

Intratumoral Checkpoint Blockade Inhibition and New Opportunities for Intratumoral Therapy with Focused Ultrasound

Craig L. Slingluff, Jr., M.D. Professor of Surgery University of Virginia Cancer Center

7 November 2019

Disclosures

Scientific advisory board

Immatics (cancer vaccines) Polynoma (PI for MAVIS cancer vaccine trial)

Research support to UVA:

Glaxo-Smith Kline: Cancer vaccine Merck: Cancer vaccine + PD1 antibody; immunotherapy Celldex: Cancer vaccine + CD27 antibody, CD40 antibody Theraclion: focused ultrasound and immunotherapy 3M: drug provided for clinical trial Agenus: pending collaboration

Patent holder for peptides used in cancer vaccines,

via UVA Licensing and Ventures Group

Off-label or experimental use of:

Focused ultrasound, polyICLC, cancer vaccines, intratumoral tremelimumab; durvalumab, imiquimod

Rationale for intratumoral checkpoint blockade

- Combination systemic checkpoint blockade (eg CTLA4 + PD1/PD-L1)
 Enhances clinical response and survival
 - \circ Increases toxicity over single agent PD1/PD-L1 blockade
- Intratumoral administration of CTLA4 antibody offers chance for oncologic benefit of combination therapy with low dose and thus lower toxicity.
- Intratumoral checkpoint blockade combined with other intratumoral therapy can create an in situ vaccination effect with systemic benefit

Preclinical experience with intratumoral CTLA-4 blockade (1)

- TC-1 tumor cells (epithelial lung cancer) engineered to express CTLA-4 Ab combined with T-reg depletion → tumor control and avoids autoimmune toxicity of systemic CTLA-4 antibody (Tuve, Ca Res 2007)
- Intratumoral CTLA-4 Ab + Ox-40 Ab + TLR9 agonist

Marabelle A, JCI 2013

Preclinical experience with intratumoral CTLA-4 blockade (2)

- Peritumoral low-dose CTLA-4 Ab for murine colon cancer (MC38)
 - 200 mcg IP d0 + 3 vs. 50 mcg peritumoral d0 emulsified in Montanide ISA-51 (1/8th dose)
 - Induces systemic immune response protecting against tumor growth
 - Therapeutic effect depends on CD8 T cells.
 - Reduced serum CTLA-4 Ab; no autoimmune hepatitis

Fransen, CCR 2013

Human experience with intratumoral CTLA4 blockade

- In prior work, intratumoral IL-2 → regression of injected lesions in most patients but has no abscopal effect.
- Clinical trial in 12 patients with advanced melanoma were evaluated IT IL-2
 - + IT ipilimumab in dose escalation:
 - 0.5 \rightarrow 1 \rightarrow 2 mg Ipi: weekly x 8 (n = 3, 3, 6)
 - IL-2 at 3mIU: 3x/wk x 2, 2x /wk x 6
- Safety: No DLTs. One grade 3 injection site rxn.
- Injected lesion: 7 CR, 1 PR = 67% RR
- Abscopal effects:
 - Some regression at distant sites in 8/9 pts with >1 lesion (89%)
 - Overall irRC: 3PR (25%) plus 1 with PD found to have path CR at surgery.
 - Included all 3 at highest dose of ipilimumab

CT scan of abdomen and pelvis of non-injected lesion for patient 11

Poly-ICLC (Hiltonol[®]) – Immune and therapeutic effects alone and in combination

Poly-ICLC alone TLR 3 agonist

- Promotes DC maturation
- Potent induction of Type I IFNs
- Induces TNF, IP-10; low IL-10
- CD8⁺ differentiation dependent upon IL-12
- Expands CD8 T cells reactive to melanoma antigens
- Repeated intratumoral injection in humans can enhance immune infiltrates and cause tumor regression.
 - -- Bogunovic et al., Cancer Res. 2011
 - -- Gallois et al., Frontiers in Immunology 2014
 - -- Salazar et al. Cancer Immunology Research 2014

Poly-ICLC plus αPD-L1 Therapeutic Effect in Murine Solid Cancers

Poly-ICLC 50 mcg sc d7, 12, 17; aPDL-1 200 mcg ip d 8, 10 13,15, 18, 20

-- Nagato, Lee, Harabuchi & Celis, CCR 1/14

Phase 1/2 study of in situ vaccination with tremelimumab + intravenous durvalumab + poly-ICLC in patients with select relapsed, advanced cancers with measurable, biopsy-accessible tumors

Ongoing Phase 1/2, open-label, multicenter study (NCT02643303) designed to evaluate the safety, preliminary efficacy, and immune activity of combination therapies with poly-ICLC, tremelimumab (TRE) and durvalumab (DUR) in patients with advanced, measurable, biopsy-accessible cancers.

Agents:

- Durvalumab
 - human lgG1
 - anti-PD-L1
- Tremelimumab
 - human lgG2
 - anti-CTLA4
- polyICLC (Hiltonol) TLR3 agonist
 - preferentially activates mDC, \rightarrow Th1/CTL
 - Activates NK cells, \rightarrow cytotoxic potential.
 - Safely used IV to 300 mcg/kg
 - Has been given IT.

Cohort 1A (n=3-6) DUR IV + -ICLC intra-T/IM		Cohort 1B (<i>n</i> =3-6) DUR IV + Poly-ICLC intra-T/IM + TRE IV
	Demonstration of tolerability	Alternating enrollment
		Cohort 1C (n=3-6) DUR IV + Poly-ICLC intra-T/IM + TRE intra-T

Study Objectives		
Primary objective (Endpoints)	Dose finding phase (Cohorts 1A-1C): Safety and tolerability; RCD	
	 Expansion Phase (Cohort 2): Clinical efficacy by irRECIST and RECIST 1.1 Objective response rate (ORR), Progression-free survival (PFS) Overall Survival (OS) 	
Exploratory Objectives	Biologic activity [Effects on tumor micro- environment, immune responses] Tumor biopsies D1, D15, D29	

This study is sponsored by Ludwig Institute for Cancer Research, with support from

the Cancer Research Institute and MedImmune

Study chairs: N Bhardwaj, C Slingluff

Phase 1/2 study of in situ vaccination with tremelimumab + intravenous durvalumab + poly-ICLC in patients with select relapsed, advanced cancers with measurable, biopsy-accessible tumors

KEY INCLUSION CRITERIA

- Histologic confirmation of advanced, biopsy-accessible, measurable cancers
- ≥ 1 lesion that can be accurately measured in ≥ 1 dimension, and ≥ 2 lesions that can be biopsied or 1 lesion that can be biopsied at least twice
- ECOG performance status 0-1
- Age ≥ 18 years

KEY EXCLUSION CRITERIA

Accelerator

- Prior treatment with intra-T poly-ICLC or with combination blockade of CTLA-4 + PD-1/PD-L1 (now allowed for melanoma)
- History or evidence of CNS disease including brain metastases
- Underlying autoimmune disease or immunodeficiency
- Clinically significant cardiovascular disease

RESEARCH

- Prior clinically significant or unresolved irAEs
- Symptoms or signs of GI obstruction or other serious illness

Phase 1/2 study of in situ vaccination with tremelimumab + intravenous durvalumab + poly-ICLC in patients with select relapsed, advanced cancers with measurable, biopsy-accessible tumors

LUD2014-011 Patient #1

Locally/regionally advanced ER/PR negative, Her2 negative Breast cancer (TNBC)

- Extensive skin metastases
- Large right SCL metastasis
- Paratracheal metastases
- Left axillary metastasis

Intratumoral polyICLC Systemic Durvalumab

Complete response at week 12

Breast cancer patients enrolling in expansion cohort.

Phase 1/2 study of in situ vaccination with tremelimumab + intravenous durvalumab + poly-ICLC in patients with select relapsed, advanced cancers with measurable, biopsy-accessible tumors Sample collection & correlative laboratory studies planned

- Tumor biopsy: non-injected, at screening, D15, D29, EOT*; and non-injected*
 - o FFPE
 - \circ Snap-frozen
 - o RNA-later
- PBMCs
- PAX RNA

*Optional

Challenges for Intratumoral Therapies with Checkpoint Antibodies and other Immune Modulators

- Cold tumors may not respond to checkpoint blockade without new antigen exposure
- Poor control of dispersion of therapeutic agent within the tumor
 - Failure to reach all of the tumor
 - Systemic diffusion from the tumor
- Poor accessibility of some tumors to percutaneous injection
 - Eg: periaortic nodes, retroperitoneal masses, brain metastases.
- Focused ultrasound therapy offers opportunities to address these needs for intratumoral immune therapies.

Focused ultrasound (FUS) offers opportunities to modulate tumor microenvironments and to deliver therapeutic agents

FUS is the propagation and concentration of sound waves into a single ellipsoid volume

FUS is non-invasive (extracorporeal), non-ionizing, safe, repeatable, and localized.

Focused delivery of gene payload with ultrasound and nanoparticle-loaded microbubbles.

luciferase plasmid

U/S-MB targeted transfection induced 60x more expression than direct IM injection with 40 mcg luciferase nanoparticles.

Markedly enhanced skeletal muscle transfection achieved by the ultrasound-targeted delivery of non-viral gene nanocarriers with microbubbles

- Burke CW . J Control Release 2012
- Gorick et al. Int. J. Mol. Sci. 2019

Brain-Penetrating Nanoparticle (BPN) Delivery to Gliomas in Mice with MR Image-Guided Focused Ultrasound and Microbubbles (6h)

Untreated Control

BPN is a non-viral gene-bearing nanoparticle with with a Cy5-labeled plasmid.

BPN

Lectin/Cy5

BS-I

BS-I Lectin stains endothelium.

Cy5 staining of tumor cells demonstrates delivery through endothelium to tumor cells.

Curley et al. In Revision

Combination therapy with intratumoral TLR agonist and focused ultrasound ablation

 FUS thermal ablation + CpG (AI-T) → upregulation of TLR/TNF signaling, Type I IFNs and tumor antigen release compared to CpG alone (I-T)

Chaves M, ... Ferrara KW, Theranostics, 2018

UNIVERSITY VIRGINIA SCHOOL of ENGINEERING & APPLIED SCIENCE Department of Biomedical Engineering

ß

4

Tumor Cell **2** Tumor Antigen

Capture

Lymph Nodes

Tumor Antigen

Presentation

Priming and

Activation/

T-Cell Proliferation

FUS_{PTA} Enhances Absolute Frequency & Maturity of Dendritic Cells in Draining Lymph Nodes (DLN)

Focused Ultrasound

6)

Antigen Release

Focused Ultrasound & Gemcitabine for Murine Breast Cancer 4T1-HA

Hypothesis: Partial FUS ablation will enhance immune infiltrates in the TME, and tumor control, which will be enhanced by gemcitabine.

Abscopal effects have been observed in 5/80 pancreatic cancer patients using HIFU for palliation

 HIFU ablation of pancreatic primary with abscopal response of distant lymph node metastases.

- F/u CT at 1 yr large avascular area at treated tumor & complete disappearance of the pathologic nodes.
- 4 other patients with similar outcomes.

Ungaro, Orsi, et al, Ecancermedicalscience 2016 <u>https://www.fusfoundation.org/component/content/article?id=1932:physicians-share-latest-research-with-full-house-at-awareness-event</u>

Preclinical data support continued investigation of FUSA combined with other immune therapies for human cancer therapy

- Clinical trial of partial FUSA + Pembrolizumab in patients with advanced breast cancer
 - o PI Dillon. NCT03237572.
 - Open to enrollment
 - $\,\circ\,$ Biopsies pre- and post-treatment
- Clinical trial of partial FUSA \pm PD-1/PD-L1 blockade \pm TLR7 agonism (imiquimod) for advanced solid tumors for which PD-1/PD-L1 antibody is approved.
 - PI Dengel. NCT04116320
 - IDE approved. Expect to open 4Q2019
 - Biopsies pre- and post-treatment

Summary

- Intratumoral therapy with checkpoint blockade antibodies offers promise for enhanced tumor control and reduced toxicity
 - Especially for CTLA4 blockade
 - Promising in combinations with TLR agonists and with PD1/PD-L1 blockade
- Focused ultrasound technologies can:
 - Enable drug delivery selectively to the tumor microenvironment after systemic delivery of nanoparticle-loaded microbubbles
 - Favorably modulate the tumor microenvironment to support immune therapies
- Ongoing clinical trials will illuminate the impact of these therapies, with pre/during/post tumor biopsies

Collaborators and Research Team

Research Fellows and Students

Kevin Lynch	Max Meneveau
Katie Leick	Min Kwak
Marit Melssen	Karlyn Pollack
Sofia Shea	Joel Pinczewski

Research Faculty

Lynn Dengel Ileana Mauldin Walter Olson

Protocol Development

Kim BullockSarah LewisMeagan DarlingCara

Immunologic Analyses

Kelly SmithDonna DeaconCheryl MurphyAndrea Czarkowski

Statisticians: Public Health Sciences

Gina Petroni Nolan Wages Mark Smolkin

All of our patients

Collaborating Laboratories at UVA

Tim Bullock: Aly Witter Rich Price: Natasha Sheybani

Clinical Melanoma Team - UVA

Elizabeth Gaughan	William W. Grosł
Varinder Kaur	Kathleen Haden
Alejandro Gru	Emily Allred

Collaborators in Multicenter trials

Nina Bhardwaj, Mt Sinai Mike Lowe, Emory Keisuke Shirai, Dartmouth Megan Kruse, Cleveland Clinic John Nemunaitis, Toledo

Funding Support

NCI/NIH, UVA Cancer Center, Ludwig Institute for Cancer Research Cancer Research Institute Medimmune Focused Ultrasound Foundation Theraclion Rebecca C Harris fellowship