

Carbone Cancer Center

UNIVERSITY OF WISCONSIN SCHOOL OF MEDICINE AND PUBLIC HEALTH

American Family Children's Hospital

Society for Immunotherapy of Cancer

sitc

Direction of the Field: The Future of Cancer Immunotherapy

> February 22, 2019 SITC Winter School

Christian Capitini, MD

University of Wisconsin-Madison

Disclosures

- Nektar Therapeutics Advisory Board/Honorarium
- By virtue of discussing the future, I will be discussing non-FDA approved indications during my presentation.

Diagnostics

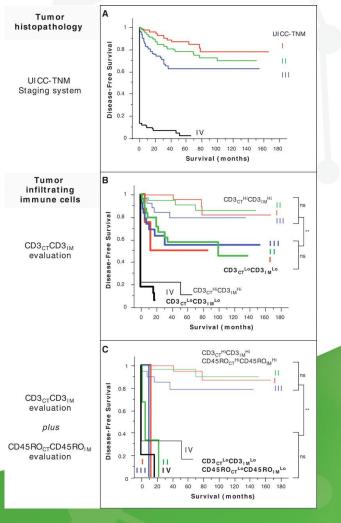
Therapeutics

Improvements in Staging and Immunotherapy Biomarkers

- Immunoscore
 - CD3, CD8, T cell memory
 - PD-L1, TMB, GEP and others
- Next generation sequencing
 - MSI-high, MMR defects, etc.
- Gut microbiome
- Tumor microenvironment/metabolomics

Current standard diagnostics

- Histopathology
- Flow cytometry
- Immunohistochemistry
- Cytogenetics
- Molecular studies: RT-PCR/FISH


Immunoscore will become part of standard pathologic reports for all tumors, used as a biomarker for responses and correlate with survival

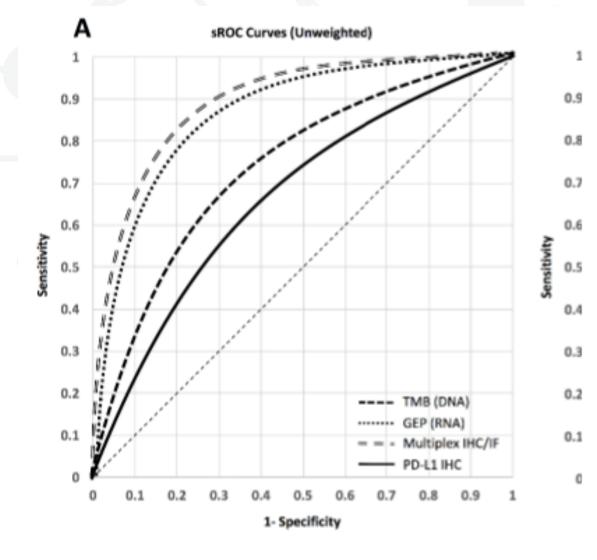
CT = center of tumor; IM = invasive margin; Galon et al. 2012 J Transl Med

Cancers where immunoscore correlates with outcome

Adult tumors	Hepatocellular carcinoma
Colorectal cancer	Breast cancer
Melanoma	Ovarian cancer
Renal cell carcinoma	Spinal chordoma
Non-small cell lung cancer	Pediatric tumors
Head and neck cancer	Neuroblastoma
Gastric cancer	Osteosarcoma

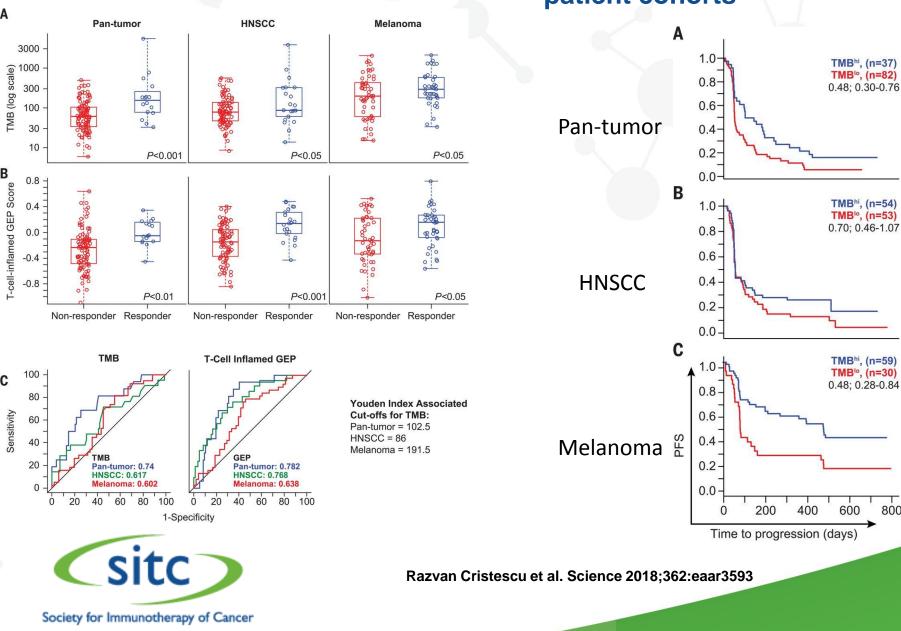
Galon et al. 2006 Science

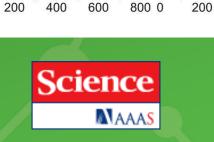
Society for Immunotherapy of Cancer


Using assays together increases positive predictive value of responding to anti-PD(L)1 therapy

- Meta-analysis of 44 papers/abstracts examining the association between overall response rate to anti-PD(L)1 monotherapy and reported biomarkers including:
 - PD-L1 immunohistochemistry
 - Tumor mutation burden (TMB)
 - Gene expression profiling (GEP)
 - multiplex immunohistochemistry/immunofluorescence (mIHC/IF)

Abstract O6: Steve Lu et al. Comparison of biomarker assay modalities in anti-PD-(L)1 monotherapy: a meta-analysis


TMB has modestly better performance relative to PD-L1 IHC, and newer approaches may have improved sensitivity and specificity.



Abstract O6: Steve Lu et al. Comparison of biomarker assay modalities in anti-PD-(L)1 monotherapy: a meta-analysis

Individual association of TMB or T cell-inflamed GEP with anti-PD-1 response across multiple patient cohorts

800 0

GEP^{hi}, (n=68)

GEP10, (n=45)

0.54; 0.35-0.81

GEP^{hi}, (n=75)

GEP10, (n=30)

0.45; 0.28-0.72

GEPhi, (n=63)

GEP10, (n=23)

0.73; 0.40-1.31

TMB^{hi}GEP^{hi}, (n=27)

TMB^{Io}GEP^{Io}, (n=36)

TMB^{hi}GEP^{hi}, (n=38)

TMB^{io}GEP^{io}, (n=15)

TMB^{hi}GEP^{hi}, (n=46)

TMB^{Io}GEP^{Io}, (n=11)

400

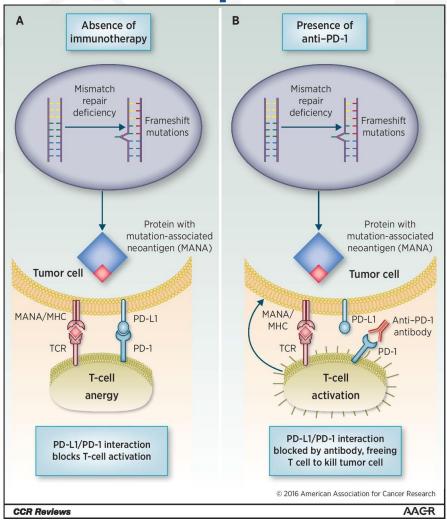
TMB¹⁰ or GEP¹⁰, (n=40)

0.63: 0.36-1.09

600

800

TMB¹⁰ or GEP¹⁰, (n=67)

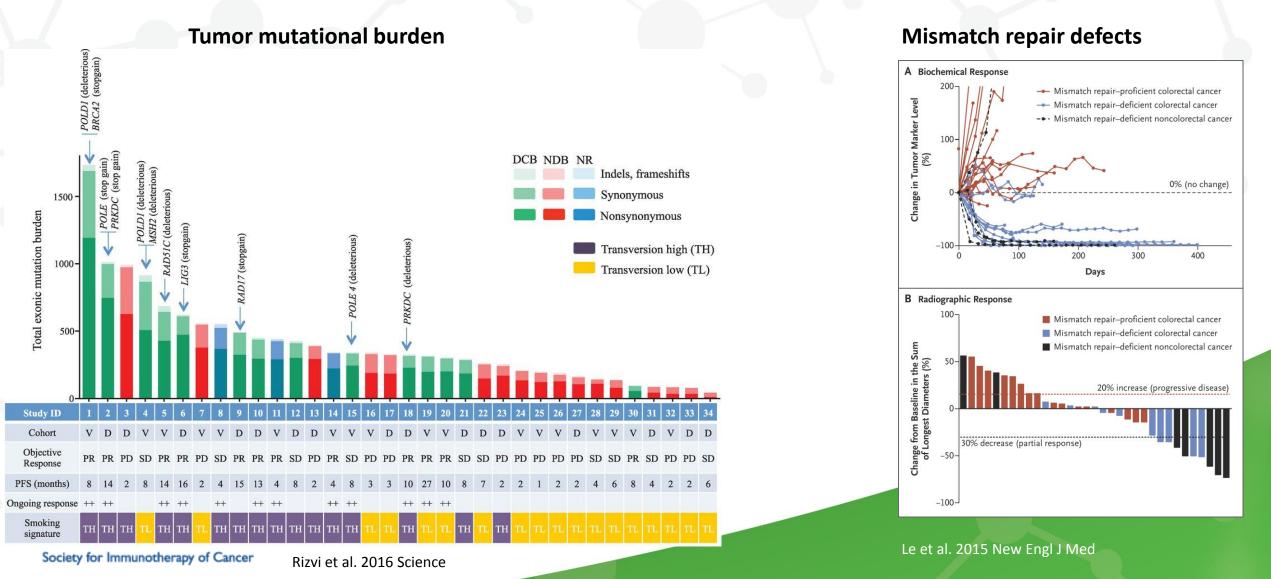

0.51: 0.32-0.82

TMB^{Io} or GEP^{Io}, (n=86)

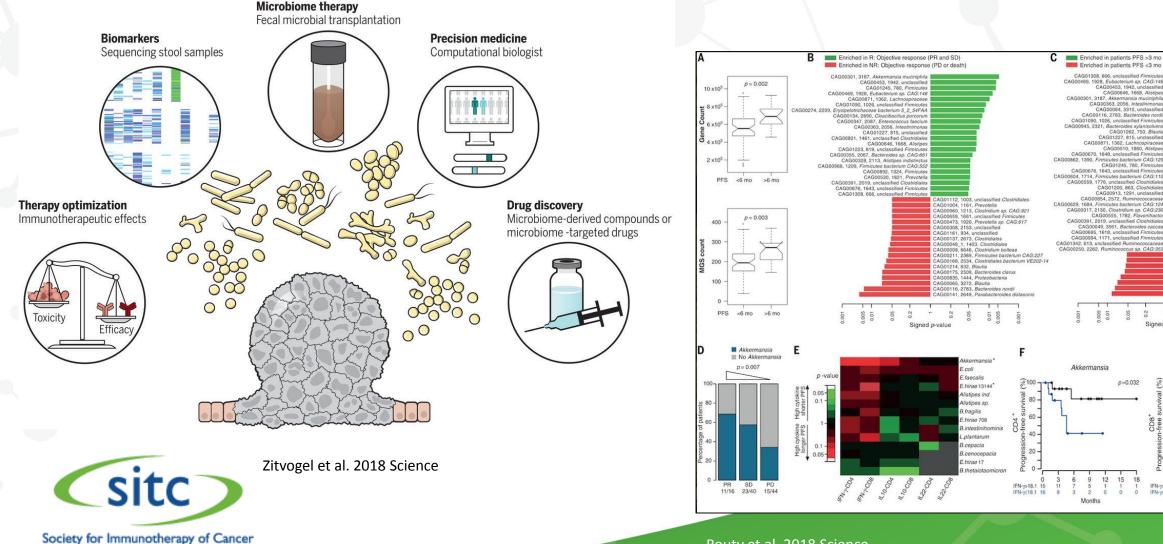
0.43; 0.26-0.71

Proposed relationship between MSI status and immunologic

response.


Jonathan C. Dudley et al. Clin Cancer Res 2016;22:813-820

Clinical AAGR Methods Market Cancer Research



©2016 by American Association for Cancer Research

Better intersection of next generation sequencing with predicting immunotherapy responses

Query and modulate the gut microbiome to improve responses to immunotherapy

Routy et al. 2018 Science

1928, Eubacterium sp. CAG:146 CAG00453, 1942, unclassified

CAG00064, 3310, unclassifie CAG00116, 2783, Bacter

CAG01262, 750, Blautia CAG01227, 815, unclassified

CAG01245, 780, Firmio

p=0.032

Months

CAG00141, 2649, Parabacteroides distasoni

G00168, 2534, Clostridiales VE202-14

G00720, 1590, Anaerotruncus

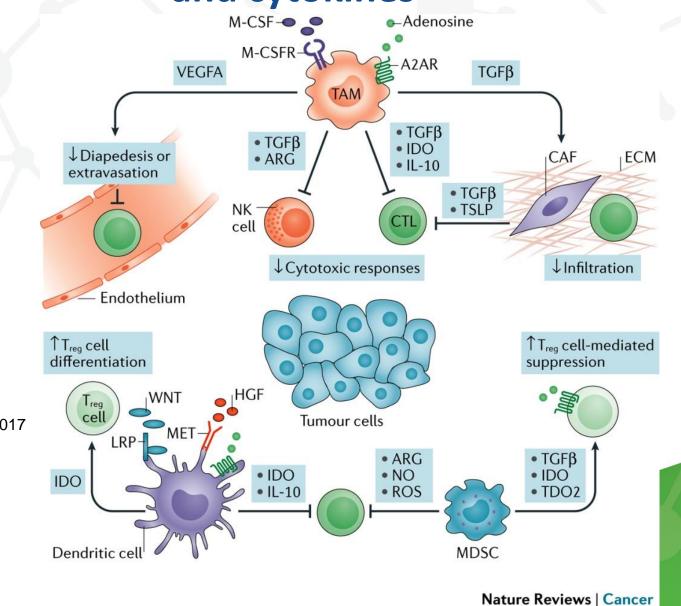
Signed p-value

IFN-7>28.1 19

IFN-y≤28.1 19

AG00211, 2389, Firmicutes bacterium CAG: 1403. Clostridiale.

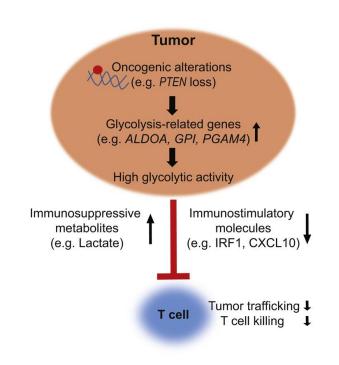
E.hirae 13144


p=0.044

1, 3187, Akkermansia mucinip CAG00363, 2056, Intestinimo

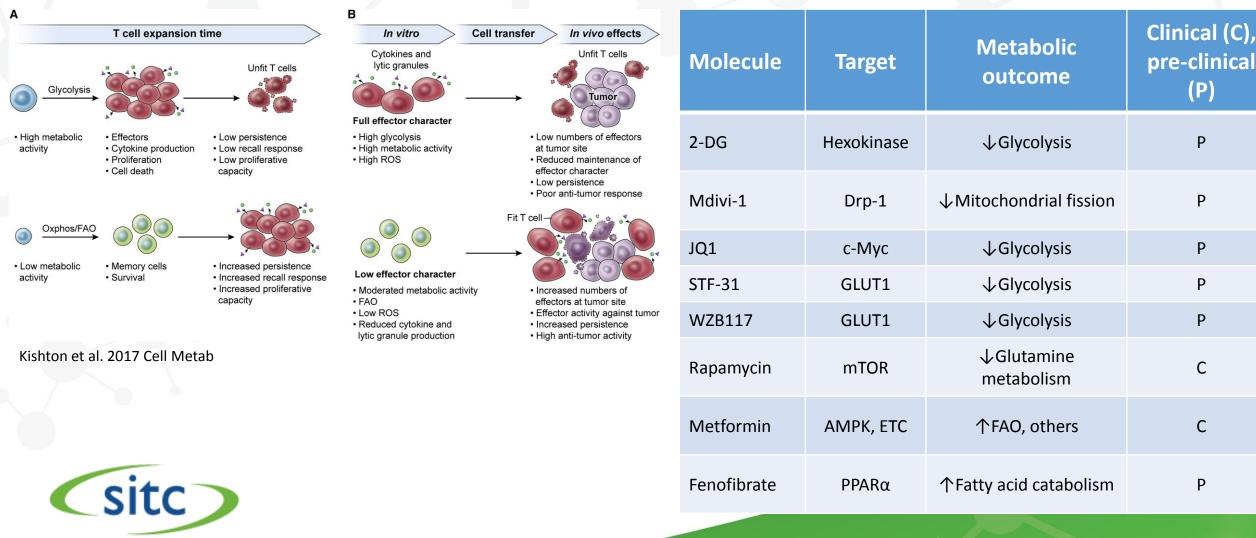
CAG00871, 1362 Lachoospiracea CAG00510, 1860, Alis

CAG00646, 1668, Alistine


Tumor microenvironment is immuno-suppressive due to multiple cells and cytokines

Gotwals et al. 2017

Manipulate the tumor metabolic environment to enhance immunotherapy responses


GENE	FC (N/R)	P value	В			С					
ALDOA	1.697746	0.136385				-		1	1	1	-
ALDOC	1.758665	0.186307	⁵⁰ 1	P=0.011		800-	Aerobic			Energet	ic
ENO2	1.257908	0.685237	5 ⁴⁰			Ition					
ENO3	2.365525	0.205193				spira			KUN II		
GAPDH	1.733471	0.143722	Overall expression glycolytic genes 0 0 00 0 10			Mitrochondrial Respiration OCR (pmol/min)		1			
GPI	1.700951	0.015443	0 solyti		••	drial (pm		114			****
LDHA	1.429014	0.302088	/eral glyc			ochond 0CR					
LDHB	1.511258	0.152462	Ó			C O			T	1 1 1	
PFKM	1.152264	0.57808	0 1	CR/PR	SD/PD	200	₽ ^C				
PFKP	1.232823	0.463708			OB/I D	0	Quiescen			Glycolytic	;
PGAM1	1.421356	0.108866				0		5	10	15	20
PGAM4	1.5305	0.033143					Ł	ECAR (mpH Glycolys			
PGK1	1.636341	0.087465						,,.			

Cascone et al. 2018 Cell Metab

Α

Will also change T cell metabolism to enhance immunotherapy responses

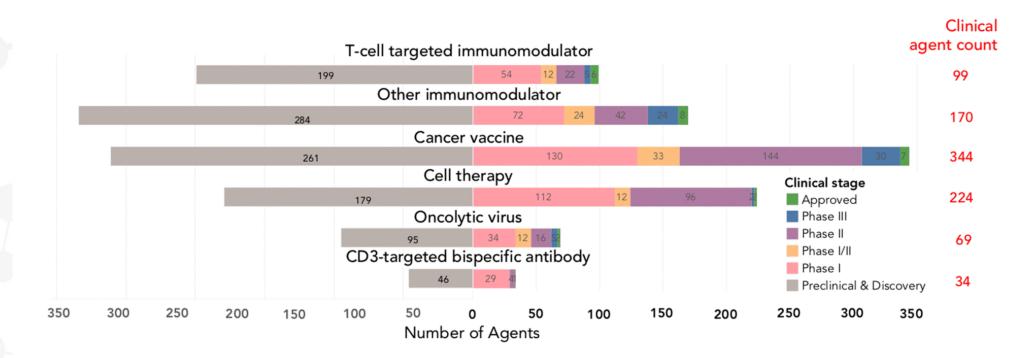
Society for Immunotherapy of Cancer

Dugnani et al. 2017 Cancer Lett

Diagnostics

Therapeutics

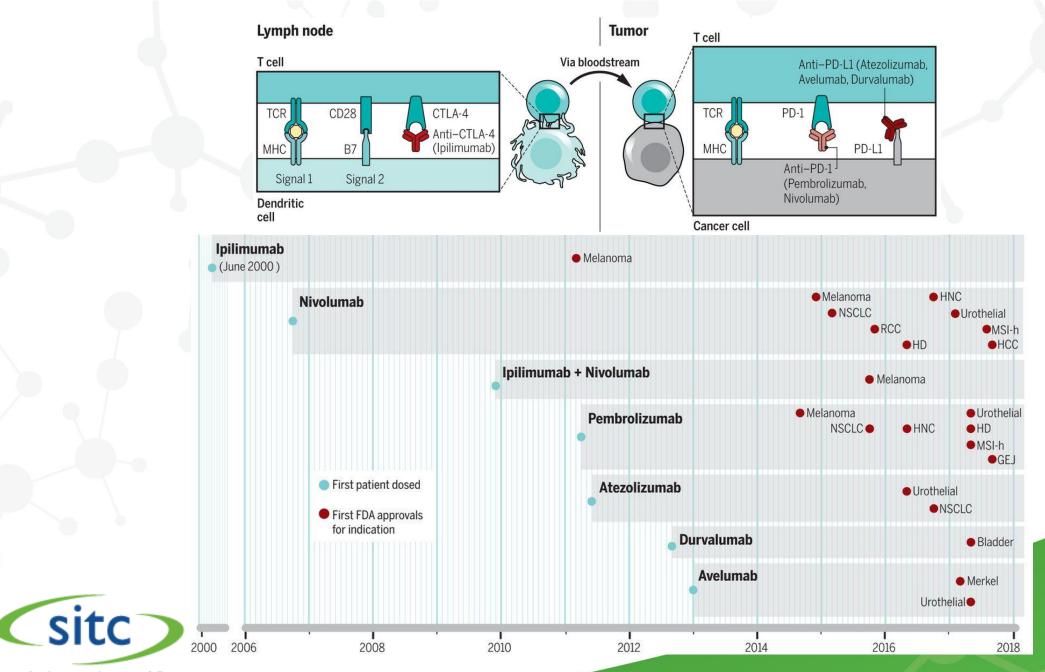
Expansion of immunotherapy therapeutics


- Antibody therapy
 - Checkpoint agonists/inhibitors
 - Antibody-drug conjugates
 - Bispecifics
- Oncolytic viral therapy
- Radiotherapy/Immunotherapy

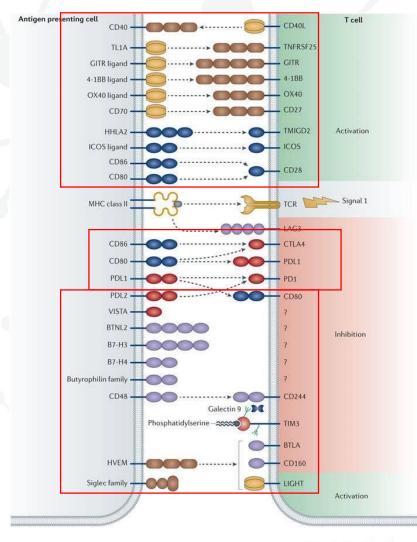
- Cellular therapy
 - Vaccines
 - +/- anti-PD1
 - CAR T, CAR NK,
 CAR NKT, CAR CIK cells emerging
 - TCR transduced T cells
 - Gamma delta T cells

2,004 IO AGENTS IN DEVELOPMENT

940 AGENTS ARE IN CLINICAL STAGES, AND 1,064 IN PRECLINICAL



Page 4



Society for Immunotherapy of Cancer

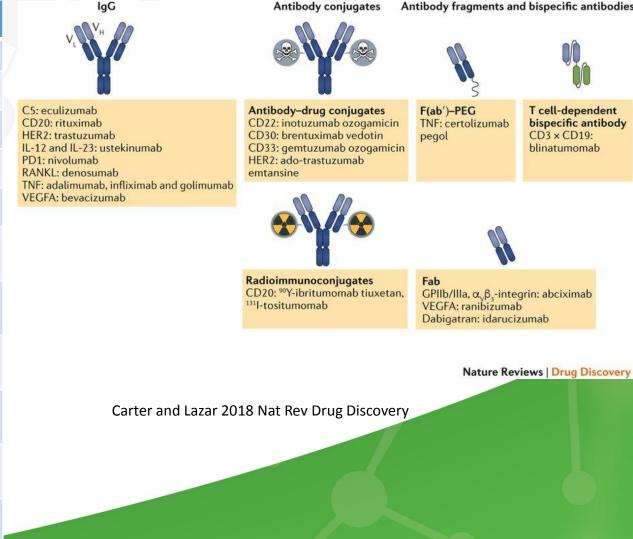
Ribas and Wolchok 2018 Science

The number of checkpoint agonists and antagonists will expand and be used in combination

Nature Reviews | Drug Discovery

Appendix: Immune checkpoint modulators in combination clinical trials (August 2017)

Checkpoint modulator name	Target	Checkpoint modulator name	Target	Checkpoint modulator name	Target	
PF-05082566 / Utomilumab	4-1BB	GWN323	GITR	MOXR0916	OX-40	
Urelumab	4-1BB	INCAGN01876	GITR	PF-04518600	OX-40	
AZD4635	ADORA2A	MK-1248	GITR	AMP-224	PD-1	
CP1-444	ADORA2A	MK-4166	GITR	BGB-A317	PD-1	
NIR178	ADORA2A	GSK3359609	ICOS	IBI308	PD-1	
PBF-509	ADORA2A	JTX-2011	ICOS	JS001	PD-1	
Preladenant / MK-3814 /	4000434	Epacadostat	IDO	MED10680	PD-1	
SCH420814	ADORA2A	Indoximod	IDO	Nivolumab	PD-1	
Enoblituzumab	B7-H3	KHK2455	IDO	PDR001	PD-1	
Varlilumab	CD27	NLG919 / GDC-0919	IDO	Pembrolizumab	PD-1	
APX005M	CD40	BMS-986205	IDO	PF-06801591	PD-1	
CP-870,893 / RO7009789	CD40	Lirilumab	KIR	REGN2810	PD-1	
Dacetuzumab	CD40	BMS-986016	LAG-3	SHR-1210	PD-1	
Lucatumumab	CD40	LAG525	LAG-3	Atezolizumab	PD-L1	
SEA-CD40	CD40	MK-4280	LAG-3	Avelumab	PD-L1	
ISF35 / rAd-CD40L	CD40	REGN3767	LAG-3	Durvalumab	PD-L1	
MEDI5083	CD-40L	IMP321	MHC II	FAZ053	PD-L1	
ARGX-110	CD70	Monalizumab	NKG2A	LY3300054	PD-L1	
Galiximab	CD80	ABBV-368	OX-40	CX-072	PD-L1	
BMS-986218	CTLA-4	BMS-986178	OX-40	BMS-986207	TIGIT	
Ipilimumab	CTLA-4	GSK3174998	OX-40	MTIG7192A	TIGIT	
MK-1308	CTLA-4	MEDI0562	OX-40	LY3321367	TIM-3	
Tremelimumab	CTLA-4	MEDI6383	OX-40	MBG453	TIM-3	
BMS-986156	GITR	MED16469	OX-40	TSR-022	TIM-3	


Copyright: Hanson Wade, August 2017

12

Mahoney KM et al. 2015 Nat Rev Drug Discovery

More development and potential approvals of antibody-drug conjugates

Emerging antibody-drug conjugates	Target cancer
Sacituzumab govitecan	Breast cancer
Mirvetuximab canavanine	Ovarian cancer
Rovalpituzumab tesirine	Lung cancer
Depatuxizumab mafodotin	Glioblastoma
Oportuzumab monatox	Bladder cancer
Denintuzumab mafodotin	B cell malignancies
Indatuximab ravtansine	Multiple myeloma
Lorvotuzumab mertansine	Small cell lung cancer
Moxetumomab pasudotox	B cell malignancies
Pinatuzumab vedotin	B cell malignancies
Polatuzumab vedotin	B cell malignancies

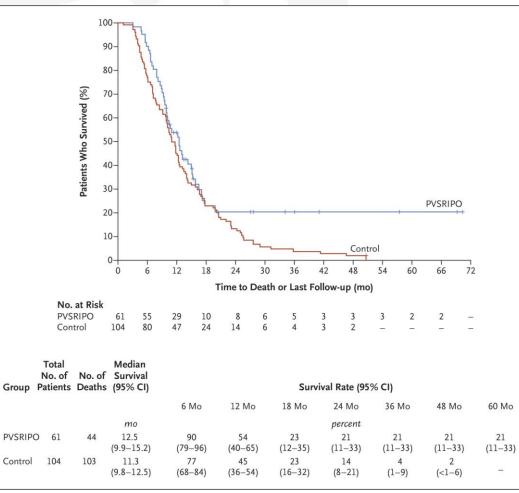
T cell-dependent bispecific antibody

CD3 × CD19:

blinatumomab

Oncolytic viral therapy will continue to expand viral agents, biologics, and target tumors

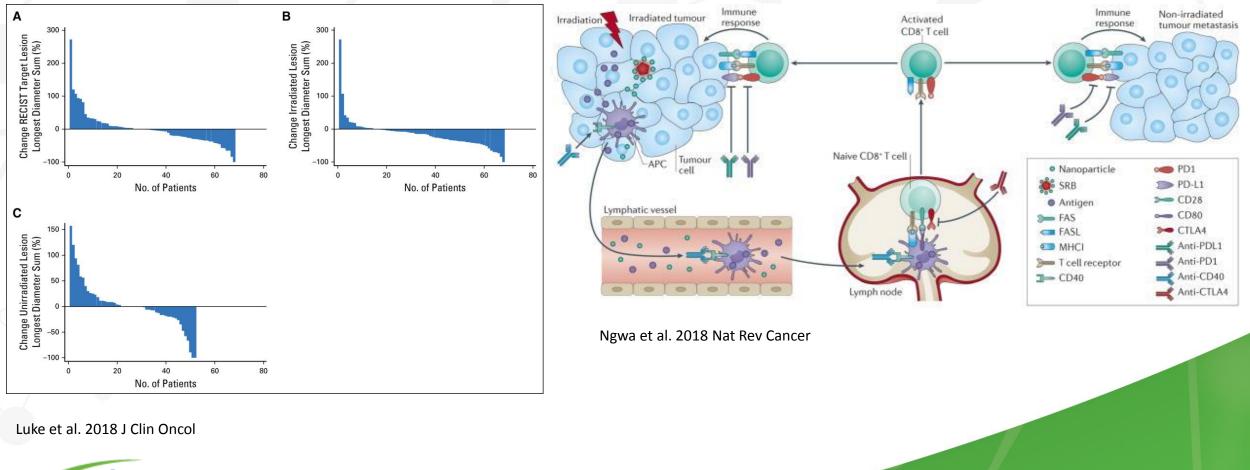
	Adenovirus ^a	Herpes simplex virus ^b	Pox virus	Coxsackie virus	Maraba virus	Poliovirus	Measles virus	Newcastle Disease virus
Genome	dsDNA	dsDNA	dsDNA	ssRNA	ss (–) RNA	ss (+) RNA	ss (–) RNA	ss (–) RNA
Genome size	Moderate (32 kb)	Large (152 kb)	Large (130– 375 kb)	Small (~8 kb)	Small (11– 15 kb)	Small (7.5 kb)	Small (~16 kb)	Small (~15 Kb)
Cell entry mechanism	Endocytosis	Endocytosis; penetration	Membrane penetration and fusion	Micropinocytos is via epithelial tight junctions	Endocytosis; pH-dependent fusion activation	Receptor- mediated endocytosis	Membrane fusion	Endocytosis; pH- independent direct fusion
Cell entry receptors	hCAR; VCAM1; CD46	HVEM; nectin 1; nectin 2	GAGs; EFC	CAR; DAF	Unknown	CD155	CD46; SLAM	Neuraminidase receptor; sialoglyco- conjugates


^aE1B-55 K/E3B-deleted adenovirus in combination with chemotherapy was approved for the treatment of late-stage refractory nasopharyngeal cancer by the Chinese State Food and Drug Administration in 2005. ^bHerpes simplex virus type 1 (HSV-1) with ICP34.5 deletion and encoding granulocyte–macrophage colony-stimulating factor (GM-CSF) was approved for stage III–IV melanoma treatment by the US Food and Drug Administration in 2015 and by Australia and the European Medicines Agency (EMA) in 2016.

Adapted from Bommareddy et al. 2018 Nat Rev Immunol

Oncolytic viral therapy will continue to expand viral agents, biologics, and target tumors

PVSRIPO for Glioblastoma multiforme

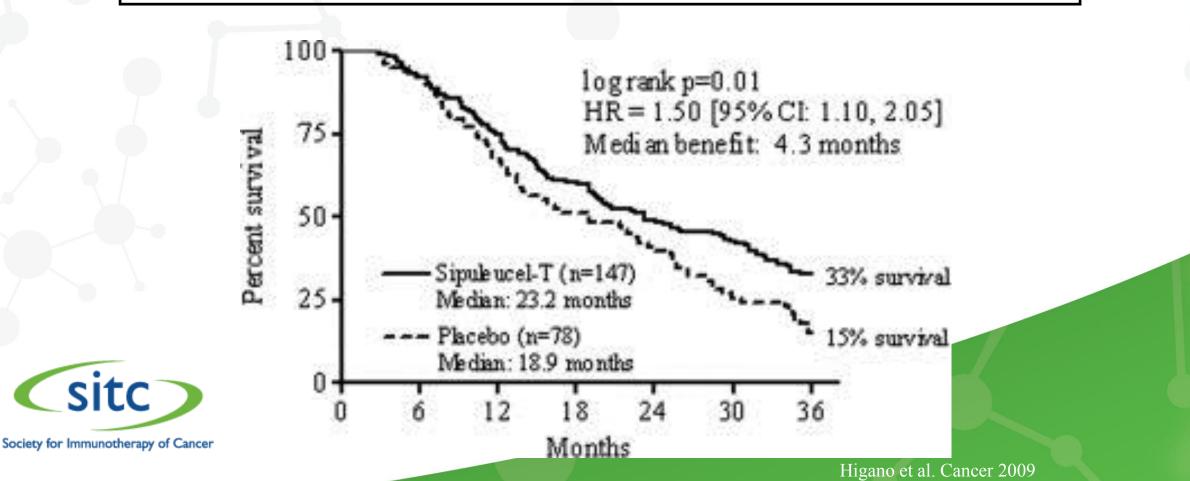

Society for Immunotherapy of Cancer

Desjardins et al. 2018 New Eng J Med

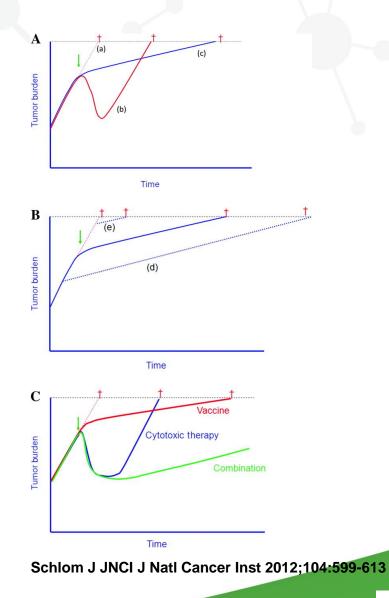
A Study of Intratumoral CAVATAK[™] in Patients With Stage IIIc and Stage IV Malignant Melanoma (VLA-007 CALM) Clinicaltrials.gov/NCT01227551

Outcome	Result
Percentage of Participants With Immune-related Progression- Free Survival (irPFS) at 6 Months	38.6 (26.0 to 52.4)
Percentage of Participants With Durable Response Rate of 6 months or more	21.1

Radiation therapy will be increasingly used as a means of enhancing immunotherapy

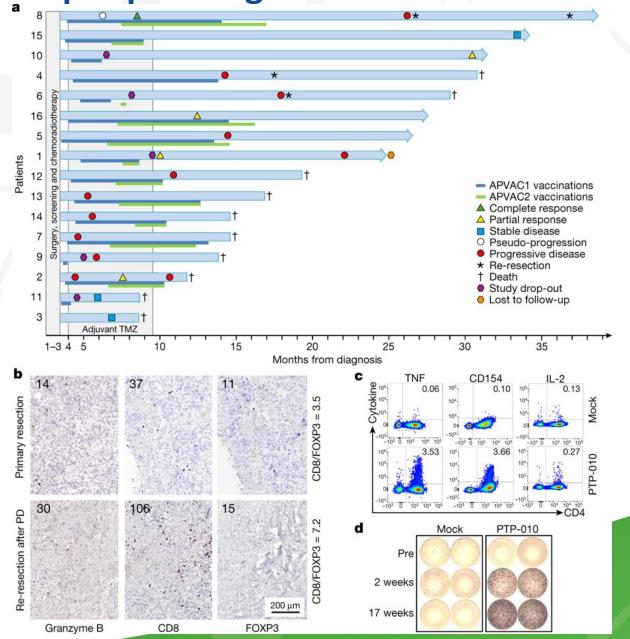

Society for Immunotherapy of Cancer

Radiation therapy can be safely combined with immunotherapy

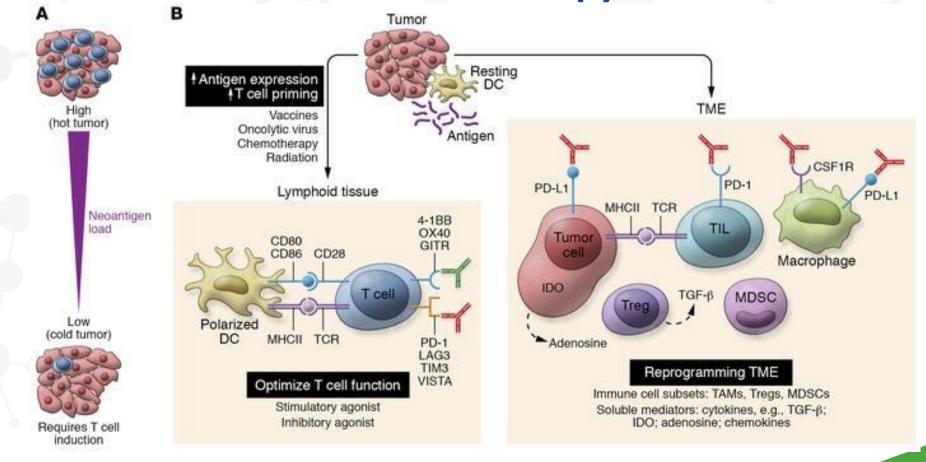

Institution (reference)	Primary site	n	Radiotherapy	Immunotherapy	Schedule	Nonirradia CR	ited lesions PR	SD	Grade 3+ toxicities
University of Pennsylvania	Melanoma	22	 6 Gy × 2–3 or 8 Gy × 2–3 1 site 	Ipilimumab 3 mg/kg every 3 weeks × 4	First ipilimumab 3–5 days after RT	0/22 (0%)	4/22 (18%)	4/22 (18%)	 Number of patients with any grade 3 toxicity not reported Grade 3 anemia (4/22; 18%) most common No grade 4–5 No DLT
Stanford	Melanoma	22	 Multiple dose-fx regimens (BED10 range 28.0–112.5 Gy) 1–2 sites 	Ipilimumab 3 mg/kg every 3 weeks × 4	RT within 5 days of first ipilimumab	3/22 (14%)	3/22 (14%)	5/22 (23%)	 2/22 (9%) grade 3 1/22 (5%) grade 4 No grade 5
MD Anderson Cancer Center	NSCLC, CRC, sarcoma, RCC, and others	35	 50 Gy/4 fx or 60 Gy/10 fx 1 site 	Ipilimumab 3 mg/kg every 3 weeks × 4	RT 1 day after first ipilimumab or 1 week after second ipilimumab	0/31 (0%)	3/31 (10%)	4/31 (13%)	 12/35 (34%) grade 3 No grade 4–5 2/35 (6%) with DLT
Ko and Formenti 2	2018 Ther Adv Med (Oncl							
S	itc								
Society for Imr	nunotherapy of Cancer								

sipuleucel-T (Provenge)

- composed of autologous antigen presenting cells that express prostatic acid phosphatase and GM-CSF
- Patients demonstrated a 33% reduction in the risk of death for progression in asymptomatic, metastatic, hormone-refractory prostate cancer, extending overall survival 4.1 months
- FDA approved 2010

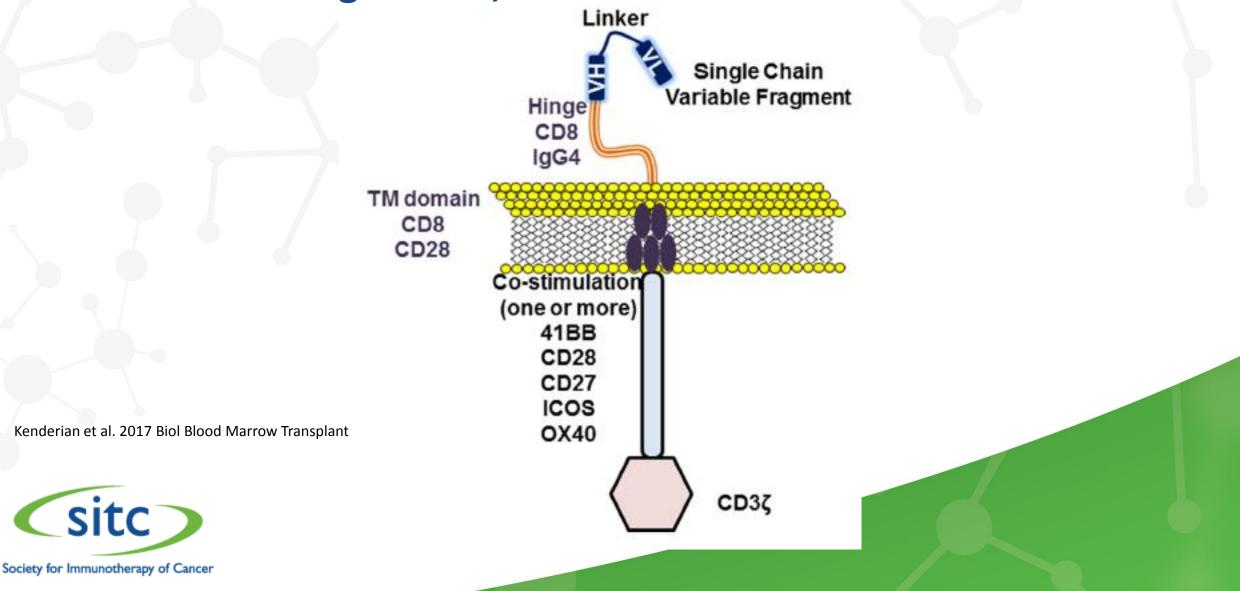

Tumor growth rates following chemotherapy vs vaccine therapy

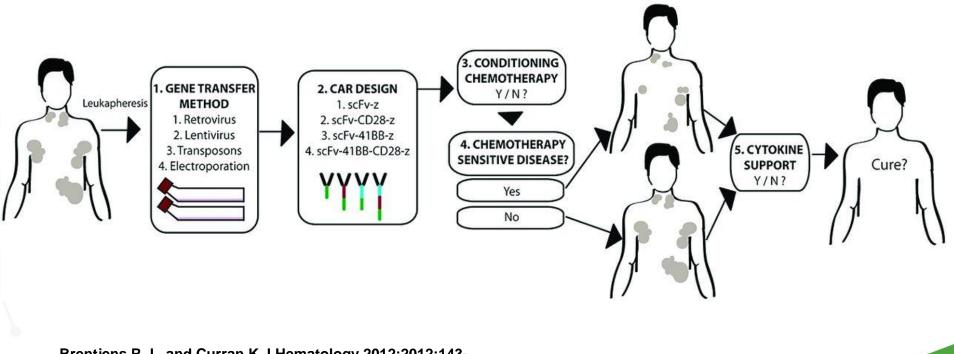
Society for Immunotherapy of Cancer Published by Oxford University Press 2012. JNCI


Personalized vaccine of unmutated antigens and preferentially targeted neoepitopes for glioblastoma multiforme

Hilf et al. 2019 Nature

Emerging strategies for combination checkpoint modulators in cancer *immunotherapy*

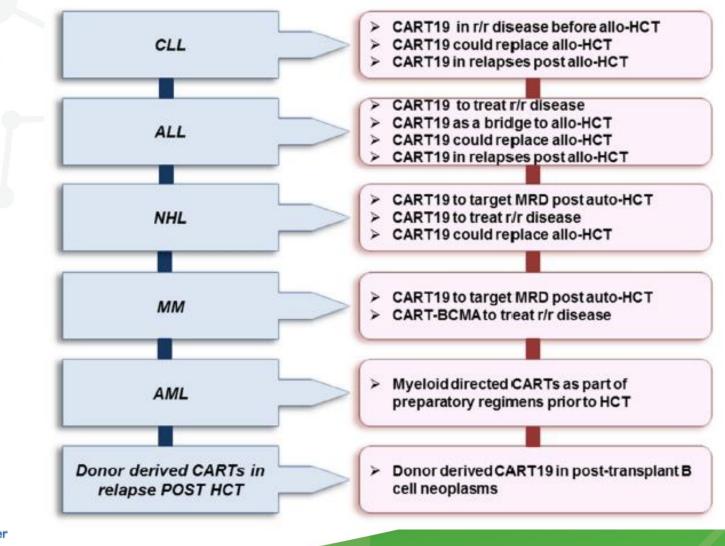



Popovic et al. 2019 J Clin Invest

A variety of CAR constructs will be tested initially in hematologic malignancies, but then in solid tumors

sitc

Test variables in clinical trial design.


Brentjens R J , and Curran K J Hematology 2012;2012:143-151

©2012 by American Society of Hematology

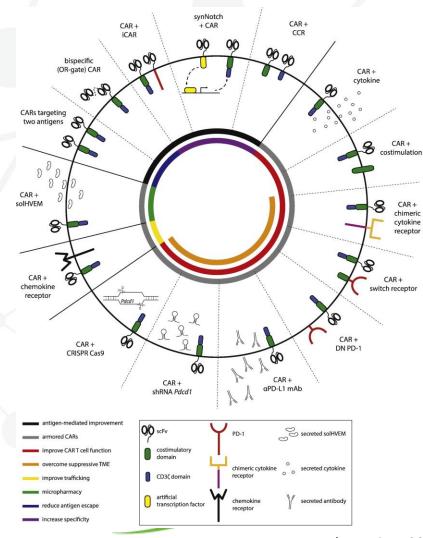
CAR T cells will be used as frontline therapy in lieu of, or as a bridge to, allogeneic hematopoietic stem cell transplant

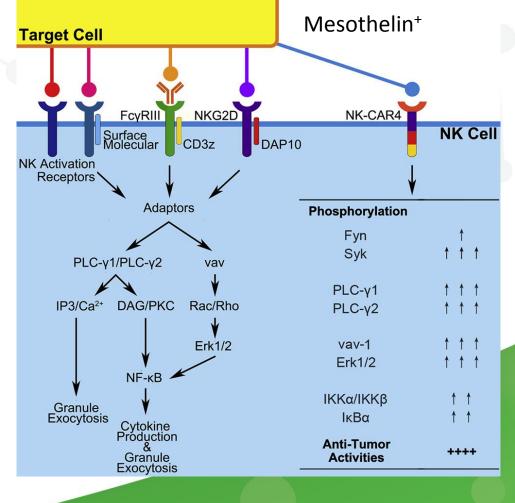
Society for Immunotherapy of Cancer

Kenderian et al. 2017 Biol Blood Marrow Transplant

CARs in development for hematologic malignancies

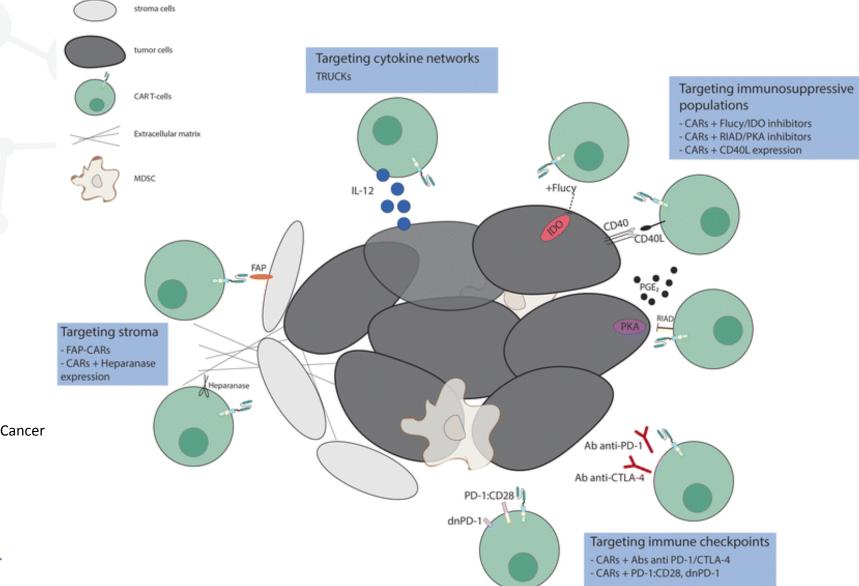
- CD20 (B cell cancers)
- CD22 (B cell cancers)
- CD23 (B cell cancers)
- CD30 (B cell cancers)
- CD37 (B and T cell cancers)
- **ROR1** (lymphoid cancers)
- CD133 (lymphoid and myeloid cancers)
- **TSLPR** (lymphoid cancers)
- BCMA (multiple myeloma)
- CS1 (multiple myeloma)
- CD138 (multiple myeloma)
- CD5 (T cell cancers)
- CCR4 (T cell cancers)
- **CD7** (T cell and myeloid cancers)
- CD33 (myeloid cancers)
- CD123 (myeloid cancers)
- Lewis-Y (myeloid cancers)
- CD44v6 (myeloid cancers)
- CLL-1 (myeloid cancers)
- Folate receptor beta (myeloid cancers)
- FLT3 (myeloid cancers)
- NKG2D (myeloid cancers)




CARs in development for solid tumors

- AFP (liver cancer)
- ALK (neuroblastoma)
- Carbonic anhydrase IX (kidney cancer)
- CD24 (ovarian cancer)
- CD70 (kidney cancer)
- **CD133** (liver, brain, breast cancer)
- **CD171** (neuroblastoma)
- **CD276** (multiple histologies)
- CEA (lung, colorectal, gastric, pancreatic cancers and liver metastases)
- cMet (breast cancer)
- CSFR1 (tumor-associated macrophages)
- EGFR (lung, colorectal, ovary, pancreatic cancer)
- EGFRvIII (gliomas, glioblastoma)
- **EpCAM** (liver, stomach and colon cancer)
- EphA2 (glioma)
- Fibroblast activation protein (mesotheiloma)
- Folate receptor alpha (breast, ovarian cancer)
- GD2 (neuroblastoma, sarcomas and melanoma)
- Glypican-3 (liver, lung cancer)
- HER2 (breast cancer, glioblastoma, ovarian, lung, pancreatic, sarcoma and medulloblastoma)
- IL-13Rα (gliomas)
- Lewis-Y (breast cancer)
- Mesothelin (pancreatic, ovarian, mesothelioma, breast cancer)
- MG7 (liver metastases)
- MUC-1 (breast, liver, lung, pancreatic, glioma, colorectal, gastric cancer)
- NKG2D (multiple histologies)
- **PSCA** (pancreatic cancer)
- **PSMA** (prostate cancer)
- TEM8/ANTRX1 (breast cancer)
- VEGFR2 (multiple histologies)

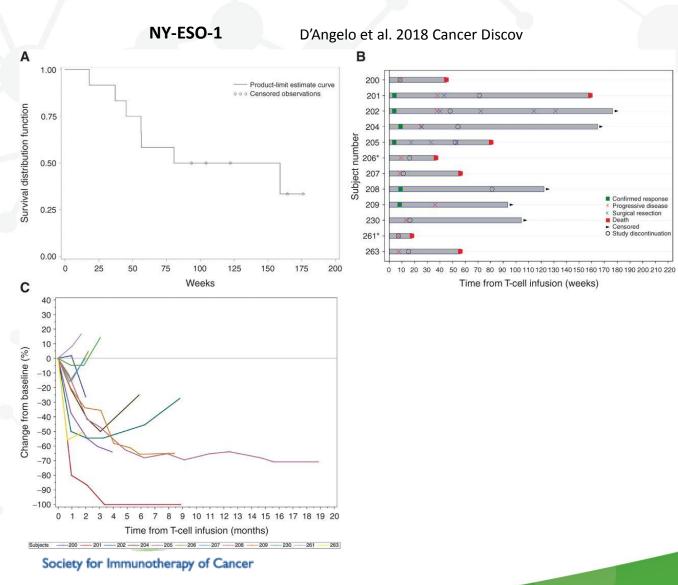
Enhanced engineering of CAR T, NK, NKT and CIK cells will help reduce side effects while improving efficacy

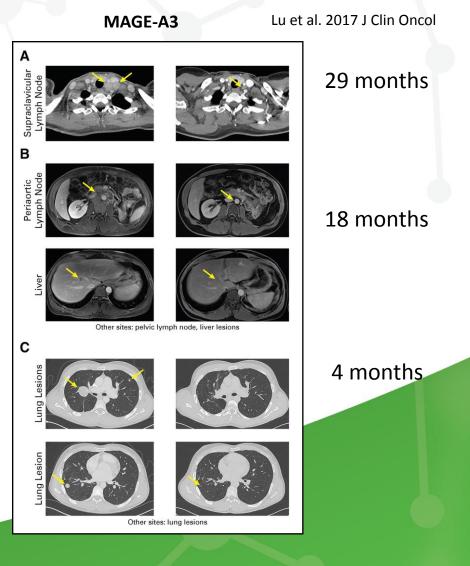


Li et al. 2018 Cell Stem Cell

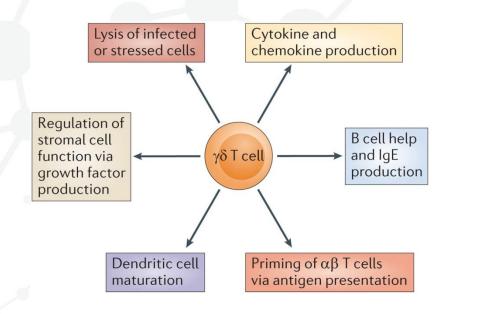
Society for Immunotherapy of Cancer

Jaspers and Brentjens 2017 Pharmacol Ther


Combination strategies to improve CAR efficacy will be used for solid tumors



Scarfo and Maus 2017 J Immunother Cancer



TCR transduced T cells will provide durable responses in solid tumors

Gamma-delta ($\gamma\delta$) T cells will also be genetically engineered to serve as vaccines or express CAR or TCR

Nature Reviews | Immunology

Long term disease-free survival in acute leukemia patients recovering with increased $\gamma\delta$ T cells after partially mismatched related donor bone marrow transplantation

KT Godder^{1,2}, PJ Henslee-Downey¹, J Mehta^{1,3}, BS Park⁴, K-Y Chiang^{1,5}, S Abhyankar^{1,6} and LS Lamb^{1,7}

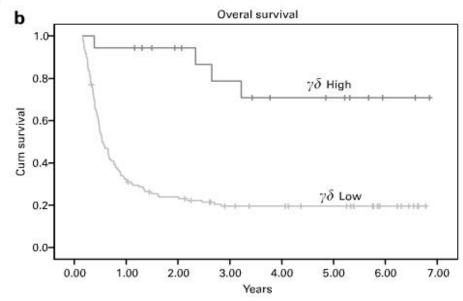
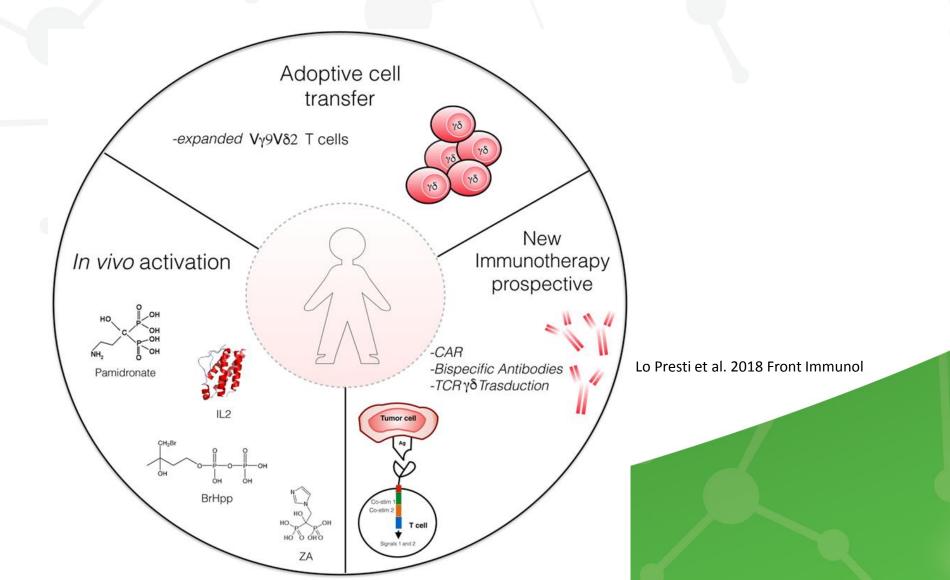



Figure 1 Kaplan Meier curves of event-free survival (a) and overall survival (b) of patients who recovered post PMRD-BMT with high vs low/ normal $\gamma\delta$ T-cells.

Bone Marrow Transplant. 2007 Jun;39(12):751-7

New and improved gamma-delta T cell therapy?

Conclusions

- The future of cancer immunotherapy is bright, with advances occurring in both diagnostics and therapeutics at a rapid pace
- We will see improvements in our ability to distinguish immunologically "hot" vs. "cold" tumors, and potentially be able to convert "cold" into "hot" tumors
- Advances in genetic engineering and biomanufacturing will permit development of "next generation" antibodies, viruses, targeted radiotherapies and cellular therapies for cancer.

