Restoring immune function of tumor-specific CD4⁺ T cells during recurrence of melanoma

with anti-PD-L1 and anti-LAG-3 combination therapy.

Paul Andrew Antony, MD

Department of Microbiology and Immunology
Department of Pathology
University of Maryland School of Medicine

In ancient Roman religion and mythology, Janus (Latin: lanus – Gateway or Door) is the god of beginnings and transitions. He is usually a two-faced god since he looks to the future and the past. The month of January was named in honor of Janus by the Romans: Thus a doorway to the new year.

Presenter Disclosure Information

Paul Andrew Antony

The following relationships exist related to this presentation:

No relationships to disclose

PD-L1 and LAG-3 in immunobiology

JEM Article

Naive tumor-specific CD4⁺ T cells differentiated in vivo eradicate established melanoma

Ying Xie,² Akgül Akpinarli,⁶ Charles Maris,⁷ Edward L. Hipkiss,⁷ Malcolm Lane,³ Eun-Kyung M. Kwon,² Pawel Muranski,⁸ Nicholas P. Restifo,⁸ and Paul Andrew Antony^{1,2,4,5}

•Cancer recurrence is a significant health problem. Most notably, when cancer recurs after an initial treatment, it is usually therapy resistant, more aggressive, and has a higher potential to metastasize.

•We developed a **preclinical mouse model of cancer recurrence** that despite initial tumor regression after a successful immunotherapy approximately 50% of tumors relapsed mimicking the clinical course of many solid tumors.

Restoring Immune Function of Tumor-Specific CD4⁺ T Cells during Recurrence of Melanoma

Stephen Goding,* Kyle Wilson,[†] Ying Xie,[‡] Kristina Harris,* Aparna Baxi,[†] Akgul Akpinarli,[§] Amy Fulton,* Koji Tamada,[¶] Scott E. Strome,^{†,||,#},** and Paul Andrew Antony*,^{†,#},**

Foxp3⁺ T _{reg} cells increase during relapse of melanoma

- + TRP-1^{Foxp3-DTR} CD4⁺ T cells + DT

Cells from relapsing mice, in the absence of $T_{\rm reg}$ cells, are exhausted

Blockade of anti-PD-L1 and depleting Treg cells treats relapse

Combination therapy with Anti-PD-L1 and anti-LAG-3 therapy

During recurrence, Foxp3⁺ tumor-specific CD4⁺ T cells represented over 60% of the tumor-specific CD4⁺ T cells in the host.

However, effector CD4⁺ T cells from relapsing mice also **showed traits of chronic exhaustion** and high expression of inhibitory receptors: PD-1, TIM-3, TIGIT, and LAG-3.

These findings suggest that the PD-1/PD-L1 pathway plays a dominant role in cancer relapse, but resolution of recurring cancer with PD-L1 blockade requires the absence of T_{reg} cell mediated suppression or simultaneous blockade of LAG-3 to restore immune function of tumor-specific T cells.

Therefore chronic exhaustion and T_{reg} cell mediated suppression are intricately working together to maintain tolerance during recurrence and **combination therapy** appears to over come this impediment.

This work is in memory of my dear friend **Bernadette A. Estrada** who died from cervical cancer on August 24, 2011. She was one of the first patients to start anti-PD-L1 therapy and dedicated herself to cancer awareness while here at the NIH working with the President's Cancer Panel.

Acknowledgements

<u>Lab</u>

- Stephen Goding, PhD- Post doctoral fellow
- Kyle Wilson, BA MD, PhD graduate student

Previous fellows

Ying Xie, PhD- post doctoral fellow

Collaborators

- Kristina M. Harris, PhD
- Amy Fulton, PhD
- Koji Tamada, MD
- Scott E. Strome, MD

Grants/Support

K22 NCI Career Award

DOD Cancer Idea Award

Melanoma Research Foundation

DOD post doctoral award

Harold Lloyd Charitable Trust

ACS internal grant