The Role of Oncolytic Viruses in Inducing Immunogenic Tumor Cell Death

Howard L. Kaufman Current affiliations: Replimune, Inc. Massachusetts General Hospital Boston, MA Work presented relates to prior lab at Rutgers University

Disclosures

- Employee of Replimune, Inc.
- The work presented was conducted at my prior lab at Rutgers University at which time I was an advisor to Amgen
- Work with mT-VEC was conducted under an MTA between Amgen & Rutgers University

Strategies to induce immunogenic cell death

Tumor infiltrating T cells are correlated with cancer survival

Ovarian Cancer

Lung Cancer

Zhang et al. NEJM 2003 Pages et al. NEJM 2005 Hiraoka et al. Br J Cancer 2006 Ladanyi et al. Clin Cancer Res 2004

Why Oncolytic Viruses?

- Cytotoxicity
- Immunity
- Safety

Talimogene laherparepvec (T-VEC; Imlygic™): Engineered HSV-1 Oncolytic Virus

T-VEC (Herpes Virus)

Modifications	Rationale
JS-1 strain	Improved Cancer Cell Lysis
Deletion of ICP34.5	Cancer Cell Specific Replication
Early Expression of US11	Cancer Cell Specific Replication
Deletion of ICP47	Permits Antigen Presentation
Insertion of GM-CSF	Augments anti-tumor Immune response

T-VEC has profound lytic effect against SK-MEL-28 melanoma cells

Liu et al Gene Therapy 2003

Anti-tumor activity of T-VEC in other tumor cell lines *in vitro*

Cell lines	Tissue	Cell survival (%) (MOI=1)				
		24 hrs	48 hrs	3 days	6 days	
				1		
A549	Lung cancer	82.5	76.0	55.8	43.1	
H460	Lung cancer	65.2	64.0	44.0	27.6	
CALU-1	Lung cancer	71.1	60.0	41.9	40.4	
PANC-1	Pancreatic cancer	74.6	57.6	24.1	9.4	
MIA PACA-2	Pancreatic cancer	66.5	38.5	18.6	1.4	
CAPAN-1	Pancreatic cancer	81.0	42.2	56.6	20.3	
BxPC-1	Pancreatic cancer	57.6	15.1	16.1	8	
HCT116	Colorectal cancer	65.7	27.4	14	1.1	
HT29	Colorectal cancer	51.6	22.0	24.3	3.9	
SW620	Colorectal cancer	80.4	66.8	45.0	3.9	
COLO205	Colorectal cancer	49.8	20.0	9.7	3.1	

MTT assays

(Higher MOI's result in complete lysis of all cells)

Immunogenic cell death

T-VEC induces central necrosis following injection

T-VEC induces apoptosis in human melanoma cell lines and can be blocked by ZVAD

10

0.0001

0.001

0.01

0.1

T-VEC MOI

TVEC-5days

TVEC-+ZVAD

10

Anexin V

5-

T-VEC induces calreticulin expression on the surface of SK-MEL28 cells in a dose-dependent manner*

0.1 MOI (10X)

1.0 MOI (10X)

10.0 MOI (10X)

1.0 MOI (40X)

*Shown at 18 hours post-infection

T-VEC induces extracellular ATP release following infection of melanoma cells

T-VEC induces release of HMGB1 from SKMEL 28 Melanoma cells

HMGB1

Can other cell death inducers enhance T-VECmediated oncolytic activity?

BRAF inhibition enhances T-VEC oncolytic activity in BRAF-mutant cell lines

T-VEC and MEK inhibition induces apoptosis in SK-MEL28 cell line

MEK inhibition enhances T-VEC-mediated cell killing and increases viral replication

T-VEC + MEKi

T-VEC and MEK inhibition induces PARP cleavage in SK-MEL-28 cell lines

T-VEC induces caspase 3 cleavage in the presence of MEK inhibition

Increased cell lysis by combination T-VEC/MEKi may be due to increased viral replication

Sk28 cells pretreated with 10nM Trametinib for 12 hours and then infected with T-VEC 1 MOI for 16 hours. Protein lysate collected and 40ug is loaded.

OV and MEK inhibition have therapeutic activity in melanoma xenograft model

T-VEC and MEK inhibition enhances tumor cell killing in the TME

Ki67

T-VEC and MEK inhibition enhances HSV-1 replication in the TME

HSV-1 gD

T-VEC and MEK inhibition reduces pERK1 and pERK2 in the TME

T-VEC and MEK inhibition induces caspase-3 cleavage in the TME

OV and MEK inhibition have therapeutic activity in immune competent melanoma model

T-VEC and MEK inhibition enhances CD8+ T cell recruitment into the TME

11/10

T-VEC and MEK inhibition enhance recruitment of CD8+ IFN- γ + T cells

T-VEC and MEK inhibition enhances recruitment of CD8+ Granzyme B+ T cells

T-VEC and MEK inhibition reduces Tregs and increases the CD8+/Treg ratio in the TME

T-VEC and MEK inhibition enhances survival and results in memory

Depletion of CD8+ T cells abrogates the therapeutic effect of T-VEC and MEK inhibition

Therapeutic benefit is lost in the absence of Batf3+ dendritic cells

T-VEC and MEK inhibition enhances HSV-1-specific CD8+ T cells in the TME

T-VEC and MEK inhibition enhances gp100-specific CD8+ T cells in the TME

T-VEC and MEK inhibition enhances TRP2-specific CD8+ T cells in the TME

T-VEC is associated with MART-1 CD8+ T cells in tumor-infiltrating lymphocytes

Kaufman et al. Ann Surg Oncol 2010

Oncolytic adenovirus results in expanded repertoire of neoantigen-specific CD8+ T cells

Woller et al. Mol Ther 2015

T-VEC and MEKi induces immune inflammatory and T cell activation gene signature

Tumor immune inflammatory signature

Z score 4 2 0 -2 -4

T cell activation signature

T-VEC and MEK inhibition induces strong PD-1 and PD-L1 expression

T-VEC/MEKi/anti-PD-1 triple therapy improves therapeutic responses

Oncolytic immunotherapy is synergistic with checkpoint blockade

T-VEC+pembrolizumab

Without added toxicity

Ribas et al. Cell 2017

T-VEC and pembrolizumab increases CD8+ T cell density and PD-L1 in the TME of responding lesions

Ribas et al. Cell 2017

T-VEC + pembrolizumab increases IFNgamma score and PD-L1 expression

Ribas et al. Cell 2017

Conclusions

- Oncolytic T-VEC induces ICD in melanoma cell lines
- Oncolytic T-VEC exhibits enhanced cell lysis *in vitro* and immune responses when combined with MEK inhibition *in vivo*
 - CD8+ T cell dependent
 - May rely on Batf3+ DC
 - Induces antigen spreading in murine models
- Gene expression profiling suggests that counter-regulatory expression of immune checkpoints may provide an opportunity for rational combinations of OV and checkpoint blockade
- Triple therapy with T-VEC, trametinib and anti-PD1 demonstrates strong therapeutic activity in mice
- Clinical studies of T-VEC and pembrolizumab appear promising
- OVs can be considered a pivotal agent to induce initial ICD as part of more rational combination strategies for tumor immunotherapy
- Further understanding of how OVs mediate anti-tumor activity are warranted; other viruses may exhibit different mechanisms

Acknowledgments

Rutgers Cancer Institute

- Praveen Bommareddy
- Ann Silk, MD
- Jennifer Bryant, RN
- Andrew Zloza, MD, PhD

Amgen

 Jen Gansert, MD, PhD for use of mT-VEC virus

Mass General Hospital

- Sam Rabkin, PhD
- Robert Martuza, PhD
- Don Lawrence, MD
- Keith Flaherty, MD, PhD
- Ryan Sullivan, MD
- Justine Cohen, DO
- Ken Tanabe, MD

Funding

NCI UM1 CA 186716-01 NCI NO1 CA 10-034 NCI RO1 CA 093696 The Gateway Foundation