune-related genes (Tumor Inflammation immunosignature)

Resistance

Lack of T cell infiltration

High quantities of T-regs, TAMs, MDSCs

Expression of alternative checkpoint proteins

High stromal burden (cancerassociated fibroblasts)

High suppressive cytokines (VEGF, cofactors, IL-6, TGF- β)

Genetic mutations (JAK 1/2, PTEN loss, β -catenin/Wnt signaling)

Future Directions

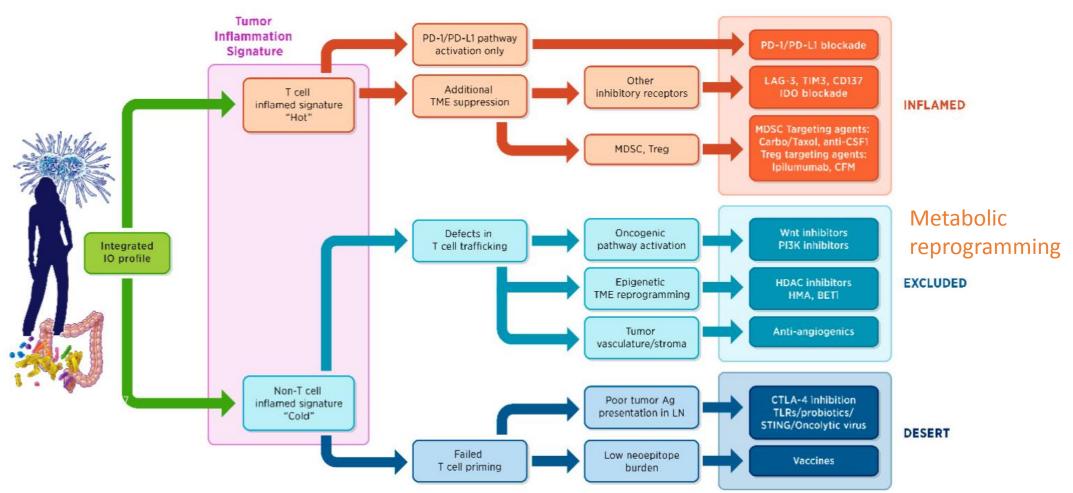
Refining PD-L1 antibody precision

Biomarkers for CTLA-4 response

Neoantigen signatures superior to TMB in some tumors

Implementing new technologies to assess immune microenvironment

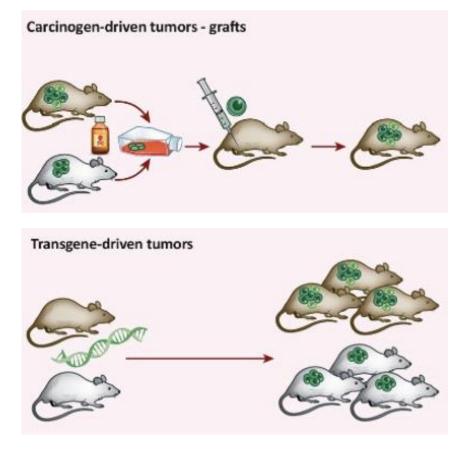
Statistical models to incorporate multiple biomarkers

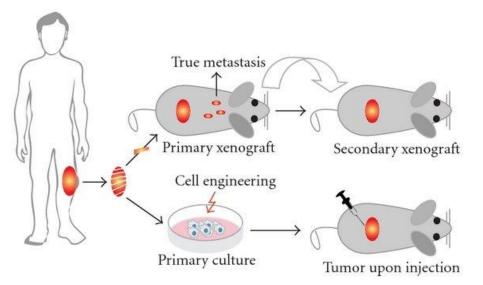


Sharma et al, Cell 2017 Jenkins et al, Annu Rev Med 2018 © 2018–2019 Society for Immunotherapy of Cancer

Frontier #1 – Improving Biomarkers

Cesano and Warren, Biomedicines 2018


© 2018–2019 Society for Immunotherapy of Cancer

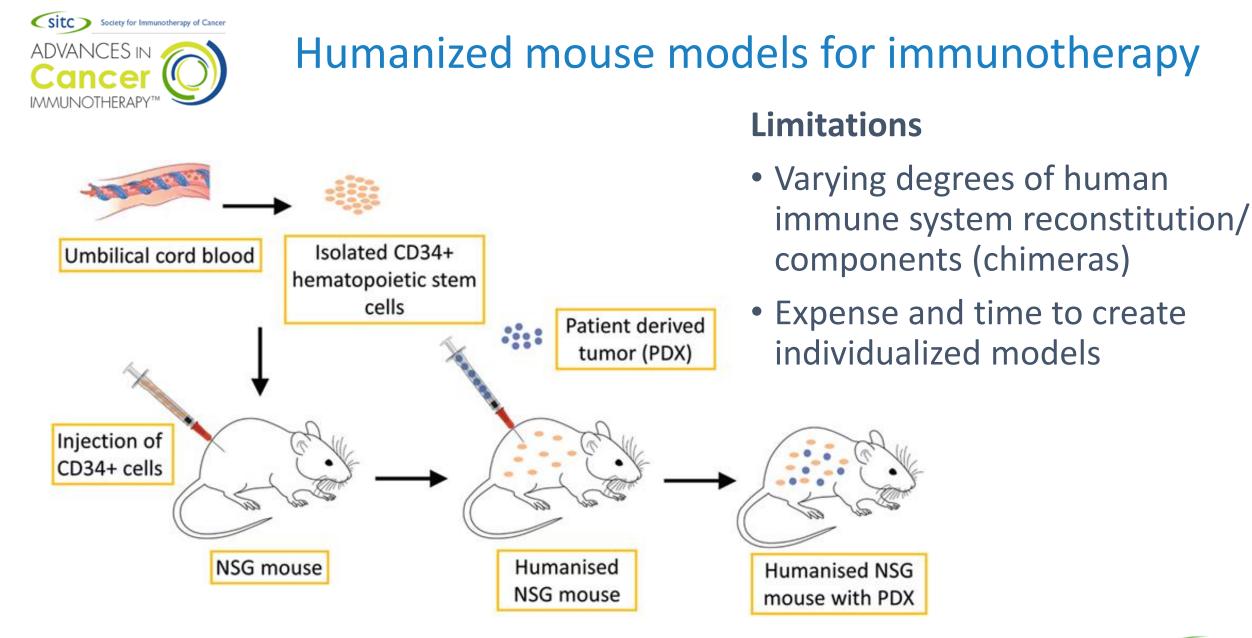


Preclinical models for cancer drug development

Syngeneic/Transgenic mouse models

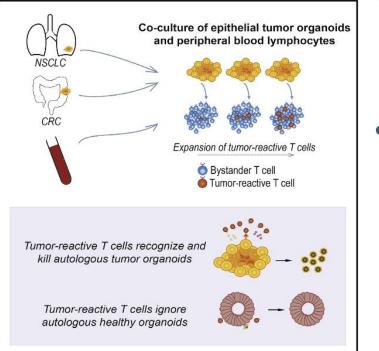
Mouse immune system and tumors – need mouse-specific antibodies

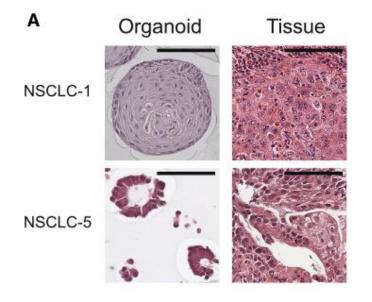
Human cancer xenografts

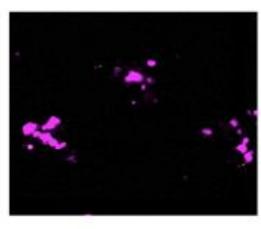

Requires mice lacking T cells, B cells and NK cells Human tumors rejected as foreign by mouse immune systems

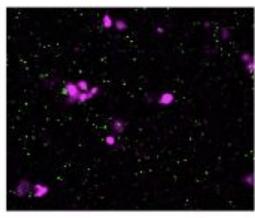
Buque et al, Trends Cancer 2018

Tratar et al, Front Oncol 2018




© 2018–2019 Society for Immunotherapy of Cancer


Organoids with T cells for immunotherapy



- Organoids from patient tumors cocultured with peripheral blood lymphocytes
- Can stimulate expansion of tumorspecific T cells that kill tumor cells.

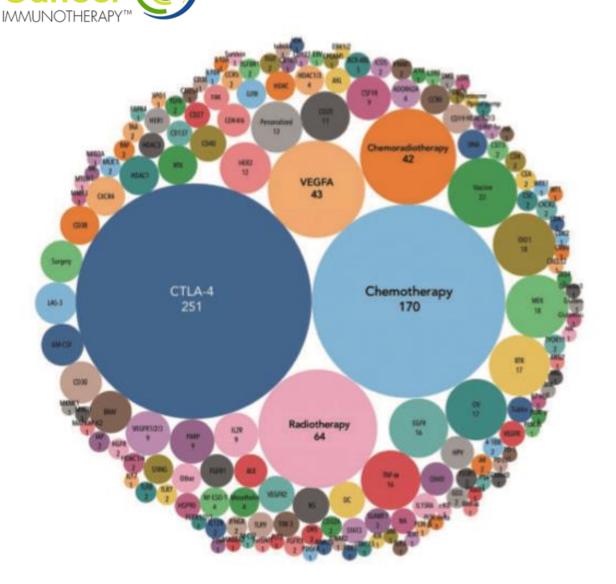
Fluorescence

Dijkstra et al, Cell 2018

Frontier #2 – Improving Preclinical Testing of Immunotherapy

- Enormous funding invested in immuno-oncology drug development
- High costs of therapies, particularly adoptive cellular therapies
- Improved preclinical methods may increase yield of clinical trials
- We need to understand mechanisms and biomarkers for optimal trial design and patient selection
- Prior limitations to study of immune system in preclinical setting are being overcome

The next wave IO drug development target landscape


sitc

Society for Immunotherapy of Cancer

Association of Community Cancer Center

https://www.researchgate.net/publication/321680036, May 2018

The Age of Immunotherapy Combinations

- Combinations target more than one step in the immune evasion cascade with checkpoint inhibitors as the backbone
- Target Neoantigen + Microenvironment + T-cell activation
- Bypass with adoptive cellular therapies but issues with toxicity, persistence particularly in solid tumors

Csitc

ADVANCES IN

Society for Immunotherapy of Cancer

Tang et al, Annals Oncol, 2018

Designing Therapies with Broader Impact

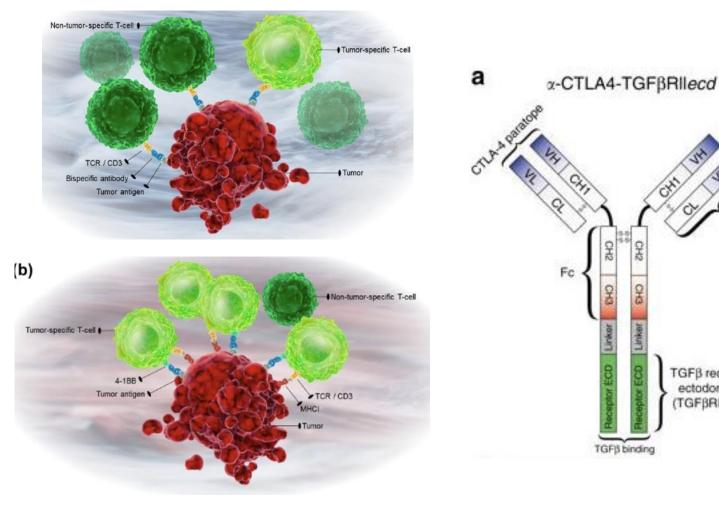
Adenosine Inhibition + PD-L1

Immune suppression of T cells, DCs, and AMP NKs through activation of $A_{2a}R$ and $A_{2b}R$ Adenosine ATP even in presence of anti-PD-L1 blockade **CD39** Increased tumor angiogenesis, **CD73** Hypoxia proliferation, progression Inflammation TGF-β DG/Tumor PD-L1 Proliferation cell **Genetic drivers** IFN-y IL-2 CD73 inhibitor AMP GzB 个 CD73 **CD73 CD73** expression in A_{2a}R antagonist many solid tumors Activation Inactivation

DC/Tumor

cell

PD-L1


PD-1

TCR

Designing Dynamic Duos

Bispecific Antibodies

Dahlen et al, Ther Adv Vaccines Immunother 2018 Ravi et al, Nature Comm 2018

© 2018–2019 Society for Immunotherapy of Cancer

Table 1

(ab)2

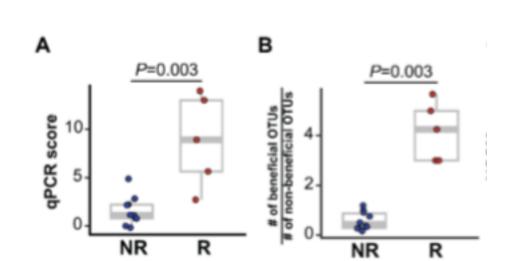
TGF_B receptor

ectodomain

(TGFBRIleco)

Clinical trials of bispecific antibodies

Name	Target	Disease	Trial	Developer
BiTE (bispecific	T-cell engager)): T-cell retargeting		
Blinatumomab, AMG103, MT103	CD19 + CD3	Acute lymphoblastic leukemia	Approved <u>53</u>	Amgen
Solitomab, AMG110, MT110	EpCAM + CD3	Lung, gastric, colorectal, breast, prostate, and ovarian cancer	Phase I (completed) <u>53</u>	Amgen
AMG111, MT111, MEDI565	CEA + CD3	Gastrointestinal adenocarcinomas	Phase I (completed) <u>53</u>	Amgen
Pasotuxizumab, AMG112, MT112	PSMA + CD3	Prostate cancer	Phase I <u>13</u>	Bayer
AMG330	CD33 + CD3	Acute myeloid leukemia	Phase I <u>51</u>	Amgen
AMG420, BI836909	BCMA + CD3	Multiple myeloma	Phase I <u>6</u>	Amgen, Boehringer Ingelheim
Quadroma, Trio	mab: T-cell rec	cruitment		
Catumaxomab	EpCAM + CD3	Malignant ascites	Approved <u>51</u>	Fresenius, Trio
Ertumaxomab	HER2 + CD3	Breast cancer	Phase II2	Fresenius
FBTA05	CD20 + CD3	B-cell lymphoma	Phase I/II13	Fresenius
DART (dual-affi	nity retargetin	g): retargeting of T cells to	tumors	
PF06671008	P-cadherin + CD3	Solid tumors	Phase I6	MacroGenics, Pfizer

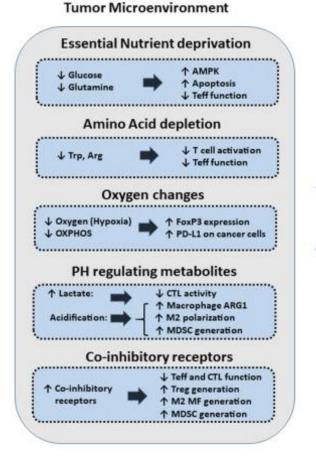

Association of Community Cancer Center

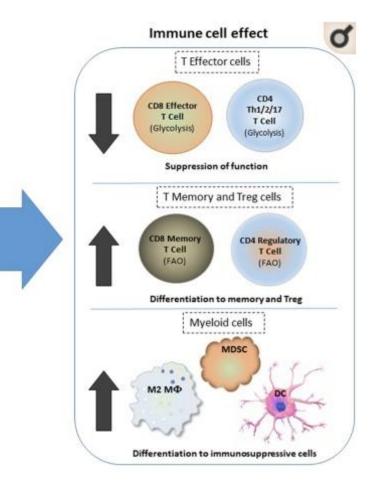
Society for Immunotherapy of Cancer

Enhancing global immune stimulation by targeting the gut microbiome

- Induction of T cell responses against microbial antigens, ? Cross-reactivity against tumorspecific antigens
- Engage pattern recognition receptors that mediate proimmune or anti-inflammatory effects
- Generating small metabolites with systemic effects

- Fecal microbiota transplants?
- Avoiding antibiotic therapy during immune checkpoint blockade
- Selecting beneficial probiotics?





Targeting T cell Metabolism

- Cancer microenvironment suppresses T cell metabolism, limiting efficacy
 - Hypoxic TMA
 - Preferential glycolysis -> lactate accumulation (Warburg effect)
 - Nutrient deprivation from high metabolic rate in cancer and poor vasculature
 - ARG1 and IDO induced amino acid deprivation

Le Bourgeois et al, Front Oncol 2018

Targeting T cell Metabolism

COMPARTMENT	THERAPY	METABOLISM IMPACT	RELATED IMMUNE IMPACT	
	Targeting lactate transporters	Reduce lactate in tumor cells	Increase T cell activation and cytotoxic activity	
Cancer Cells and T cells	HIF1 activation	Enhance glycolysis and glutaminolysis	Promote T cell effector functions	
	PD-1-blocking antibodies	Income T cell al calata	Reinvigorate T cell function	
	Use of IL-2 during ATI process	Increase T cell glycolysis	Maintain proliferative ability and effector functions	
	AMPK inhibitors	Decrease FA metabolism	Promote Th1 and Th17 differentiation	
Tcells	mTOR inhibitors	Decrease glycolysis	Promote T memory cell differentiation	
i cens	Compounds promoting FA catabolism			
	Compounds promoting ROS production	Activate T cell transcription factors	on Increase function of T effector cells	
	Use of IL-15 or IL-7 during ATI process	Promote mitochondrial metabolism	Increase T memory cells differentiation and longevity <i>in vivo</i>	
TME AMPK activation (e.g Metformin)		Increase cellular FA metabolism	Increase CD8 [*] T cell recruitment and memory differentiation	

- Potential synergy with checkpoint blockade, chemotherapies, targeted therapies
- May improve persistence of adoptive cellular therapies

Le Bourgeois et al, Front Oncol 2018

© 2018–2019 Society for Immunotherapy of Cancer

The race forward in adoptive cellular

344 cellular therapies in development in the US, 203 in China

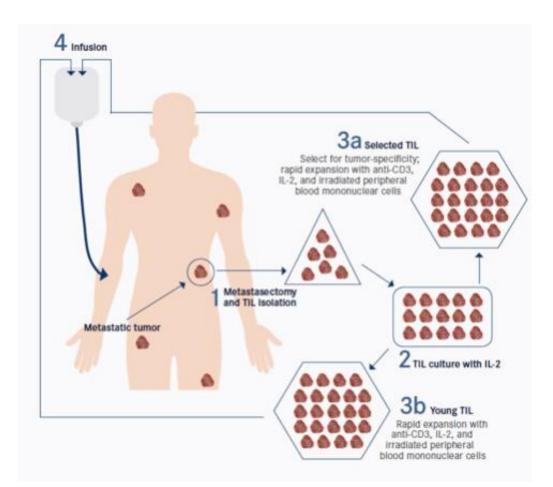
therapies

• CAR-T

- Engineered TCR
- Autologous circulating T cells targeting TAA/TSA
- Autologous TIL
- Engineered T cells (CRISPR, $\gamma\delta$ T cells)
- NK directed therapies
- Other (macrophages/stem cells)

Next-gen CAR-T strategies

- Bispecific CAR-T (CD19/CD20, CD19/CD22, CD19/BCMA)
- Universal CAR-T (no MHC restriction)
- Suicide switches (apoptosis in CARs in setting of self-reactivity)


Le Bourgeois et al, Front Oncol 2018 June et al Science 2018

Autologous TIL therapy

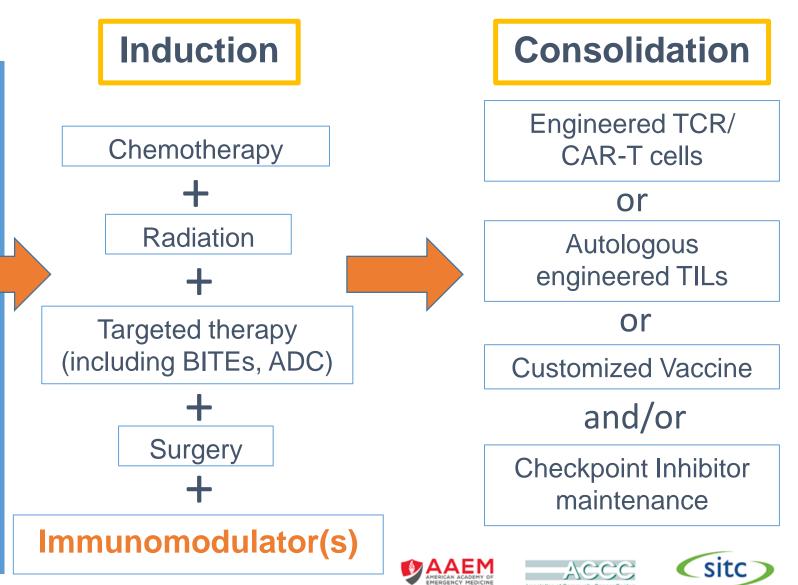
- Strategies
 - Selecting tumor-specific antigen clones for expansion (Rosenberg)
- Combination with checkpoint blockade and oncolytic viruses
- Ongoing clinical trials in numerous solid tumors
- Technologies likely to impact include more rapid TCR sequencing and antigen prediction algorithms

Antigen Prediction and Customized Vaccines

- Combinations with checkpoint blockade
- Trials exploring adjuvant and metastatic settings
- Affordability and time to manufacture

Frontier #3: Multiparameter engineering of the Immune System

- Hundreds of novel drug, targets and technologies how do we rationally prioritize?
- One size does not fit all for solid tumors
- Engineered TIL may ultimately be more effective strategy for solid tumors than CAR-T, difficulty with targets with manageable therapeutic index with normal tissue
- Metabolism will likely play a key role in the next wave of immune modulatory therapy



The Future: Precision Immunotherapy?

Immunobiomarkers

- Genetic mutational burden
- Neoantigen signature
- IHC for MSI
- PD-L1 expression
- Immunosignature
- Hot vs. Cold tumors
- Gut microbiome
- Antigen Prediction
- TCR sequencing/clonality
- Multiparameter microenvironment
- Avatars and organoids

Thank you and Questions!

Breelyn Wilky, MD University of Colorado Anschutz Medical Campus Email: breelyn.wilky@ucdenver.edu

