

IMMUNOTHERAPY

Immunotherapy for the Treatment of Genitourinary Malignancies

Saby George, MD, FACP

Associate Professor of Medicine and Oncology

Roswell Park Comprehensive Cancer Center

Society for Immunotherapy of Cancer

- <u>Consultant/ Advisory role</u>: Astra Zeneca, Bayer, BMS, Corvus, Exelixis, Genentech, Janssen, Novartis, Pfizer, EMD Serono
- Institutional Research funds: Bayer, BMS, Corvus, Novartis, Pfizer, Merck, Celldex, Astellas, Seattle Genetics, Calithera Therapeutics, Immunomedics
- I will be discussing non-FDA approved indications during my presentation.

Immunotherapy for Metastatic Kidney Cancer (Renal Cell Carcinoma; RCC)

History of Immunotherapy in mRCC

Resurgence of interest in immunotherapy

sitc

FDA-approved Immunotherapies for mRCC

Drug	Approved	Indication	Dose
High dose Interleukin-2	1992	Metastatic RCC	600,000 International Units/kg (0.037 mg/kg) IV q8hr infused over 15 minutes for a maximum 14 doses, THEN 9 days of rest, followed by a maximum of 14 more doses (1 course)
Interferon-a + bevacizumab	2009	Clear cell RCC	IFN 9 MIU s.c. three times a week + bev 10 mg/kg Q2W
Nivolumab	2015	Clear cell RCC refractory to prior VEGF targeted therapy	3mg/kg or 240mg IV Q2W or 480mg IV Q4W
Nivolumab +ipilimumab	2018	Clear cell RCC, treatment naïve	3mg/kg nivo plus 1mg/kg ipi Q3W x 4 doses then nivo maintenance at flat dosing
Pembrolizumab + axitinib	2019	Advanced RCC, Treatment naïve	200 mg pembro Q3W + 5 mg axitinib twice daily
Avelumab + axitinib	2019	Advanced RCC, Treatment naïve	800 mg avelumab Q2W + 5 mg axitinib twice daily

High Dose IL-2 in mRCC

- 20 year analysis of 259 patients
- ORR = 20%
 - 9% CR (n = 23)
 - 12% PR (n = 30)
- Median duration of response = 15.5 months
- Median OS = 19 months

Second-Line Nivolumab in mRCC

- CheckMate 025 Phase III trial
- Metastatic, clear-cell disease
- One or two previous antiangiogenic treatments
- Nivolumab (3 mg/kg IV Q2W) vs everolimus (10 mg daily)

Second-Line Nivolumab in mRCC PD-L1 subgroups

<u>PD-L1 ≥ 1%</u>

<u>PD-L1 < 1%</u>

First-line Nivolumab + Ipilimumab in mRCC

Nivolumab = anti-PD-1 antibody Ipilimumab = anti-CTLA-4 antibody IMDC = International Metastatic RCC Database Consortium

First-line Nivolumab + Ipilimumab in mRCC by IMDC Risk: overall survival

First-line Pembrolizumab + axitinib in advanced RCC: overall survival

KEYNOTE-426: OS in the ITT Population

AAEM AMERICAN ACADEMY OF EMERGENCY MEDICINE

First-line avelumab + axitinib in mRCC: progression-free survival

- Primary Endpoint: PFS and OS in PD-L1+
- Median PFS 13.8 mo vs
 7.2 mo (HR 0.61; 95% Cl, 0.47–0.79)
- ORR: 61.9% vs 29.7
- OS data: immature

JAVELIN 101 : PFS in the PD-L1+ Population

Immotion151

In Development: First-line atezolizumab + bevacizumab in PD-L1+ mRCC

Rini, The Lancet 2019. © 2019–2020 Society for Immunotherapy of Cancer

In Development: First-line atezolizumab + bevacizumab: molecular signatures

Identification of gene signatures based on association with clinical outcome

- T_{eff}: CD8a, IFNG, PRF1, EOMES, CD274
- Angio: VEGFA, KDR, ESM1, PECAM1, CD34, ANGPTL4

Rini et al, ESMO 2018

In Development: First-line atezolizumab + bevacizumab: molecular signatures

Front-line phase 3 trials with immunotherapy agents (efficacy summary)

	CheckMate 214	KEYNOTE-426	JAVELIN 101	IMmotion151
Intervention	Ipilimumab + Nivolumab	Pembrolizumab + Axitinib Avelumab + Axitinib		Atezolizumab + Bevacizumab
Comparator	Sunitinib	Sunitinib Sunitinib		Sunitinib
Primary Endpoint	OS, PFS, ORR in int/poor risk	OS, PFS	PFS, OS in PD-L1+	PFS in PD-L1+; OS
mOS, months	NR vs 37.9 (30 mo min followup)	NR vs NR (median 12.8 mo followup)	Not reported	33.6 vs 34.9 (median 24 mo followup)
PFS, months	9.7 vs 9.7	15.1 vs 11.1	13.8 vs 7.2	11.2 vs 7.7
ORR (ITT), %	41% vs 34%	59.3% vs 35.7%	51.4% vs 25.7%	37% vs 33%
CR rate (ITT)	10.5% vs 1.8%	5.8% vs 1.9%	3.4% vs 1.8%	5% vs 2%

IIT: Intent-to-Treat; PFS: progression-free survival; ORR: overall response rate; OS: overall survival

Tannir, ASCO GU 2019. Rini, NEJM 2019. Motzer, NEJM 2019. Rini, Lancet 2019. © 2019–2020 Society for Immunotherapy of Cancer

Ongoing front-line phase 3 trials with immunotherapy agents for front-line ccRCC

Trial number	Trial Name	Treatment Arm	Comparator Arm	Population Size	Primary End Point
NCT03141177	CheckMate 9ER	Cabozantinib + Nivolumab	Sunitinib	630	PFS
NCT02811861	CLEAR	Lenvatinib + Pembrolizumab or Everolimus	Sunitinib	1050	PFS
NCT03729245	CA045002	NKTR-214 + Nivolumab	Sunitinib	600	ORR, OS
NCT03937219	COSMIC-313	Cabozantinib + Ipilimumab + Nivolumab	Sunitinib	676	PFS
PFS: progression-free survival; ORR: overall response rate; OS: overall survival					

In Development: First-line pembrolizumab monotherapy in mRCC KEYNOTE - 427

	N = 110
Confirmed ORR, % (95% CI)	36.4
CR, %	3 (3)
PR, %	37 (34)
DCR, %	57 (47-67)
DOR, median (range), mo	Not Reported
DOR ≥ 6 mo (responders), %	77

Donskov et al. ESMO 2018 Tykodi et al, ASCO 2019 © 2019–2020 Society for Immunotherapy of Cancer

Immunotherapy for Metastatic Bladder Cancer (Urothelial Carcinoma; UC)

sitc

Approved checkpoint inhibitors for mUC – *cisplatin refractory*

Drug	Approved	Indication	Dose
Atezolizumab	2016 (2018)	Advanced/metastatic UC	1200 mg Q3W
Avelumab	2017	Advanced/metastatic UC	10 mg/kg Q2W
Durvalumab	2017	Advanced/metastatic UC	10 mg/kg Q2W
Nivolumab	2017	Advanced/metastatic UC	240 mg Q2W or 480 mg Q4W
Pembrolizumab	2017 (2018)	Advanced/metastatic UC	200 mg Q3W

Approved checkpoint inhibitors for mUC – *cisplatin ineligible*

Drug	Approved	Indication	Dose
Atezolizumab	2017 (2018)	Advanced/metastatic UC (PD-L1 ≥5%)	1200 mg Q3W
Pembrolizumab	2017 (2018)	Advanced/metastatic UC (PD-L1 CPS ≥10)	200 mg Q3W

FDA limits the use of Tecentriq and Keytruda for some urothelial cancer patients

- Locally advanced or metastatic urothelial carcinoma and ineligible for cisplatin-based chemo and tumor PD-L1 (CPS ≥ 10, pembro; IC ≥ 5% tumor area, atezo)
- Patients ineligible for any platinum-containing chemotherapy regardless of PD-L1 status

June 2018

Tumor Mutational Burden (TMB) May Signal Responses with PD-1 Blockade Atezolizumab in mUC

sitc

In development: Ipilimumab + Nivolumab CheckMate 032

AAEM AMERICAN ACADEMY OF EMERGENCY MEDICINE

-ACCC

ORR by Baseline Tumor PD-L1 Expression per Investigator

notherapy of Cane

In development: Ipilimumab + Nivolumab CheckMate 032

sitc

Society for Immunotherapy of Canc

The Spectrum of Prostate Cancer

Sipuleucel-T in mCRPC

Drake et al. Curr Opin Urol 2010 Kantoff et al. NEJM 2010

© 2019–2020 Society for Immunotherapy of Cancer

Sipuleucel-T in mCRPC

- Post-hoc analysis of Phase 3 trial PROCEED (N = 1902 mCRPC patients)
- African-Americans (AA) = 438; Caucasians (CAU) = 219
- Median OS = 35.2 (AA) vs 29.9 mo (CAU); HR 0.81, 95% CI 0.68–0.97; p = 0.03.
- AA race was independently associated with prolonged OS on multivariate analysis (HR 0.60, 95% CI 0.48–0.74; p < 0.001)

Limited efficacy of Checkpoint Inhibitors in mCRPC

Cohort 1 (PD-L1+)

No FDA-approved CIs for mCRPC

- Pembrolizumab is approved for all Microsatellite Instability-High (MSI-H) solid tumors
- MSI-H incidence is low in PC
 - Localized PC ~2%
 - Autopsy series of mCRPC ~12%
- MSI testing may offer pembrolizumab as an option

ACCC

In development: nivolumab + ipilimumab in mCRPC

- Checkmate 650
- Nivo 1 mg/kg + Ipi 3 mg/kg Q3W for 4 doses, then Nivo 480 mg Q4W
- Progressed after 2nd-gen hormonal: 26% response @ 11.9 mo, 2 CR
- Progressed after chemo+hormonal: 10% response @ 13.5 mo, 2 CR
- Higher ORR in:
 - PD-L1 > 1%
 - DNA damage repair deficient
 - homologous recombination deficiency
 - high tumor mutational burden

Future Combinations in mCRPC to Engage Immune System

- Hormonal therapy
- Radiation
- Radium-223
- PARP inhibitors
- Chemotherapy
- New targets

irAEs with Immune Checkpoint Inhibitors in GU Cancers - Meta-analysis of 8 studies

Similar
incidence
overall

Adverse event	Incidence, any grade (GU only trials) (%)	Incidence, grades 3– 5 (GU only trials) (%)	Incidence any grade (non-GU clinical trials) (%)	Incidence, grades 3– 5 (non-GU clinical trials) (%)
Hypothyroid/ thyroiditis	0.8–9	0–0.6	3.9–12	0–0.1
Diabetes/DKA	0–1.5	0–0.7	0.8–0.8	0.4–0.7
LFT changes/ hepatitis	1.5–5.4	1–3.8	0.3–3.4	0.3–2.7
Pneumonitis	2–4.4	0–2	1.8–3.5	0.25–1.9
Encephalitis	NR	NR	0.2–0.8	0.0–0.2
Colitis/diarrhea	1–10	1–10	2.4–4.1	1.0–2.5
Hypophysitis	0–0.5	0–0.2	0.2–0.9	0.2–0.4
Renal Dysfunction/ nephritis	0.3–1.6	0–1.6	0.3–4.9	0.0–0.5
Myositis	0.8–5	0–0.8	NR	NR

Conclusions

- The role of immunotherapy in GU malignancies is increasing
- In RCC, many front-line checkpoint inhibitor options are approved
- Multiple checkpoint inhibitors approved for advanced/metastatic urothelial carcinoma
- Low immune engagement in prostate cancer has limited the application of immunotherapy in this disease

Additional Resources

Rini et al. Journal for ImmunoTherapy of Cancer (2016) 4:81 DOI 10.1186/s40425-016-0180-7

Journal for ImmunoTherapy of Cancer

POSITION ARTICLE AND GUIDELINES

Society for Immunotherapy of Cancer consensus statement on immunotherapy for the treatment of renal cell carcinoma

Brian I. Rini¹, David F. McDermott², Hans Hammers³, William Bro⁴, Ronald M. Bukowski⁵, Bernard Faba⁶, Jo Faba⁶, Robert A. Figlin⁷, Thomas Hutson⁸, Eric Jonasch⁹, Richard W. Joseph¹⁰, Bradley C. Leibovich¹¹, Thomas Olencki¹², Allan J. Pantuck¹³, David I. Quinn¹⁴, Virginia Seery², Martin H. Voss¹⁵, Christopher G. Wood⁹, Laura S. Wood¹ and Michael B. Atkins^{16*}

 McNeel et al. Journal for ImmunoTherapy of Cancer (2016) 4:92
 Journal for ImmunoTherapy of Cancer

 DOI 10.1186/s40425-016-0198-x
 Journal for ImmunoTherapy of Cancer

 POSITION ARTICLE AND GUIDELINES
 Open Access

 The Society for ImmunoTherapy of Cancer
 ImmunoTherapy of Cancer

consensus statement on immunotherapy for the treatment of prostate carcinoma

Douglas G. McNeel¹, Neil H. Bander², Tomasz M. Beer³, Charles G. Drake⁴, Lawrence Fong⁵, Stacey Harrelson⁶, Philip W. Kantoff⁷, Ravi A. Madan⁸, William K. Oh⁹, David J. Peace¹⁰, Daniel P. Petrylak¹¹, Hank Porterfield¹², Oliver Sartor¹³, Neal D. Shore⁶, Susan F. Slovin⁷, Mark N. Stein¹⁴, Johannes Vieweg¹⁵ and James L. Gulley¹⁶

Case Studies

A 56 yo male was recently referred to you for stage IV RCC (to lung, lymph nodes and adrenal) and has favorable risk per IMDC. What is the best treatment option?

- 1. Ipilimumab plus nivolumab
- 2. Sunitinib
- 3. High dose IL-2
- 4. Axitinib plus pembrolizumab
- 5. 2 and 4

A 68 yo female patient has a history of stage IV bladder cancer. She was found to have progressive disease after 1st line platinum. Her tumor is negative for FGFR2/3 amplification. Her performance status is ECOG1. What is the next best step?

- 1. Cisplatin rechallenge
- 2. Erdafitinib
- 3. Hospice care
- 4. Switch to Pembrolizumab

