Myeloma T-cell Redirecting Therapies/Bispecific Antibodies

December 18, 2021

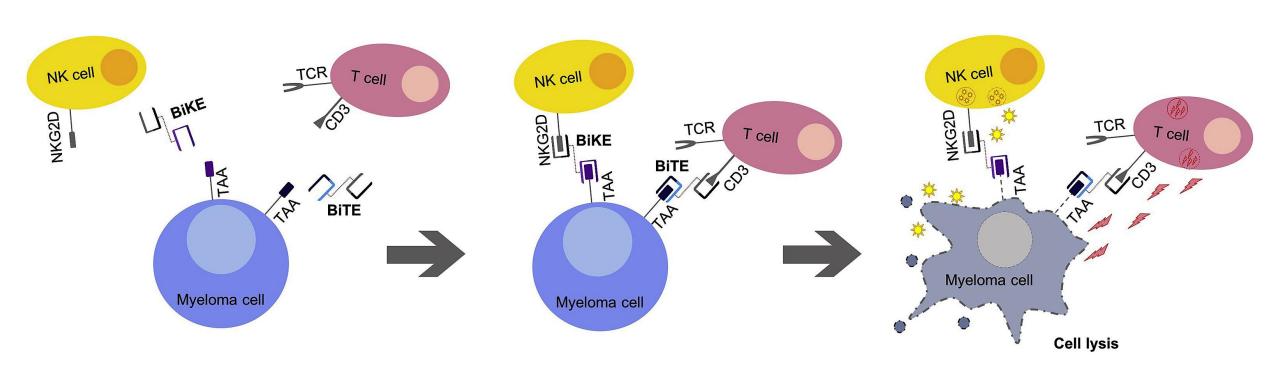
Hans Lee, MD

Assistant Professor

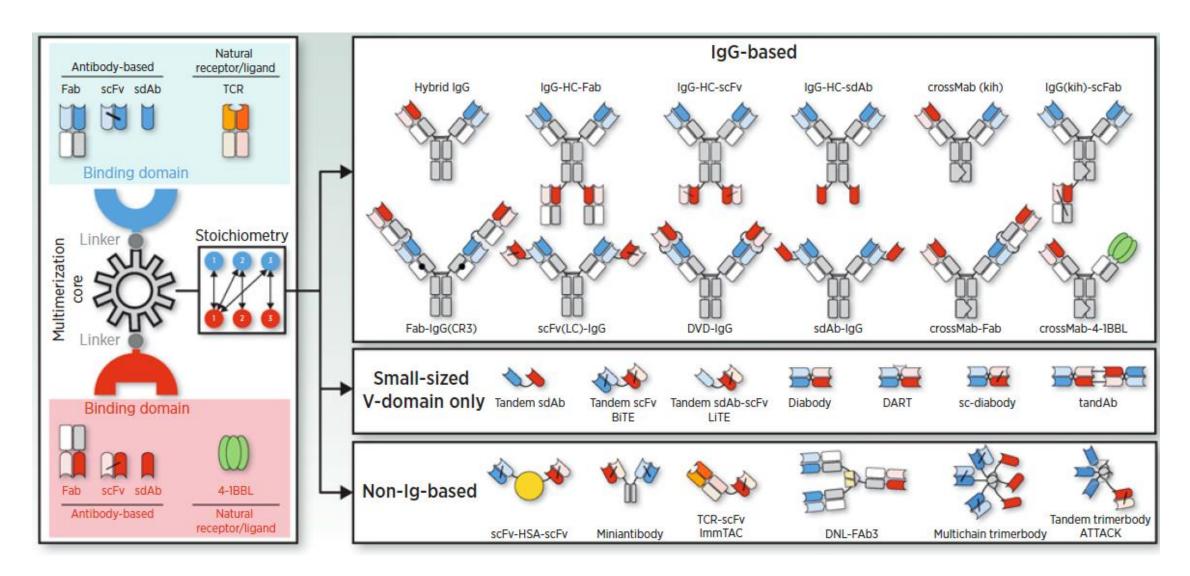
Director, Multiple Myeloma Clinical Research

MD Anderson Cancer Center

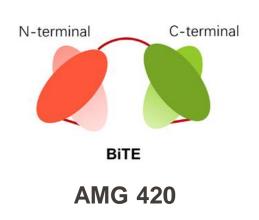
Houston, Texas

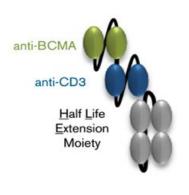

Disclosures

- Consulting: Bristol Myers Squibb, Celgene, Genentech, Janssen, Karyopharm, Legend Biotech, GlaxoSmithKline, Sanofi, Pfizer, Monte Rosa Therapeutics, Immunitas Therapeutics, Oncopetides, Takeda Pharmaceuticals
- Research Funding: Amgen, Janssen, GlaxoSmithSkine, Regeneron, Takeda Pharmaceuticals

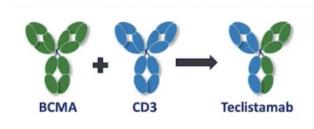

Agenda

- Bispecific T-cell antibodies
- Bispecific T-cell antibody combination strategies
- Trispecific Antibodies

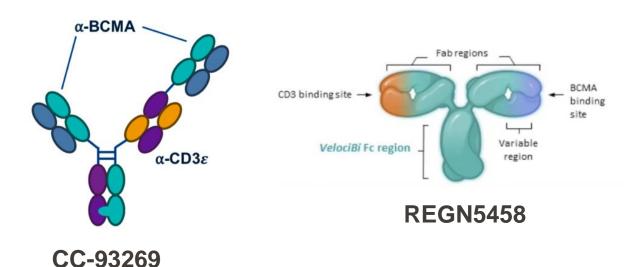

Bispecific Antibodies

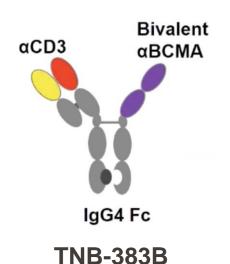


Bispecific Antibody Design



BCMA Bispecific T-Cell Antibodies in Development



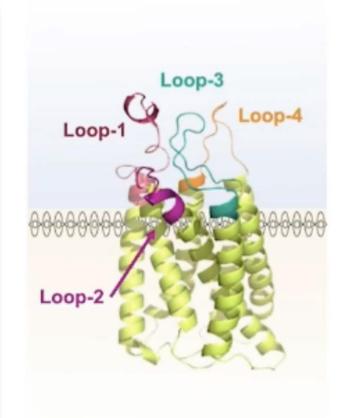


AMG 701

Teclistamab

Elranatamab

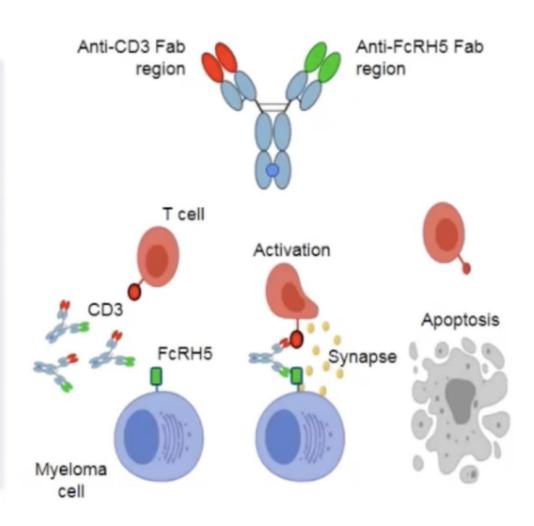
MD ANDERSON CANCER CENTER


BCMA Bispecific T-Cell Antibodies in Development

Drug	N	Route/Schedule	ORR at RP2D or higher doses tested to-date	CRS	Comments
AMG 420 (no longer in clinical development)	42	4-week continuous IV	70% (400 ug/day, N=10)	All grade (38%), grade 3/4 (2%)	Grade 3 peripheral neuropathy (2); 1 death due to hepatic failure (adenovirus)
CC-93269	30	IV q week	89% (10 mg, N=9)	All grade (77%), grade 3/4 (0%), grade 5 (3%, 1 patient at 10 mg dose)	2 BCMA binding domains
Teclistamab	165	SC q week	62%, 58% ≥ VGPR (1.5 mg/kg, N=150)	All grade (72%), Grade 3/4 (1%)	9-month PFS 58.5% Median DOR not reached
TNB-383B (ABBV-383)	75	IV q3 weeks	60%, 40% ≥ VGPR (≥40 mg, N=60)	All grade (69%), grade 3/4 (4%)	No step-up dosing; 2 BCMA binding domains
REGN5458	73	IV q week, then q2 weeks starting week 16	75%, 58% ≥ VGPR (200-800 mg, N=24)	All grade (38%), grade 2 (4%), grade 3/4 (0%)	
AMG 701	85	IV q week	83%, 50% ≥ VGPR (18 mg, N=6)	All grade (65%), grade 3 (9%), grade 4 (0%)	
Elranatamab	55	SC q week	70% (≥215 ug/kg, N=20)	All grade (87%), grade 3/4 (0%)	7/10 responders in prior BCMA-exposed

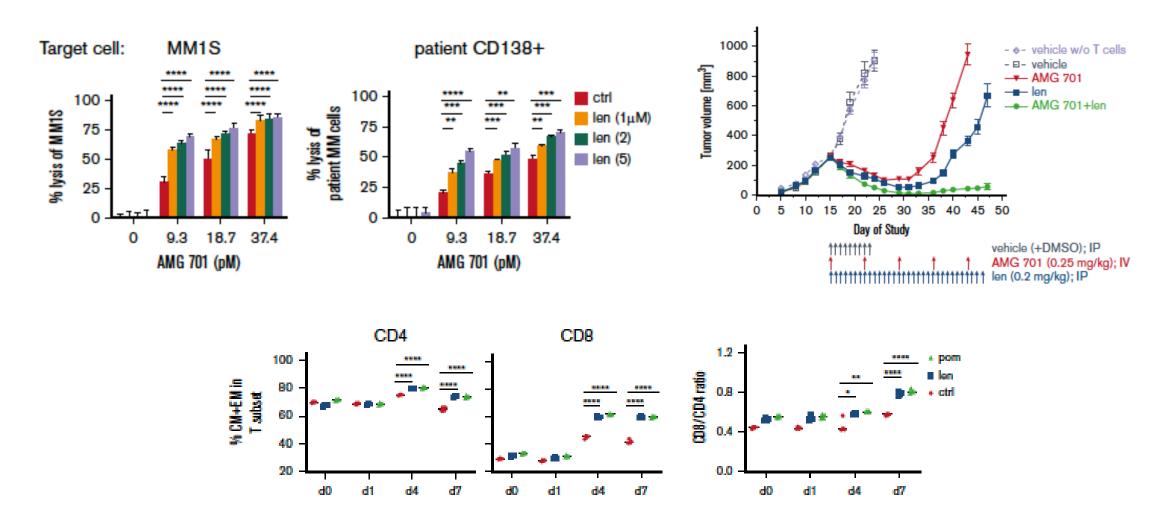
Topp et al, JCO, 2020; Costa et al, ASH 2019; Moreau et al ASH 2021; Kumar et al, ASH 2021; Zonder et al, ASH 2021; Harrison et al, ASH 2020; Sebag et al, ASH 2021

G Protein-Coupled Receptor Class C Group 5 Member D (GPRC5D)


- Orphan G protein-coupled receptor of unknown function
- Limited expression in healthy human tissue, primarily in plasma cells and hair follicles¹⁻²
- Highly expressed in myeloma cells and associated with poor prognostic factors in multiple myeloma (MM)¹⁻³
- No known shed peptides or extracellular domain shedding (reduced risk for sink effect)
- Ideal target for CD3 redirection

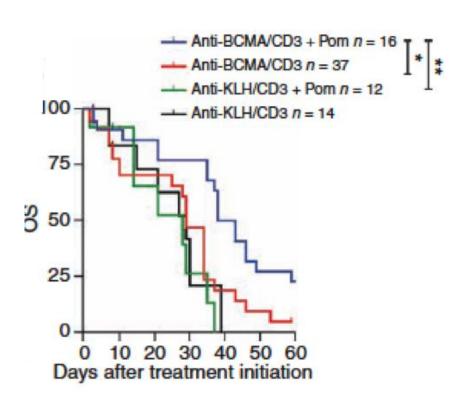
Fc receptor-homolog (FcRH5)

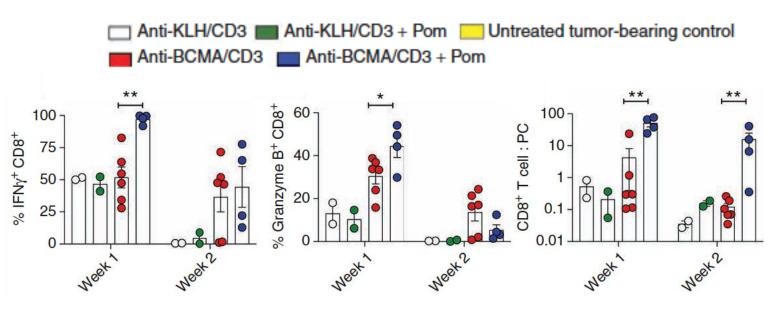
- Fc receptor-homolog 5 (FcRH5)
 - Expressed on myeloma cells with near 100% prevalence¹
 - Expression on myeloma and plasma cells > normal B cells¹
- Cevostamab
 - Humanized IgG-based T-cell-engaging bispecific antibody¹
 - Targets FcRH5 on myeloma cells and CD3 on T cells¹
- Ongoing Phase I dose-escalation and expansion trial (NCT03275103) is evaluating the safety and activity of cevostamab monotherapy in patients with RRMM²

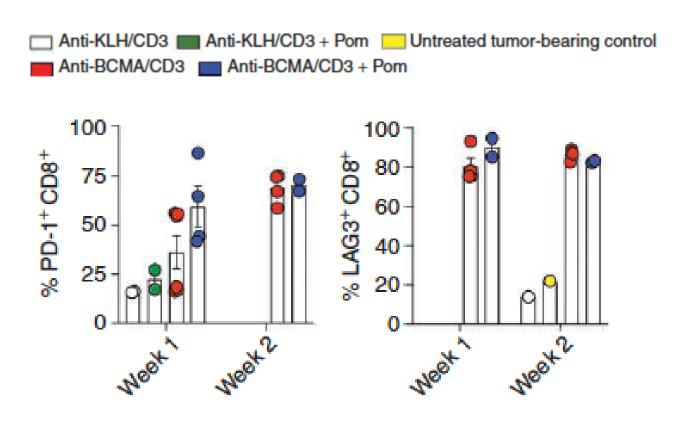


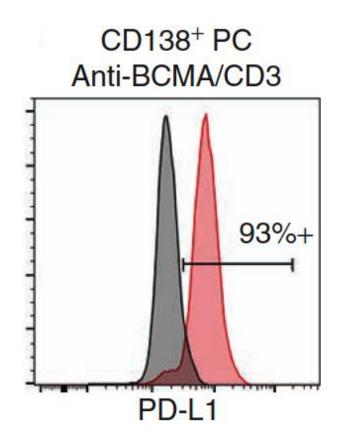
Non-BCMA Bispecific T-Cell Antibodies in Clinical Development

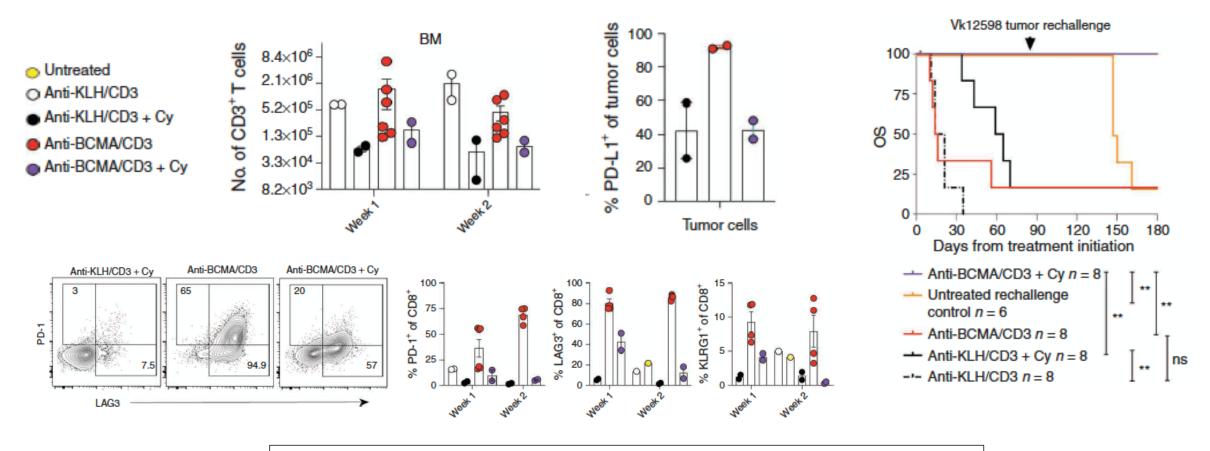
Drug	N	Route/Schedule	ORR at RP2D or higher doses tested to-date	CRS	Comments
Talquetamab (GPRC5D x CD3)	55	SC qweek or q2 weeks	70%, 60% ≥ VGPR (405 ug/kg q week SC, N=30) 67%, 52% ≥ VGPR (800 ug/kg q2 weeks SC, N=21)	77% All grade, 1% grade 3/4 (405 ug/kg q week SC) 72% All grade, 0% grade 3/4 (800 ug/kg q2 weeks SC)	Other unique AEs: dysgeusia, skin exfoliation, nail disorders 22% prior BCMA exposed
Cevostamab (FcRH5 x CD3)	161	IV q3 weeks x 17 cycles	57% (132-198 mg, N=60)	All grade (81%) Grade 3/4 (1%)	14% ICANS (all grade 1/2) 33% prior BCMA exposed


Myeloma Bispecific T-Cell Antibodies Combination Strategies

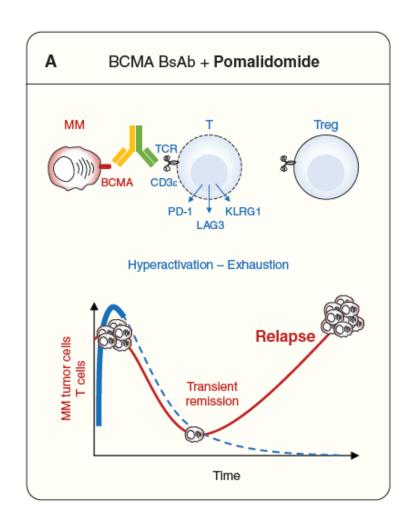

Myeloma Bispecific BCMAxCD3 (AMG 701) + IMiDs

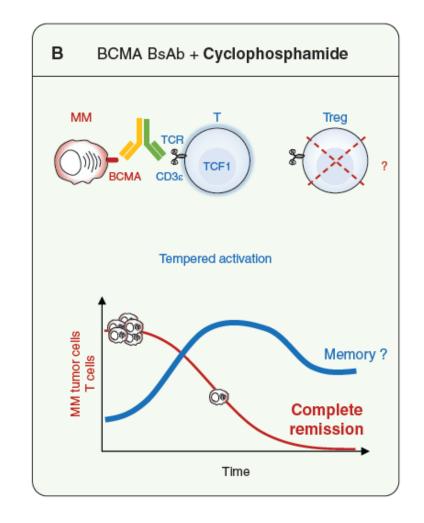

Cho et al, Blood Advances 2020 MD ANDERSON CANCER CENTER

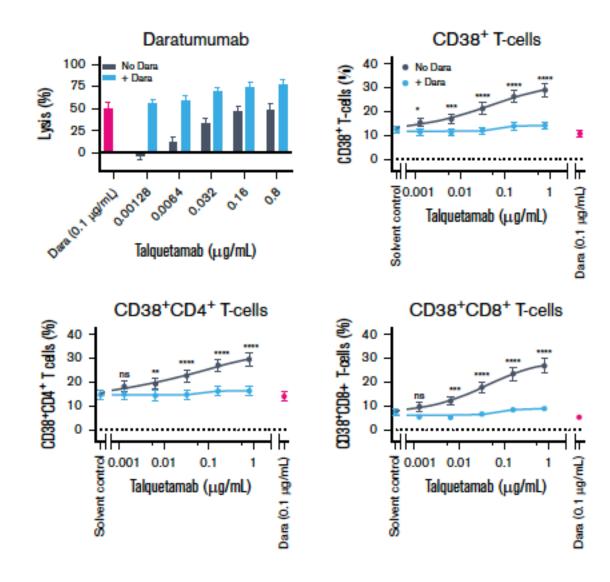

Myeloma Bispecific BCMAxCD3 + Pomalidomide



T-cell Exhaustion with BCMAxCD3 Treatment




BCMAxCD3 + Cyclophosphamide


Potential role for debulking and downregulating Tregs with cyclophosphamide for sustaining myeloma tumor response

Pacing T-cell Activation

GRC5DxCD3 (Talquetamab) + anti-CD38 (daratumumab)

GPRC5DxCD3 (talquetamab) + anti-CD38 (daratumumab)

Tal	Dara SC	Patients enrolled to date (n)
400 μg/kg SC Q2W	1800 mg SC Cycles 1-2: QW	5
400 μg/kg SC QW	Cycles 3-6: Q2W	9
800 μg/kg SC Q2W	Cycles 7+: monthly	15

Characteristic	Tal + Dara SC ^a (n=29)
Prior lines of therapy, median (range)	6 (2-18)
Prior stem cell transplantation, n (%)	18 (62.1)
Exposure status, n (%)	
Prior BCMA therapy ^e	16 (55.2)
Anti-CD38 ^f	23 (79.3)
IMiD ⁹	28 (96.6)
Triple-class ^h	23 (79.3)
Penta-drug ⁱ	19 (65.5)
Refractory status, n (%)	
Anti-CD38 ^f	19 (65.5)
IMiDa	19 (65.5)
Triple-class ^h	15 (51.7)
Penta-drug ⁱ	9 (31.0)
To last line of therapy	19 (65.5)

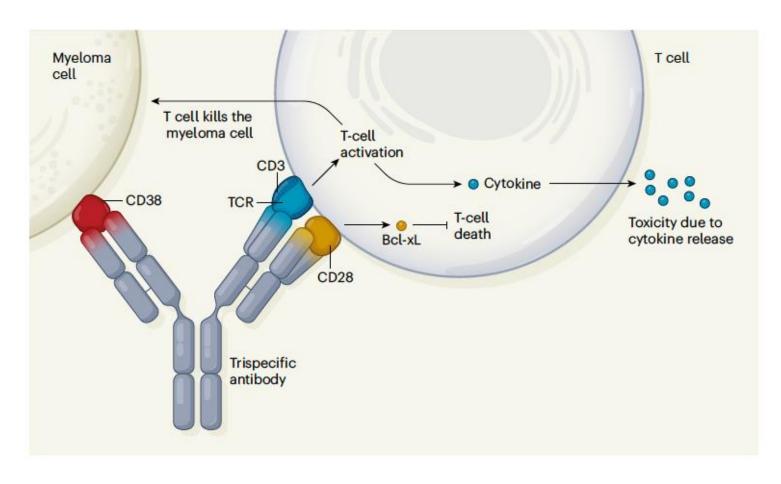
GPRC5DxCD3 (talquetamab) + anti-CD38 (daratumumab)

Tal + Dara SCª (n=29)				
AE (≥20%), n (%)	Any Grade	Grade 3/4		
Nonhematologic				
CRS	16 (55.2)	0 (0)		
Dysgeusia	14 (48.3)	N/A		
Dry mouth	10 (34.5)	0 (0)		
Pyrexia	8 (27.6)	1 (3.4)		
Skin exfoliation	8 (27.6)	0 (0)		
Decreased appetite	7 (24.1)	0 (0)		
Fatigue	7 (24.1)	0 (0)		

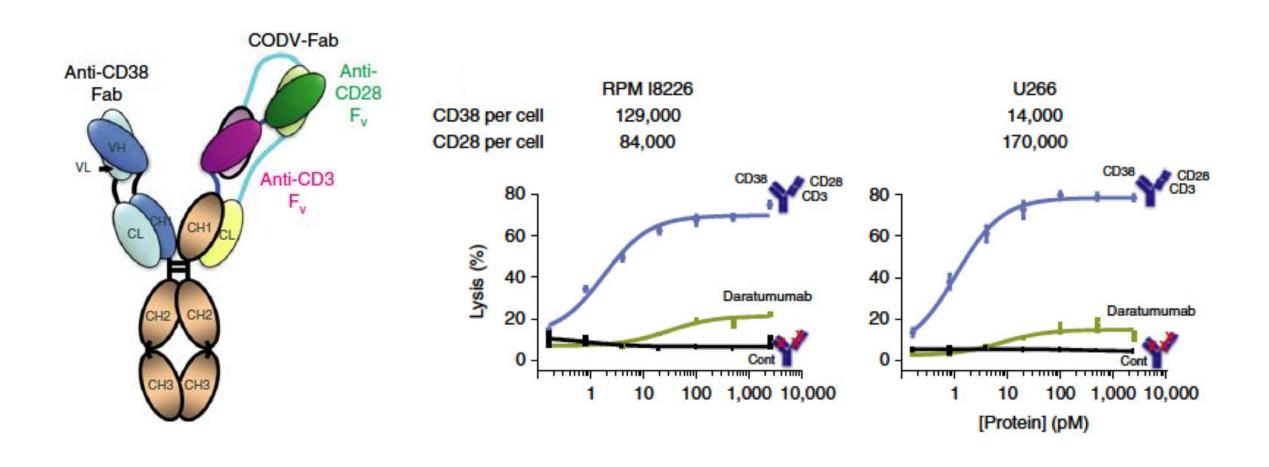
	Evaluable patients ^a , n (%)				
	Dara 1800 mg SC:				
	Cycle 1-2: QW, Cycles 3-6: Q2W; Cycles 7+: monthly				
Response	Tal 400 μg/kg SC Q2W	Tal 400 μg/kg SC QW	Tal 800 μg/kg SC Q2W		
Categories	(n=5)	(n=7)	(n=9)		
ORRb	4 (80.0)	6 (85.7)	7 (77.8)		
sCR/CR	1 (20.0)	2 (28.6)	1 (11.1)		
VGPR	2 (40.0)	3 (42.9)	5 (55.6)		
PR	1 (20.0)	1 (14.3)	1 (11.1)		
MR	0 (0)	0 (0)	0 (0)		
SD	0 (0)	1 (14.3)	2 (22.2)		
PD	1 (20.0)	0 (0)	0 (0)		

Myeloma Bispecific Antibodies Summary

- Promising clinical data to date with several BCMA x CD3
 - "Off-the-shelf" format advantageous over autologous CART products
 - Several BCMA x CD3 bispecifics in clinical development: teclistimab, AMG 701, REGN5458, CC-93269, TNB-383B, and elranatamab
 - Non-BCMA bispecifics: GPRC5D (talquetamab) and FcRH5 (cevostamab)
- •CRS common; Grade 3/4 CRS and neurotoxicity less frequent; severe CRS can be mitigated by step-up dosing strategy

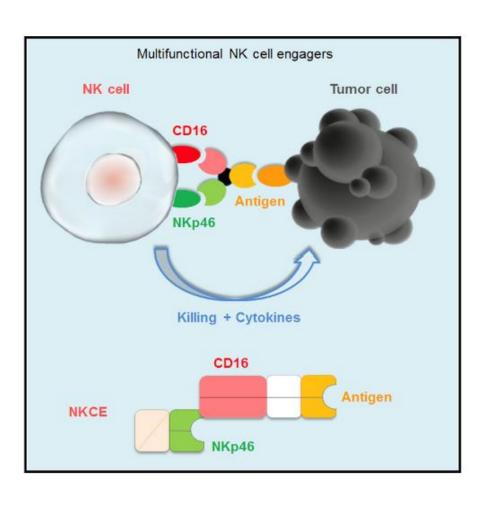

Future directions

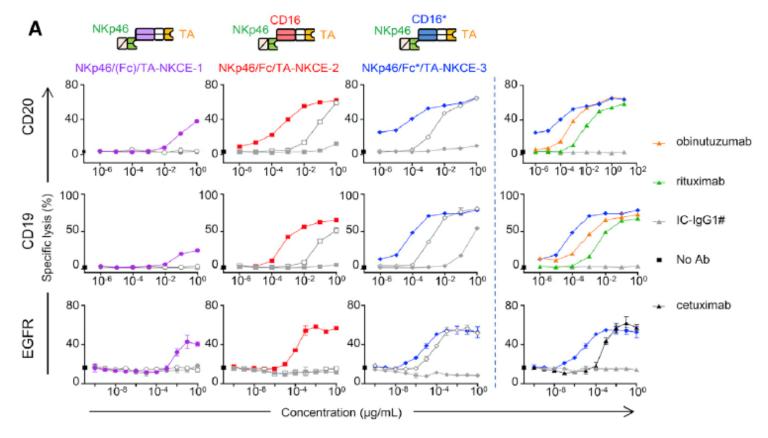
- Rational combination strategies
 - Gamma secretase inhibitors to increase BCMA antigen density
 - IMiDs to augment immune effector cell function
 - Immune checkpoint blockade to augment T-cell response


- Need to balance with added CRS risk
- Maximize CRS mitigation strategies to enhance safety for earlier outpatient administration
- Interrogate resistance mechanisms (antigen loss, increased Tregs, T-cell exhaustion)
- Optimal sequencing strategies (induction, consolidation in MRD+ patients, pre- or post- CART?)
- Multi-antigen targeted T-cell engagers (e.g. tri-specifics); NK-cell bispecifics or trispecifics

Trispecific Antibodies

- Builds on bispecific antibody platform
- Allows for recognition of third antigen
- Co-stimulation of immune effector cell to mitigate T-cell anergy or exhaustion
- May also allow for dual targeting of tumor associated antigens




CD38 x CD28 x CD3 Trispecific Antibody

MD ANDERSON CANCER CENTER

Tumor Associated Antigen x CD16 x NKp46

Trispecific Antibodies Summary

- Allows flexibility to target multiple antigens with single drug rather than using multiple uni-specific antibodies in combination
- Very early in clinical development across solid tumors and hematologic malignancies
- SAR442257 CD3xCD28xCD38 (Phase 1, includes myeloma cohort)
- •GTB-3550 CD16xCD33xIL-15 (Phase 1)
- Potential to enhance immune effector response and mitigate T-cell anergy or exhaustion

Myeloma ADCs, Bispecific Antibodies, & CARTs

	ADCs	Bispecific T-cell Antibodies	CARTs
Advantages	 Off-the-shelf Less dependence of endogenous immune effector cells Can be given in community No CRS Can give in elderly/frail patients 	 Off-the-shelf Can be given in community High and deep responses; duration of response yet to be seen 	 Unprecedented response rates, depth of response, and duration of response with some products One-time dose (for now)
Disadvantages	 Ocular toxicity requiring ancillary ocular supportive care and monitoring Lower efficacy than bispecifics, CARTs Continuous therapy 	 Continuous therapy with more frequent dosing CRS risk Hospital admission usually required for first several doses for CRS monitoring Earlier in development than ADCs and CARTs; long-term outcomes and additional safety data awaited 	 Not ideal with patients with rapidly progressing disease due to manufacturing time Cost / Access Bridging therapy often needed Requires complex infrastructure to administer CRS, HLH, ICANS risks Prolonged cytopenias

Myeloma ADCs, Bispecific Antibodies, & CARTs

	ADCs	Bispecific T-cell Antibodies	CARTs
Advantages	 Off-the-shelf Less dependence of endogenous immune effector cells Can be given in community No CRS Can give in elderly/frail patients 	 Off-the-shelf Can be given in community High and deep responses; duration of response yet to be seen 	 Unprecedented response rates, depth of response, and duration of response with some products One-time dose (for now)
Disadvantages	 Ocular toxicity requiring ancillary ocular supportive care and monitoring Lower efficacy than bispecifics, CARTs Continuous therapy 	 Continuous therapy with more frequent dosing CRS risk Hospital admission usually required for first several doses for CRS monitoring Earlier in development than ADCs and CARTs; long-term outcomes and additional safety data awaited 	 Not ideal with patients with rapidly progressing disease due to manufacturing time Cost / Access Bridging therapy often needed Requires complex infrastructure to administer CRS, HLH, ICANS risks Prolonged cytopenias

ADCs, Bispecific Antibodies, & CARTs

	ADCs	Bispecific T-cell Antibodies	CARTS
Advantages	 Off-the-shelf Less dependence of endogenous immune effector cells Can be given in community No CRS Can give in elderly/frail patients 	 Off-the-shelf Can be given in community High and deep responses; duration of response yet to be seen 	 Unprecedented response rates, depth of response, and duration of response with some products One-time dose (for now)
Disadvantages	 Ocular toxicity requiring ancillary ocular supportive care and monitoring Lower efficacy than bispecifics, CARTs Continuous therapy 	 Continuous therapy with more frequent dosing CRS risk Hospital admission usually required for first several doses for CRS monitoring Earlier in development than ADCs and CARTs; long-term outcomes and additional safety data awaited 	 Not ideal with patients with rapidly progressing disease due to manufacturing time Cost / Access Bridging therapy often needed Requires complex infrastructure to administer CRS, HLH, ICANS risks Prolonged cytopenias

Thank you

MD Anderson Plasma Cell Dyscrasia Group