

Immunotherapy for the Treatment of Genitourinary Malignancies Matthew Campbell MD, MS Assistant Professor, Genitourinary Medical Oncology UT MD Anderson Cancer Center

Society for Immunotherapy of Cancer

Disclosures

- Advisory Boards/Honorarium:
 - Eisai, EMD Serono, Pfizer, Genentech, AstraZeneca
- Consulting:
 - Apricity health
- Non-branded educational programs:
 - BMS, Roche, Merck, Pfizer/EMD Serono

I will not be discussing non-FDA approved indications during my presentation.

History of Immunotherapy in mRCC

FDA-approved Immunotherapies for mRCC

Drug	Approved	Indication	Dose
High dose Interluekin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)*
Interferon-a (with bevacizumab)	2009	Clear cell RCC***	9 MIU s.c. three times a week
Nivolumab	2015	Clear cell RCC Refractory to prior VEGF Targeted therapy	3mg/kg 240mg IV q 2 week or 480mg IV q 4 wks
Nivolumab +ipilimumab	2018	Clear cell RCC, treatement naïve	3mg/kg nivo plus 1mg/kg ipi q3 wks x 4 doses then nivo maintenance at flat dosing

*Retreatment: Evaluate after 4 weeks, advisable only if tumor shrinkage and no retreatment contraindications (see package insert for details)

High Dose IL-2 in mRCC

- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months

Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Nivolumab = anti-PD-1 antibody
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)

Society for Immunotherapy of Cancel

Second-Line Nivolumab in mRCC PD-L1 subgroups

<u>PD-L1 ≥ 1%</u>

<u>PD-L1 < 1%</u>

Association of Community Concer Center

Society for Immunotherapy of Cancel

First-line Nivolumab + Ipilimumab in mRCC

Nivolumab = anti-PD-1 antibody

Ipilimumab = anti-CTLA-4 antibody

First-line Nivolumab + Ipilimumab in mRCC

ACCC

First-line Nivolumab + Ipilimumab in mRCC PD-L1 Subgroups

In Development: First-line Atezolizumab + Bevacizumab in PD-L1+ mRCC

In Development: First-line Checkpoint Inhibitors + Axitinib in mRCC

JAVELIN Renal 101

- KEYNOTE-426
 - Pembrolizumab + axitinib in mRCC
 - Positive for OS and PFS (10/18/2018)

In Development: First-line Pembrolizumab in mRCC KEYNOTE - 427

	N = 110
Confirmed ORR, % (95% CI)	38 (29 – 48)
Confirmed BOR, n (%)	
CR	3 (3)
PR	39 (35)
SD	35 (32)
PD	31 (28)
No assessment	2 (2)

Donskov et al. ESMO 2018

sitc

Society for Immunotherapy of Cancel

Association of Community Cancer Center

Society for Immunotherapy of Cancer

ADVANCES IN

IMMUNOTHERAPY¹

Approved Checkpoint Inhibitors for mUC Cisplatin Refractory

Drug/Trial	Phase	No. of	ORR	PFS	OS	Duration	Grade 3/4 AE	Maximal
name		patients				of	(treatment	duration of
						response	related	treatment
							deaths)	
CISPLATIN REFRA	ACTORY							
Atezolizumab	П	310	16%	2.1	7.9	22.1 mo	18% (0	NR
IMvigor210			(6%	mo	mo		deaths)	
cohort 2			CR)		(1yr			
					29%)			
Atezolizumab	Ш	931	13%	NR	8.6	21.7 mo	20%	NR
IMvigor211					mo			
Pembrolizumab	Ш	542	21%	2.1	10.3	NR	14% (4	2 years
KEYNOTE-045				mo	mo		deaths)	
Nivolumab	П	265	19.6%	2 mo	8.7	NR	18% (3	NR
CheckMate275			(2%		mo		deaths)	
			CR)					
Avelumab	lb	242	17%	6.6	6.5	NR	10% (1 death)	NR
JAVELIN			(6%	weeks	mo			
			CR)					
Durvalumab	1/11	191	17.8%	1.5	18.2	NR	7% (2 deaths)	1 year
			(4%	mo	mo			
			CR)					

Anti-PD-L1 Antibodies

- 1) Atezolizumab
- 2) Avelumab
- 3) Durvalumab

Anti-PD-1 Antibodies

- 1) Nivolumab
- 2) Pembrolizumab

In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

CISPLATIN INELIGIBLE

11

119

23%

Atezolizumab

Approved Checkpoint Inhibitors for mUC Cisplatin Ineligible

Anti-P	D-L1	Antib	odies

1) Atezolizumab

•

PD-L1 stained tumorinfiltrating immune cells [IC] covering ≥5% of the tumor area

Anti-PD-1 Antibodies

- 1) Pembrolizumab
 - PD-L1 CPS ≥ 10

In development: Combinations

- 1) IO + IO
- 2) IO + Chemotherapy

		CR)		1yr 57%			
Pembrolizumab II KEYNOTE-052	370	29% (7% CR)	6mo 30%	6 mo 67%	NR	19% (1 death)	2 years

2.7

15.9

NR

16% (1 death) NR

Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade Atezolizumab in mUC

The Spectrum of Prostate Cancer

Sipuleucel-T in mCRPC

Drake et al. Curr Opin Urol 2010

Limited efficacy of Checkpoint Inhibitors in mCRPC No FDA-approved CIs for mCRPC

- Ex. KEYNOTE-199 (Pembrolizumab)
- Cohort 1 (PD-L1+) Cohort 2 (PD-L1–) Cohort 3 (Any PD-L1; Bone

- Pembrolizumab is approved for all
 Microsatellite Instability-High
 (MSI-H) solid tumors
- MSI-H incidence is low in PC
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
- MSI testing may offer pembrolizumab as an option

DeBono et al. ASCO 2018

Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

- Similar

incidence

overall

irAEs with Immune Checkpoint Inhibitors in GU Cancers

Meta-analysis of 8 studies

Adverse event	Incidence, any grade (GU only trials) (%)	Incidence, grades 3– 5 (GU only trials) (%)	Incidence any grade (non-GU clinical trials) (%)	Incidence, grades 3– 5 (non-GU clinical trials) (%)
Hypothyroid/ thyroiditis	0.8–9	0–0.6	3.9–12	0-0.1
Diabetes/DKA	0–1.5	0–0.7	0.8–0.8	0.4–0.7
LFT changes/ hepatitis	1.5–5.4	1–3.8	0.3–3.4	0.3–2.7
Pneumonitis	2–4.4	0–2	1.8–3.5	0.25–1.9
Encephalitis	NR	NR	0.2–0.8	0.0–0.2
Colitis/diarrhea	1–10	1–10	2.4–4.1	1.0–2.5
Hypophysitis	0–0.5	0–0.2	0.2–0.9	0.2–0.4
Renal Dysfunction/ nephritis	0.3–1.6	0–1.6	0.3–4.9	0.0–0.5
Myositis	0.8–5	0–0.8	NR	NR

Maughan et al. Front Oncol 2017

Immune-related Adverse Events

Grade of immune-related AE (CTCAE/equivalent)	Corticosteroid management	Additional notes
1	Corticosteroids not usually indicated	Continue immunotherapy
2	 If indicated, start oral prednisone 0.5-1 mg/kg/day if patient can take oral medication. If IV required, start methylprednisolone 0.5-1 mg/kg/day IV If no improvement in 2–3 days, increase corticosteroid dose to 2 mg/kg/day Once improved to ≤grade 1 AE, start 4–6 week steroid taper 	 Hold immunotherapy during corticosteroid use Continue immunotherapy once resolved to ≤grade 1 and off corticosteroids Start proton pump inhibitor for GI prophylaxis
3	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant Once improved to ≤ grade 1, start 4–6-week steroid taper Provide supportive treatment as needed 	 Hold immunotherapy; if symptoms do not improve in 4–6 weeks, discontinue immunotherapy Consider intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)
4	 Start prednisone 1-2 mg/kg/day (or equivalent dose of methylprednisolone) If no improvement in 2–3 days, add additional/alternative immune suppressant, e.g., infliximab Provide supportive care as needed 	 Discontinue immunotherapy Continue intravenous corticosteroids Start proton pump inhibitor for GI prophylaxis Add PCP prophylaxis if more than 3 weeks of immunosuppression expected (>30 mg prednisone or equivalent/day)

Table 2 Caparal suidance for carticostaraid management of immune valated adverse super-

Puzanov Journal for ImmunoTherapy of Cancer 2017

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 Journal for ImmunoTherapy DOI 10.1186/s40425-016-0180-7 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access CrossMark Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*} Kamat et al. Journal for ImmunoTherapy of Cancer (2017) 5:68 Journal for ImmunoTherapy DOI 10.1186/s40425-017-0271-0 of Cancer **POSITION ARTICLE AND GUIDELINES** Open Access

📕 CrossMark

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of bladder carcinoma

Ashish M. Kamat^{1*}, Joaquim Bellmunt², Matthew D. Galsky³, Badrinath R. Konety⁴, Donald L. Lamm⁵, David Langham⁶, Cheryl T. Lee⁷, Matthew L. Milowsky⁸, Michael A. O'Donnell⁹, Peter H. O'Donnell¹⁰, Daniel P. Petrylak¹¹, Padmanee Sharma¹², Ella C. Skinner¹³, Guru Sonpavde¹⁴, John A. Taylor III¹⁵, Prasanth Abraham¹⁶ and Jonathan E. Rosenberg¹⁷ McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92 DOI 10.1186/s40425-016-0198-x

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Open Access

(CrossMark

The Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley^{16*}

Case Study 1

69yo male with hoarseness, shortness of breath, fatigue and weight loss

Imaging identifies lung metastasis, numerous, adrenal metastasis, liver metastasis Poor risk disease: anemia, high calcium, primary tumor in place

Two doses major response

© 2018–2019 Society for Immunotherapy of Cancer

- (A) RIGHT KIDNEY:
- MINUTE FOCUS OF RESIDUAL CLEAR CELL RENAL CELL CARCINOMA WITH THERAPY EFFECT. (SEE
- COMMENT AND CAP PROTOCOL)
- Extensive necrosis, hyalinization, reactive stromal changes, hemosiderin-laden macrophages, foamy histiocytes,
- fibrosis, hemorrhage and inflammation, consistent with therapy effect.

Continued response on maintenance nivolumab 9 months later

- What is the optimal duration of immunotherapy in patients who have a CR or a deep PR (if there is such a thing?)
 - A. Two years of therapy if no toxicity
 - B. Indefinite therapy
 - C. 6 months after CR then stop
 - D. One year of therapy then stop
 - E. Undefined

1 Year After Starting

Is the Patient Cured?

ient develo e in speech, an daches, work up sho ude the following? A. TSH, free T3, free **B. ACTH and cortise** MRI of the bring ontrast

Μ

10

Case 2

 83yo retired veteran presents with acute renal failure found to be due to obstructive uropathy

Next Steps

- Patient had bilateral percutaneous nephrostomy tubes placed
- Cystoscopy + TURBT outside bulky tumor in bladder trigone, specimen high grade urothelial cancer invasion into lamina propria, no muscularis propria present

What to Do

 Repeat cystoscopy 5cm mass excised, EUA with fixed irregular mass fixed to anterior rectum

DIAGNOSIS

(A) BLADDER TUMOR: HIGH GRADE UROTHELIAL CARCINOMA, WIDELY INVASIVE INTO MUSCULARIS PROPRIA. (SEE COMMENT) LYMPHOVASCULAR INVASION IS PRESENT.

Entire report and diagnosis completed by Priya Rao MD 12141

Other important details... Hgb 7.9, BUN 18, Cr 2.52: GFR Cockgroft Gault 26ml/min ECHO: LVEF 52%, Severe AS, AVA 0.5cm2/m2

So What Next

- On work up T4bN0M0 stage IV
- Ordered biomarkers, MSI status, molecular alterations panels, Her2neu status, PD-L1 testing
- Stared on immunotherapy
- Valve replaced

Patient started on immunotherapy

Pre-treatment

Post-treatment

Repeat Cystoscopy with TURBT

OPERATIVE FINDINGS:

- 1. Urethra: No tumor noted
- 2. Ureteral orifices: Clear efflux at end of case from right.
- Bladder: The bladder showed no tumors, stones, or other abnormalities of the mucosa. The area of the prior tumor appeared to have converted to fibrotic tissue and hence was biopsied to confirm no tumor histologically.
- Size of tumor: Aggregate size of resection/biopsy site approximately 3 cm. Largest tumor/lesion size approximately 3 cm
- 5. EUA: some thickening in area of tumor.
- 6. Good hemostasis at end of procedure

SPECIMENS: Bladder tumor/biopsy specimens as noted.

DIAGNOSIS

(A) BLADDER BIOPSY TRIGONE:

Partially denudated urothelial mucosa with acute and chronic inflammation, no tumor present. Muscularis propria is present.

Case 2: Question 1

- What is the cut off staining for PD-L testing that you need to start this patient on immunotherapy?
 - A. DAKO 22C3 (Pembro companion) 1% in tumor cells or immune cells
 - B. DAKO 22C3 5% in tumor cells or immune cells
 - C. DAKO 22C3 10% in tumor cells or immune cells
 - D. VENTANA SP142 (Atezo companion) 5% in immune cells
 - E. It doesn't matter
- Dako 22C3 10% positivity of tumor membrane
- MMR proteins intake

Case 2: Question 2

- Do patients in a CR from immunotherapy in urothelial cancer require surgery?
 - A. Yes
 - B. No
 - C. It depends
 - D. It is unclear

