

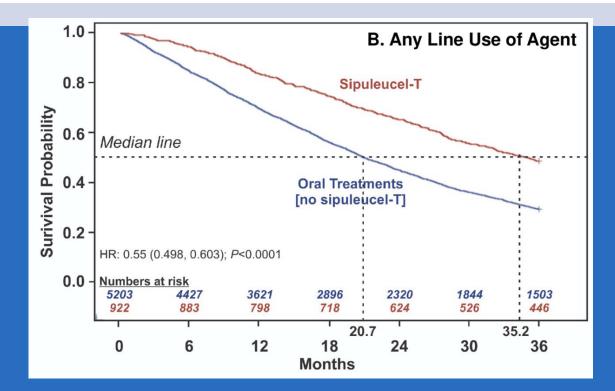
Immunotherapy for Advanced Prostate Cancer

Tanya Barauskas Dorff, M.D.

Associate Professor of Medicine Department of Medical Oncology & Experimental Therapeutics Section Chief, Genitourinary Cancers

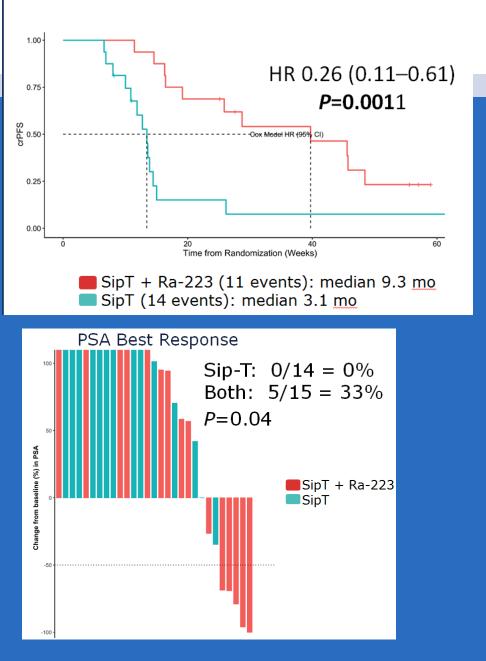
 Cityof

 Hope

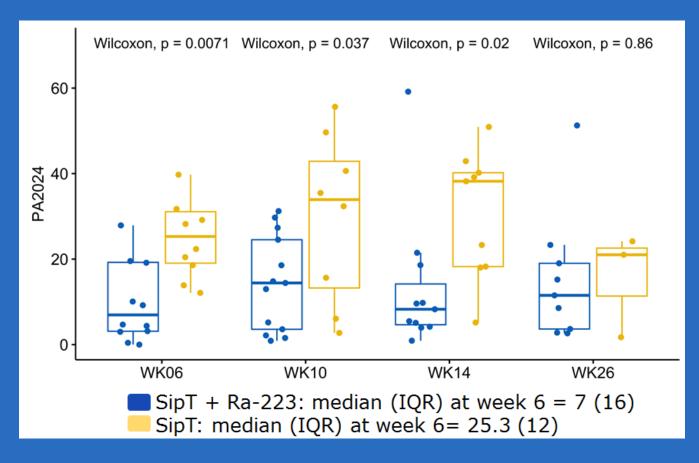


- Consulting Fees: SeaGen, Exelixis, Bayer, Janssen, Pfizer

Cellular immunotherapy in mCRPC: past


Sipuleucel-T: approved 2010 OS advantage¹ without rPFS delay or objective responses Mechanistic support: product parameters², CD8 lytic T cell phenotype induction³ OS benefit supported in crossover analyses⁴ and PROCEED registry, esp AfrAm⁵

McKay et al, GU ASCO 2020; abstr 42


- 1. Kantoff PW et al NEJM 2010; 63:411
- 2. Sheikh N et al Cancer Immunol Immunother 2013; 62:137
- 3. Antonarakis E et al. Clin Cancer Res 2018
- 4. George DJ et al Cancer Immunol Res 2015; 3:1063
- 5. Sartor O et al PCAN 2020; 23:517

Time to radiographic/clinical progression

Future directions: SipT + Radium223

Marshall CH et al. GU ASCO abstr 2020

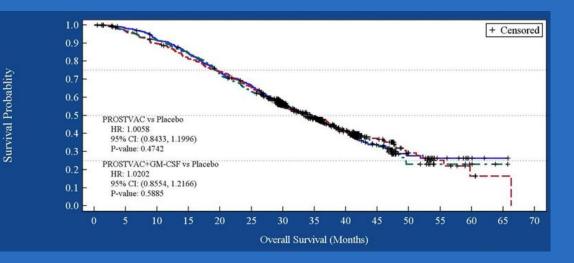
Vaccine approaches

Examples: ProstVAC, GVAX

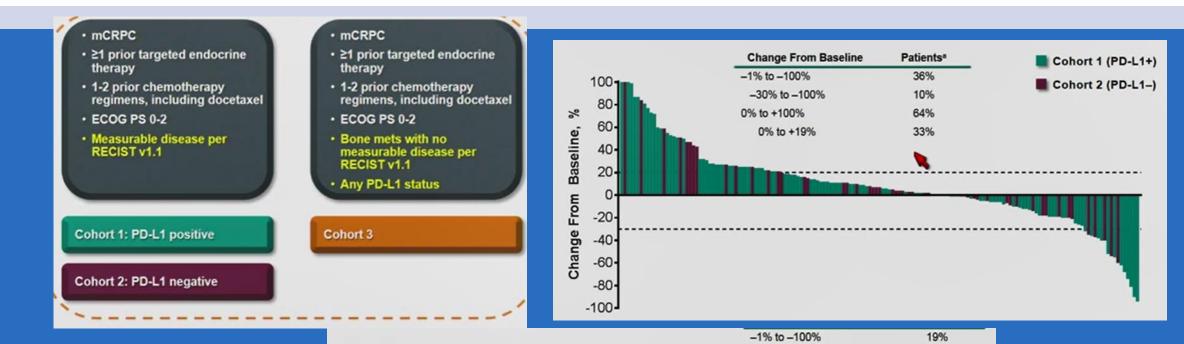
Advantages:

- Easy administration
- Specific (less toxic)

Disadvantages

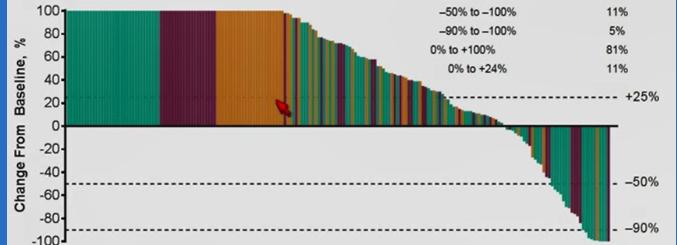

- Single antigen (ProstVAC)
- ? Overcome immune suppression

Future:


- McNeel (U Wisconsin) AR target w/ GM-CSF
- Oncoimmune (PSA/IL2/GM-CSF)

Trial	Med OS	HR (95%Cl) p value
GVAX vs Docetaxel + pred	20.7 months 21.7 months	1.03 (0.83, 1.28) P=0.78
GVAX + Docetax Docetaxel	12.2 months 14.1 months	1.7 (1.15, 2.53) P=0.0076

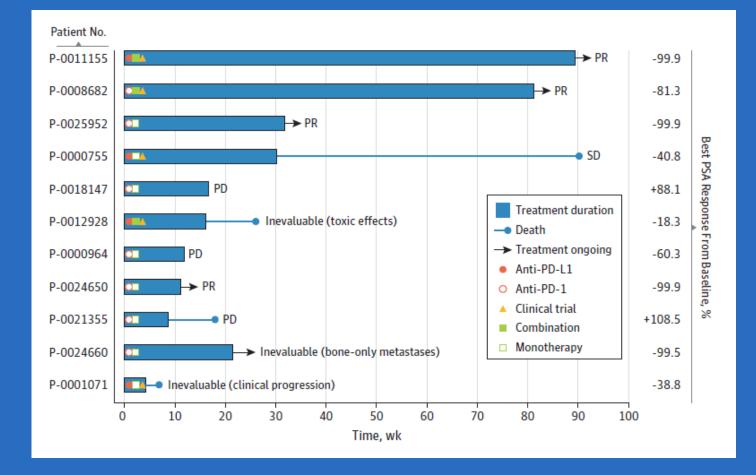
Above: outcomes of phase 3 trials with GVAX Below: outcome of phase 3 trial of ProstVAC



Cityof Immune checkpoint inhibitor therapy in Hope mCRPC: Pembrolizumab (KEYNOTE-199)

Top right: objective response Bottom right: PSA changes

DeBono JS. ASCO 2018; oral present



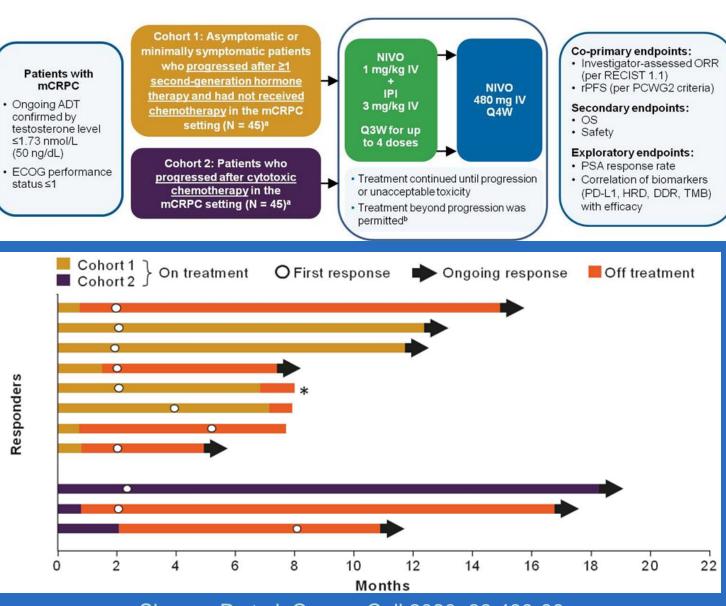
Immune checkpoint inhibitors in mCRPC: selcted by MSI

MSI is present in 3% of prostate cancers

Response to pembrolizumab about 50% (PSA, RECIST)

Abida W et al, JAMA Oncol 2019; 5:471-8

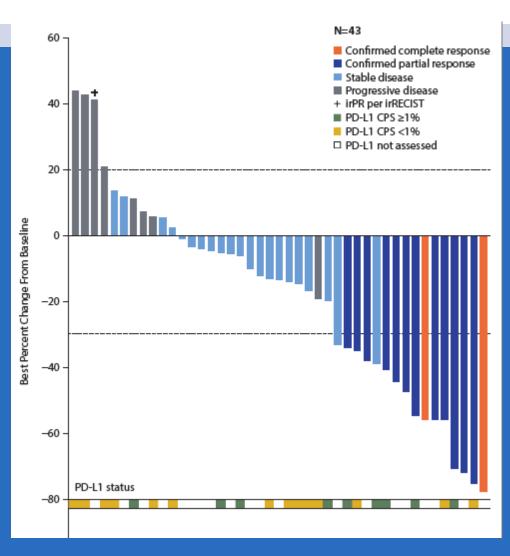
Cityof Hope (Ipi + Nivo)


<1/3 received all 4 induction doses

Chemo naïve: 25% objective response with 2 (6%) CR

– PSA response 17.6%

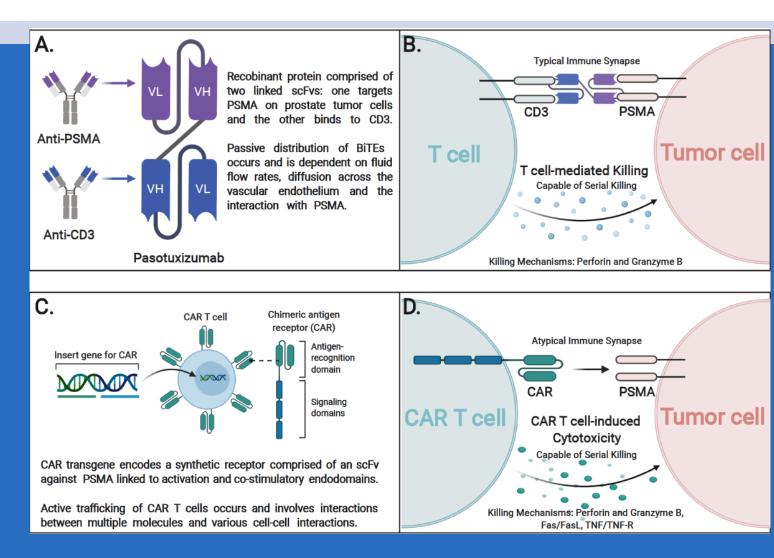
Chemo pre-treated: 10% objective response, 2 (6.7%) CR – PSA response 10%


HRD+ had greater response

Sharma P et al, Cancer Cell 2020; 38:489-99

Cabozantinib + Atezolizumab

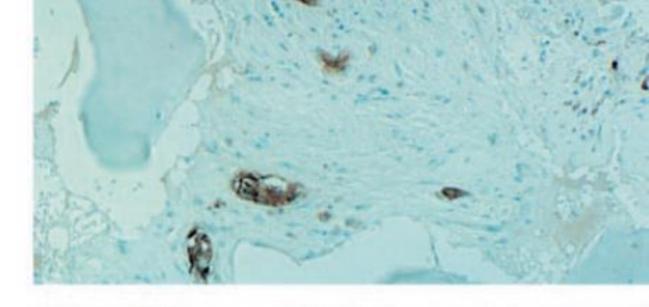
Agarwal N et al. GU ASCO 2020 abstr 139

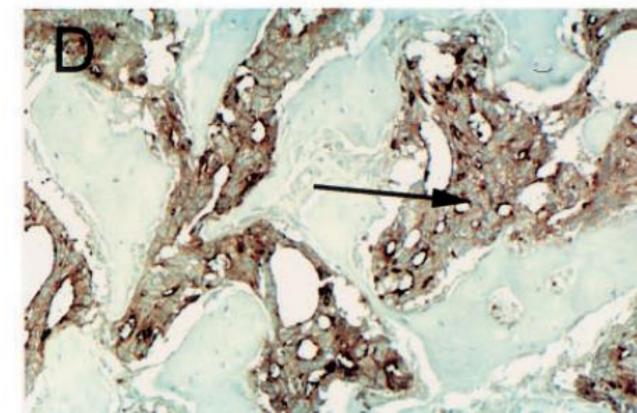

	CRPC Cohort (N=44)		
	Any Grade	Grade 3	Grade 4
Any AE, n (%)	42 (95)	25 (57)	1 (2.3)*
Fatigue	22 (50)	3 (6.8)	0
Nausea	19 (43)	0	0
Diarrhea	17 (39)	3 (6.8)	0
Decreased appetite	17 (39)	0	0
Dysgeusia	15 (34)	0	0
PPE	14 (32)	1 (2.3)	0
AST increased	11 (25)	2 (4.5)	0
Vomiting	11 (25)	1 (2.3)	0
ALT increased	8 (18)	2 (4.5)	0
Platelet count decreased	8 (18)	0	0
Weight decreased	8 (18)	0	0
White blood cell count decreased	7 (16)	2 (4.5)	0
Hypophosphatemia	7 (16)	1 (2.3)	0
Headache	7 (16)	0	0
Neutrophil count decreased	6 (14)	2 (4.5)	0
Hypertension	6 (14)	1 (2.3)	0
Stomatitis	6 (14)	1 (2.3)	0
Dysphonia	6 (14)	0	0
Hyponatremia	5 (11)	3 (6.8)	0
Arthralgia	5 (11)	1 (2.3)	0
Oral pain	5 (11)	0	0
Rash maculo-papular	5 (11)	0	0

T cell strategies: BiTE and CarT

BITE (A. & B.) - AMG 160 (PSMA), - AMG509 (STEAP1) CarT (C. & D.) - PSCA (City of Hope)

- PSMA (UPenn, Poseida)
- KLK2-targeted CarT (Janssen)



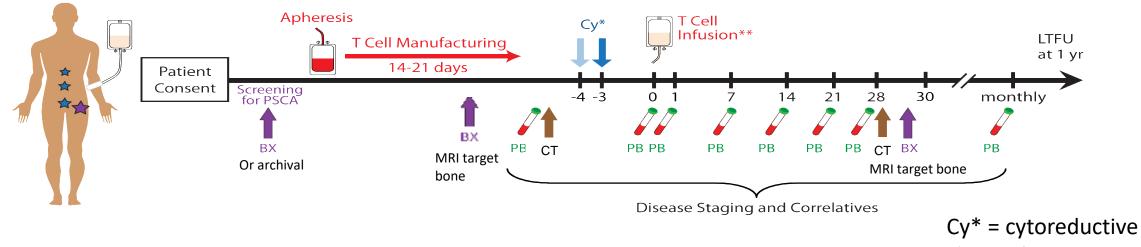

Dorff TB et al. Clin Cancer Res 2021; in press

PSCA as a target

- Identified by Dr. Reiter in Dr. Witte's lab
- Membrane expression
- Expressed in 80% of prostate primaries and 90% of metastatic deposits
- Downregulated by AR suppression, but overexpressed in castration resistant prostate cancer
- Additional cancers: Pancreatic, bladder

Gu Z et al. Oncogene 2000; 19:1288-96

PSCA-CAR T Cells Home to PSCA⁺ Bone Metastatic Disease in NSG Mice



Priceman, et al. Oncolmmunology. 2017; doi.org/10/1080/2162402X.2017.1380764

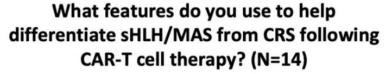
Phase I Clinical Trial to Evaluate PSCA-BBζ CAR T Cells in mCRPC

PSCA+ metastatic castration resistant prostate cancer
 (Clinical PI: Tanya Dorff, MD, Research PI: Saul Priceman, PhD) – enrolling

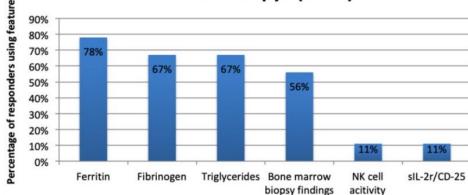
Table 1. CAR+ Cell Dose Schedule				
	Starting			
Dose -1	Dose 0a	Dose Ob	Dose 1	Dose 2
50M	100M	100M +precond.	300M +precond.	600M + precond.

Cy* = cytoreductive chemotherapy Bx = biopsy PB = peripheral blood

Prostate Cancer

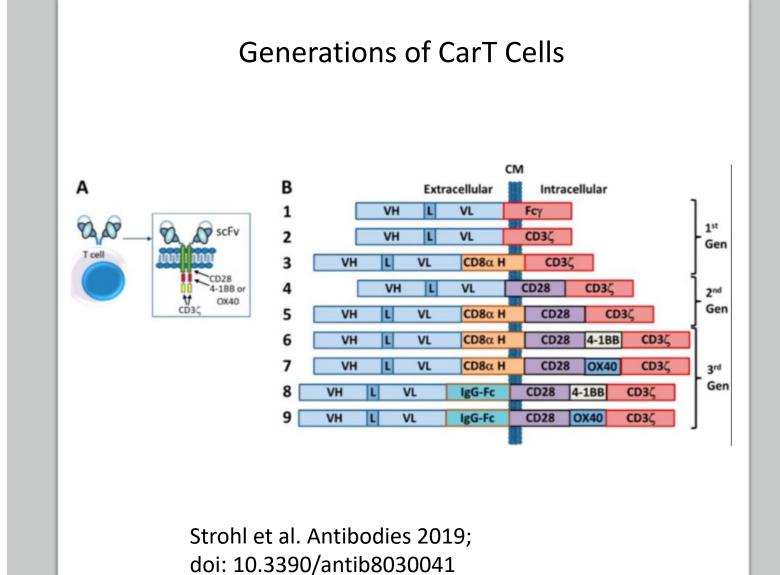

oundation

Toxicities with CAR T for prostate cancer

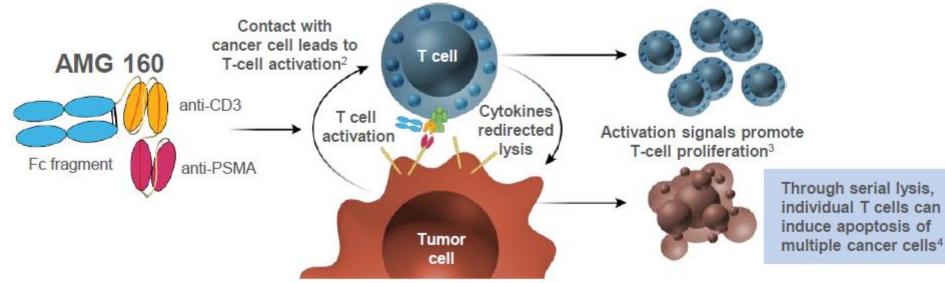

- Cytokine Release Syndrome in about 1/3
 - Variable onset but typically day 3
 - Have needed tocilizumab
- Cytopenias, infection (from lymphodepletion)
- On target, off tumor
 - PSCA: cystitis
 - PSMA: TBD
- Macrophage activation

• Responses are being achieved!

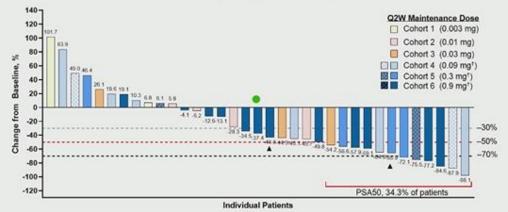
Published criteria	Components of criteria	Centres (%)
HLH-2004 (for fHLH) (<u>24</u>)	Molecular diagnosis consistent with HLH or 5/8 of the following: Fever, splenomegaly, bi or tri-lineage cytopenia, hypertriglyceridaemia ± hypofibrinogenaemia, haemophagocytosis on bone marrow biopsy, no diagnosis of malignancy, low/absent NK cell activity, raised ferritin, raised sIL-2r	43
H-score (for all sHLH/MAS) (<u>25</u>)	Known underlying immunosuppression, fever, organomegaly, mono-, bi-, or tri- lineage cytopenia, ferritin, triglycerides, fibrinogen, AST, haemophagocytosis on bone marrow biopsy. Overall score predicts likelihood of sHLH/MAS	16
Takagi et al. (for SHLH/MAS post- HSCT)	2 major or 1 major and all 4 minor criteria required. Major criteria: (A) engraftment delay, primary or secondary failure or (B) histopathological evidence of haemophagocytosis. Minor criteria: fever, hepatosplenomegaly, elevated ferritin, elevated LDH.	10
PRINTO (for sHLH/MAS in sJIA)	Ferritin > 684 $\mu g/L$ and 2 of: platelets <181 \times 109, AST >48 U/L, triglycerides >256 mg/dL, fibrinogen <360mg/dL	1
MD Anderson (for sHLH/MAS post- CAR-T cell therapy)	Ferritin of > 10,000 μ g/L and 2 of: grade > 3 increase in serum transaminases or bilirubin; grade > 3 oliguria or increase in serum creatinine; grade > 3 pulmonary oedema; or histological evidence of haemophagocytosis in bone marrow or organs	7
Combination of the above		23



d


CAR T vs BiTE

- Cost/scalability
 - CAR NK or other allo methods may improve (CRISPR)
 - BiTE still pricey, depending on hospitalization requirements and supportive medications
- Durability of remissions
- CarT is a very flexible platform


BiTE antibody therapy

(Bispecific T-cell Engager) Immunotherapy

- Only approved BiTE is blinatumomab for ALL.
- AMG160 is half-life extended dual-targeted antibody to PSMA and CD3
 - Dosed every 2 weeks
- AMG509 is 3-headed (2 for target antigen)

- PSA reductions (best response) were dose dependent and occurred in 24/35 (68.6%) evaluable patients (20 July 2020)
- PSA reductions > 50% occurred in 12/35 (34.3%) evaluable patients

PSA ≈ prostate-specific antigen; PSA50 ≈ PSA decrease of ≥ 50%; Q2W ≈ every 2 weeks

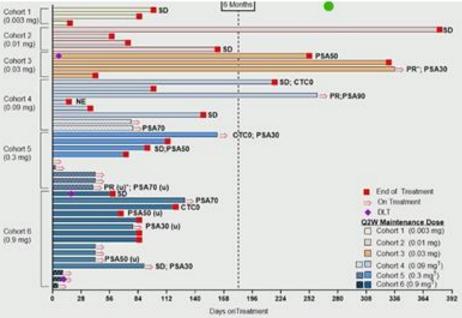
* Best PSA reductions at any time point in evaluable patients included those who had received ≥ 1 dose of AMG 160 and had measurable baseline PSA

¹ Checkered bars indicate cohorts with optimised cycle 1 priming strategies

Indicates patient who had failed prior LuPSMA treatment

Tran, Horvath, Dorff et al. ESMO 2020

PSA/CTC Responses (n = 13–35)		
Response	All, n (%)	
PSA response, confirmed*	8 (27.6)	
PSA response, unconfirmed [†]	4 (11.4)	
CTC0 response [‡]	3 (23.1)	


Response	All, n (%)
Partial response, confirmed	2§ (13.3)
Partial response, unconfirmed	1§(6.7)
Stable disease	8 (53.3)

* ≥ 30% reduction based on 29 patients with 2 postbaseline PSA results * ≥ 30% reduction based on 35 patients with measurable PSA at baseline

¹Based on 13 patients with baseline CTC > 0 and postbaseline CTC assessment

11 PR(u) and 1 PR confirmation occurred after 20 July 2020

Efficacy Results AMG160 dose escalation

CTC = circulating tumor cell; DLT = dose-limiting toxicities; NE = not evaluable; PSA = prostatespecific antigen; PR = partial response; Q2W = every 2 weeks; RECIST = Response Evaluation Criteria in Solid Tumors; SD = stable disease; (u) = unconfirmed

* PR occurred before but reported after 20 July 2020 data cutoff; PR (u) reported after 20 July 2020 data cutoff

¹ Checkered bars indicate cohorts with optimised cycle 1 priming strategies

TRAE, n (%)	All Grade, n (%)	Grade 3, n (%)
CRS (Lee criteria)†	39 (90.7)	11 (25.6)
Fatigue	19 (44.2)	1 (2.3)
Vomiting [†]	19 (44.2)	0 (0)
Nausea [†]	17 (39.5)	0 (0)
Pyrexia [†]	16 (37.2)	0 (0)
Headache [†]	15 (34.9)	0 (0)
Diarrhoeat	14 (32.6)	2 (4.7)
Dry mouth	13 (30.2)	0 (0)
Rash [†]	12 (27.9)	4 (9.3)
Hypophosphataemia	11 (25.6)	4 (9.3)
Hypotension [†]	10 (23.3)	5 (11.6)
Chills [†]	10 (23.3)	0 (0)
Dysgeusia	10 (23.3)	0 (0)
Decreased appetite	9 (20.9)	0 (0)

* 8 patients experienced grade 4 laboratory abnormalities that were clinically non-significant. * CRS-related

CRS = cytokine release syndrome

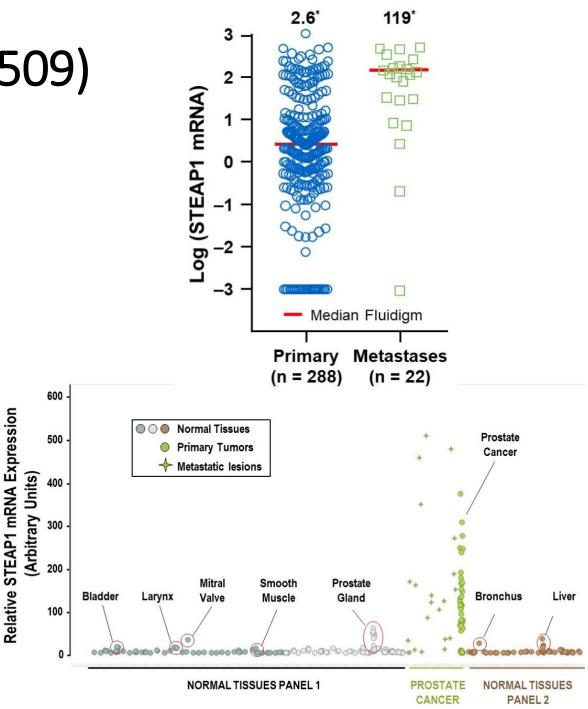
ESMO 2020

Tran, Horvath, Dorff et al.

Cytokine Release Syndrome and other AEs with AMG160

• CRS most severe in cycle 1

- 60% had grade 2 CRS at worst
- 25.6% had grade 3 CRS
- Mitigation strategies have helped reduce rate of grade 3 CRS
- 9.3% of patients experiences reversible atrial fibrillation in setting of CRS/tachycardia
- Dry mouth is on-target PSMA side effect


Prophylactic Mitigations in Cycle 1 Priming Cohort		
Dose priming	Dexamethasone premedication	Prophylactic IV hydration
Lower run-in dose before	8 mg PO and 8 mg IV before	1L normal saline
maintenance target dose	AMG 160 dose*	after AMG 160 dose

STEAP-1 as a target (AMG509)

DSTP3086S: ADCC with MMAE payload

- 18% with PSA 50 when dose was >2 mg/kg IV q3 weeks²
- 6% RECIST PR, 59% CTC conversion
- DLTs: grade 3 transaminitis, grade 3 hyperglycemia, grade 4 hypophosphatemia

Kelly WK et al. GU ASCO 2021. TPS abstr 183
 Danila DC et al. JCO 2019; 36:3518-27

Conclusions: immunotherapy for advanced prostate cancer

Sipuleucel-T

- Still an option. OS benefit when used early Immune Checkpoint inhibitors
- Selected patients only (ex: TMB, MSI)
- Will likely require combination (ex: cabozantinib) BiTE: AMG160 (& AMG509)
- Clearly effective
- CRS is very common, limits dosing
- Anti-drug antibodies may limit efficacy

CarT: PSCA, PSMA, klk2

- Promising early results with objective responses
- CRS very manageable (even MAS can be...)
- On target, off tumor toxicity

- Combination studies. Active Surveillance
- Radiopharmaceutical partners

- Additional targets, additional modifications to reduce toxicity

Optimize dosing strategy, possible combinations, "off the shelf", dual targets