

Advances in Cancer Immunotherapy: Updates on IT Therapies in Melanoma and Other Cancers

Diwakar Davar, MD

Assistant Professor, Melanoma and Phase I Therapeutics University of Pittsburgh and Hillman Cancer Center

#LearnACI

- IP Rights: US Patent Compositions and Methods for Treating Cancers, Compositions and Methods For Determining Responsiveness to Immune Checkpoint Inhibitors (ICI), Increasing Effectiveness of ICI and Treating Cancer
- Consulting Fees: Checkmate Pharmaceuticals, Finch, Shionogi, Vedanta Biosciences; Contracted Research: Arcus, BMS, Merck, Checkmate Pharmaceuticals, CellSight Technologies, Immunocore, Tesaro/GSK
- I will be discussing non-FDA approved indications during my presentation.

General

- Rationale for IT therapy
- MOA of IT therapies, differences among various classes

Challenges in Clinical Development

- Number and locations of lesions to inject
- Response assessment itRECIST > RECIST/irRECIST
- Optimizing therapy in responding lesions
- Correlative analyses

Recent advances with IT therapies

• CMP-001 as a case study in melanoma

Rationale for IT therapy

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

Landmarks in IT therapy

Advances in Cancer Immunotherapy[™]

MOA of IT therapies

PAMPs and analogs

Vidutolimod (CMP-001), Transcon TCTLR7/8, poly ICLC (hiltonol), BDB001, PV-10, NKTR-262, BO-112

STING

E7766, BMS-986301, MK-2118

OVs

TVEC, PVS-RIPO, C-REV/HF-10, DNX-2401/Tasadenoturev, VCN-01, Reolysin , JX-594, GMCI, OrienX010

Gene therapy

Daromun (L19IL2/L19TNF), Leuvectin (IL2 plasmid), TriMix (CD70/CD40/OX40L mRNA)

Differences among IT Agents (PAMPs and analogs)

IT Agent (Sponsor)	Class	Completed studies (patient population) (activity)	Recent/ongoing studies (patient population) (activity)
Tilsotolimod/IMO-2125 (Idera)	TLR9 agonist	R/R mel (+ipi): ORR 22.4% ¹	R/R mel (+ipi): 8.8% (+ipi) vs. 8.6% (ipi) ²
Vidutolimod/CMP-001 (Checkmate)	TLR9 agonist	R/R mel (+pembro): ORR 25% ³ Naïve mel (neoadj) (+nivo): pCR 47%, MPR 57% ⁴	R/R mel (+nivo, 10 study): ongoing Naïve mel (+nivo, 11 study): ongoing
NKTR-262 (Nektar Therapeutics)	TLR 7/8 agonist	R/R tumors (+NKTR-214): ORR 18.2% ⁵	REVEAL-01 active, not recruiting
BO-112 (Highlight Therapeutics)	HATTVATOR Monogram Service is a subsc.	R/R mel (+pembro): ORR 27% ⁶	SPOTLIGHT203 active, recruiting
Tavo-EP (Oncosec)	IT IL-12	Naïve mel (+pembro): ORR 41% ⁷	R/R mel (+pembro): ongoing Neoadjuvant mel (+pembro): ongoing

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

¹Haymaker C, Cancer Discov 2021; ²Idera Press Release; ³Ribas A, Cancer Discov 2021; ⁴Davar D, SITC 2020 and 2021; ⁵Diab A, ASCO 2021; ⁶Rodas IM, SITC 2021; ⁷Algazi AP, CCR 2020

Differences among IT Agents (STING)

IT Agent (Sponsor)	Mode of Delivery	Completed studies (patient population) (activity)	Recent/ongoing studies (patient population) (activity)
ADU-S100 (Aduro)	IT	Phase I R/R solid tumors: 3/47 responses, no DLT ¹	None planned
BMS-986301 (BMS)	IV	Not reported	Active, recruiting
E7766 (Eisai)	IT	Not reported ²	Active, recruiting
MK-1454 (Merck)	IT	Phase I R/R solid tumors and lymphomas: 0/26 (Arm 1), 6/34 (Arm 2) ³	1L HNSCC (MK-1454-002): active, not recruiting
MK-2118 (Merck)	IT	Not reported	Active, recruiting
SB 11285 (F Star)	IV	Not reported ⁴	Active, recruiting

¹Meric-Bernstam F, CCR 2021; ²Gualberto A, AACR-NCI-EORTC 2021 ³Harrington KJ, ESMO 2018; ⁴Janku F, ASCO 2020;

Differences among IT Agents (OVs)

IT Agent (Sponsor)	Class	Completed studies (patient population) (activity)	Recent/ongoing studies (patient population) (activity)
T-VEC (Amgen)	HSV-1 with GM-CSF transgene	Phase III OPTIM (mel, vs. GM-CSF): ORR 26% vs. 6% ¹ Phase II mel (+ipi): ORR 62% ²	Phase II neoadj (mel, vs. surg): 17%, pCR; 2-year RFS 30% vs. 17% ³ Phase III MASTERKEY-265 (mel, +pembro): 49% vs. 41% ⁴
PVS-RIPO (Istari)	OGM poliovirus with tropism for cells expressing Necl-5 (GBM etc.)	Phase I (GBM): OS 21% ⁵	Phase II PD-1 R/R mel: LUMINOS- 102
Canerpaturev/HF-10 (Takara)	Spontaneously mutated HSV-1	Phase II PD-1 R/R mel (+ipi): ORR 41% vs. 6% ⁶	SPOTLIGHT203 active, recruiting
DNX-2401/Tasadenoturev	OGM adenovirus	Phase II rGBM (+pembro): 12% responses, mOS 12.5 months ⁷ Phase I DIPG: 75% responses by RAPNO ⁸	Phase III rGBM planned

#LearnACI © 2021–2022 Society for Immunotherapy of Cancer

¹Andtbacka RHI, J Clin Oncol 2015; ²Chesney J, J Clin Oncol 2018; ³Dummer R, Nat Med 2021; ⁴Gogas H, ESMO 2021; ⁵Desjardins A, NEJM 2018; ⁶Andtbacka RHI, ASCO 2017; ⁷Zadeh G, SNO 2020; ⁸Perez-Larraya JG, SNO 2021

Challenges: Number and locations of lesions to inject

No. of injected lesions

- 1 vs. 1-2 vs. 1-4 vs. up to 8
- Dead volume

Location of injected lesions

- Subcutaneous, LN
- ?deeper LN
- ?visceral

Different doses within same trial

- Factors: drug concentration; no. of injected lesions
- Confounds assessment of total dose administered

MTD RP2D (no DLT) IMO-2125+ ipilimumab safety population (N=18) 32 mg **Total** 4 mg 16 mg <u>8 ma</u> IMO-2125 dose (N=9) H125 (N=3)(N=3) (N=18) $_{3(100}$ permissible $_{60}$ should be $_{8(100)}$ ≥ 1 TEAE 2 (67)administered Related TEAE 3 (100) 17 (94) Discrepancies in 44 Calcúlation Based (50) ≥ 1 SAE Discontinued or Actrug de ivery and on the size of the dose exposure largest lesion (and if 0 DLT 0 ^{1 (33)}feasible lesions should^{6 (33)} irAE¹ be reimaged prior to each dose) Lesion selection is important

Uemura MI, ASCO 2017; Diab A, ASCO 2018

© 2021–2022 Society for Immunotherapy of Cancer

#learnAC

Advances in Cancer ImmunotherapyTM

Challenges in Clinical Development: Assessing Response with IT Therapies

Challenges with response

assessment

- What is the maximal effect of IT therapy (+/- systemic therapy) on non-injected lesions?
- What is the maximal effect of IT therapy (+/- systemic therapy) on injected lesions?
- What is the overall response?

© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC

Goldmacher GV, J Clin Oncol 2020

Challenges in Clinical Development: Optimizing Therapy In Responding Lesions

What to do if lesions shrink or resolve?

• Lesions smaller

- Reduce dose
- Add a new lesion(s)

- Lesions resolve
- Duration of therapy

- Add a new lesion(s)
- ?2 years

Advances in Cancer ImmunotherapyTM

Challenges in Clinical Development: Correlative analyses

Recent Advances: CMP-001 Case Study (1)

Qb coat protein

- Capsid protein from Qb bacteriophage; 180 subunits form an icosahedral virus-like particle (VLP)
- Protects the G10 inside the VLP from degradation in vivo
- Immunogenic protein induces Ab response after first injection in humans and mice
- Anti-Qb Ab opsonize the VLP, facilitate its uptake into pDC via FcR with enhanced induction of systemic CD8 T cell response⁸

#LearnACI

© 2021–2022 Society for Immunotherapy of Cancer

¹Hartmann E, Cancer Res 2003; ²Labidi-Galy SI, Cancer Res 2011; ³Sisirak V, Cancer Res 2012; ⁴Rothenfusser S, Blood 2004; ⁵Chan et al., Nature Comm. 2015; ⁶Alculumbre SG, Nat Immunol 2018; ⁷Checkmate, in preparation; ⁸Lemke et al., in revision

G10: A CpG-A TLR9 agonist

Poly G and CpG motifs mimic retroviral, viral DNA, induce systemic T cell responses

CpG-A is strongest known activator of tumor-associated pDC for IFN, CTL induction¹⁻⁴

Synthetic native DNA (phosphodiester) drives strongest pDC response⁵

CpG-A induces pDC differentiation into distinct subset vs. other TLR9 agonists⁶

Lower induction of inflammatory cytokines vs. other innate immune activators⁷

Advances in Cancer ImmunotherapyTM

Recent Advances: CMP-001 Case Study (2)

Phase IB study of CMP-001/pembrolizumab in PD-1 R/R melanoma

- N = 44, no of responders = 11/44 for ORR
 25% using RECIST
- With iRECIST, -2 additional responders, no of responders = 13/44 for **ORR 29.5%**
- Safety profile manageable
- Clinical activity promising

© 2021–2022 Society for Immunotherapy of Cancer

#LearnACI

Ribas A, Cancer Discov 2021

Recent Advances: CMP-001 Case Study (3)

Phase II study of neoadjuvant CMP-001/nivolumab in high-risk resectable melanoma

- N = 31, 30 evaluable for path response
- Response: pCR (0% residual tumor) 47%, pMR (<10% residual tumor) 10% → 57% MPR
- Safety profile manageable
- MPR → durable RFS (1-year RFS 93%)
- Clear evidence of immune activation within tumor and peripherally including pDC activation

Granzyme B ensored Survival Propabi D1 D21 D42 D1 D21 D42 D1 D21 D42 D1 D21 D42 0.50 ณ²⁰⁰⁰⁻ NS Relapse Free ີ່ລຸ 1500-Pathologi cell 0.25 -1000 1000-0.00 pCR/pMR nNR/nPR pre surgery pressurgery 20 Time in Months gression bed

Davar D, SITC 2020 and SITC 2021

© 2021–2022 Society for Immunotherapy of Cancer

#LearnAC

- IT therapies including PRR agonists, OVs and gene therapy span a range of MOAs → central role is to augment innate and adaptive immunity.
- Practical considerations, including number/location of lesions, response assessment and methods to optimize local delivery play an important role in safety and efficacy of this approach.
- Recent setbacks include tilsotolimod/IMO-2125 in PD-1 R/R melanoma and T-VEC in PD-1 naïve 1L melanoma; although several agents have demonstrated promising phase II data and are in pivotal trials (CMP-001) or have novel MOAs (PVS-RIPO, Tavo-EP).

