Restoring immune function of tumor-specific CD4⁺ T cells during recurrence of melanoma with anti-PD-L1 and anti-LAG-3 combination therapy. Paul Andrew Antony, MD Department of Microbiology and Immunology Department of Pathology University of Maryland School of Medicine In ancient Roman religion and mythology, Janus (Latin: lanus – Gateway or Door) is the god of beginnings and transitions. He is usually a two-faced god since he looks to the future and the past. The month of January was named in honor of Janus by the Romans: Thus a doorway to the new year. # Presenter Disclosure Information Paul Andrew Antony The following relationships exist related to this presentation: No relationships to disclose #### PD-L1 and LAG-3 in immunobiology JEM Article ## Naive tumor-specific CD4⁺ T cells differentiated in vivo eradicate established melanoma Ying Xie,² Akgül Akpinarli,⁶ Charles Maris,⁷ Edward L. Hipkiss,⁷ Malcolm Lane,³ Eun-Kyung M. Kwon,² Pawel Muranski,⁸ Nicholas P. Restifo,⁸ and Paul Andrew Antony^{1,2,4,5} •Cancer recurrence is a significant health problem. Most notably, when cancer recurs after an initial treatment, it is usually therapy resistant, more aggressive, and has a higher potential to metastasize. •We developed a **preclinical mouse model of cancer recurrence** that despite initial tumor regression after a successful immunotherapy approximately 50% of tumors relapsed mimicking the clinical course of many solid tumors. ## Restoring Immune Function of Tumor-Specific CD4⁺ T Cells during Recurrence of Melanoma Stephen Goding,* Kyle Wilson,[†] Ying Xie,[‡] Kristina Harris,* Aparna Baxi,[†] Akgul Akpinarli,[§] Amy Fulton,* Koji Tamada,[¶] Scott E. Strome,^{†,||,#},** and Paul Andrew Antony*,^{†,#},** Foxp3⁺ T _{reg} cells increase during relapse of melanoma - + TRP-1^{Foxp3-DTR} CD4⁺ T cells + DT #### Cells from relapsing mice, in the absence of $T_{\rm reg}$ cells, are exhausted #### Blockade of anti-PD-L1 and depleting Treg cells treats relapse #### Combination therapy with Anti-PD-L1 and anti-LAG-3 therapy During recurrence, Foxp3⁺ tumor-specific CD4⁺ T cells represented over 60% of the tumor-specific CD4⁺ T cells in the host. However, effector CD4⁺ T cells from relapsing mice also **showed traits of chronic exhaustion** and high expression of inhibitory receptors: PD-1, TIM-3, TIGIT, and LAG-3. These findings suggest that the PD-1/PD-L1 pathway plays a dominant role in cancer relapse, but resolution of recurring cancer with PD-L1 blockade requires the absence of T_{reg} cell mediated suppression or simultaneous blockade of LAG-3 to restore immune function of tumor-specific T cells. Therefore chronic exhaustion and T_{reg} cell mediated suppression are intricately working together to maintain tolerance during recurrence and **combination therapy** appears to over come this impediment. This work is in memory of my dear friend **Bernadette A. Estrada** who died from cervical cancer on August 24, 2011. She was one of the first patients to start anti-PD-L1 therapy and dedicated herself to cancer awareness while here at the NIH working with the President's Cancer Panel. ### Acknowledgements #### <u>Lab</u> - Stephen Goding, PhD- Post doctoral fellow - Kyle Wilson, BA MD, PhD graduate student #### **Previous fellows** Ying Xie, PhD- post doctoral fellow #### **Collaborators** - Kristina M. Harris, PhD - Amy Fulton, PhD - Koji Tamada, MD - Scott E. Strome, MD #### **Grants/Support** K22 NCI Career Award DOD Cancer Idea Award Melanoma Research Foundation DOD post doctoral award Harold Lloyd Charitable Trust ACS internal grant